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Abstract
Counterfactual regret minimization (CFR) is a family of iter-
ative algorithms that are the most popular and, in practice,
fastest approach to approximately solving large imperfect-
information games. In this paper we introduce novel CFR
variants that 1) discount regrets from earlier iterations in var-
ious ways (in some cases differently for positive and nega-
tive regrets), 2) reweight iterations in various ways to ob-
tain the output strategies, 3) use a non-standard regret min-
imizer and/or 4) leverage “optimistic regret matching”. They
lead to dramatically improved performance in many settings.
For one, we introduce a variant that outperforms CFR+, the
prior state-of-the-art algorithm, in every game tested, includ-
ing large-scale realistic settings. CFR+ is a formidable bench-
mark: no other algorithm has been able to outperform it. Fi-
nally, we show that, unlike CFR+, many of the important new
variants are compatible with modern imperfect-information-
game pruning techniques and one is also compatible with
sampling in the game tree.

Introduction
Imperfect-information games model strategic interactions
between players that have hidden information, such as in
negotiations, cybersecurity, and auctions. A common bench-
mark for progress in this class of games is poker. The typi-
cal goal is to find an (approximate) equilibrium in which no
player can improve by deviating from the equilibrium.

For extremely large imperfect-information games that
cannot fit in a linear program of manageable size, typically
iterative algorithms are used to approximate an equilibrium.
A number of such iterative algorithms exist (Nesterov 2005;
Hoda et al. 2010; Pays 2014; Kroer et al. 2015; Heinrich,
Lanctot, and Silver 2015). The most popular ones are vari-
ants of counterfactual regret minimization (CFR) (Zinkevich
et al. 2007; Lanctot et al. 2009; Gibson et al. 2012). In partic-
ular, the development of CFR+ was a key breakthrough that
in many cases is at least an order of magnitude faster than
vanilla CFR (Tammelin 2014; Tammelin et al. 2015). CFR+
was used to essentially solve heads-up limit Texas hold’em
poker (Bowling et al. 2015) and was used to approximately
solve heads-up no-limit Texas hold’em (HUNL) endgames
in Libratus, which defeated HUNL top professionals (Brown
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and Sandholm 2017c; 2017b). A blend of CFR and CFR+
was used by DeepStack to defeat poker professionals in
HUNL (Moravčı́k et al. 2017).

The best known theoretical bound on the number of it-
erations needed for CFR and CFR+ to converge to an
ε-equilibrium (defined formally in the next section) is
O( 1

ε2 ) (Zinkevich et al. 2007; Tammelin et al. 2015). This is
asymptotically slower than first-order methods that converge
at rate O( 1

ε ) (Hoda et al. 2010; Kroer et al. 2015). However,
in practice CFR+ converges much faster than its theoretical
bound, and even faster than O( 1

ε ) in many games.
Nevertheless, we show in this paper that one can design

new variants of CFR that significantly outperform CFR+.
We show that CFR+ does relatively poorly in games where
some actions are very costly mistakes (that is, they cause
high regret in that iteration) and provide an intuitive example
and explanation for this. To address this weakness, we intro-
duce variants of CFR that do not assign uniform weight to
each iteration. Instead, earlier iterations are discounted. As
we show, this high-level idea can be instantiated in many dif-
ferent ways. Furthermore, some combinations of our ideas
perform significantly better than CFR+ while others perform
worse than it. In particular, one variant outperforms CFR+ in
every game tested.

Notation and Background
We focus on sequential games as the most interesting and
challenging application of this work, but our techniques also
apply to non-sequential games. In an imperfect-information
extensive-form (that is, tree-form) game there is a finite set
of players, P . “Nature” is also considered a player (rep-
resenting chance) and chooses actions with a fixed known
probability distribution. A state h is defined by all infor-
mation of the current situation, including private knowledge
known to only a subset of players. A(h) is the actions avail-
able in a node and P (h) is the unique player who acts at that
node. If action a ∈ A(h) leads from h to h′, then we write
h · a = h′. H is the set of all states in the game tree. Z ⊆ H
are terminal states for which no actions are available. For
each player i ∈ P , there is a payoff function ui : Z → R.
We denote the range of payoffs in the game by ∆. Formally,
∆i = maxz∈Z ui(z)−minz∈Z ui(z) and ∆ = maxi∈P ∆i.

Imperfect information is represented by information sets
(infosets) for each player i ∈ P . For any infoset I belong-
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ing to player i, all states h, h′ ∈ I are indistinguishable to
player i. Every non-terminal state h ∈ H belongs to exactly
one infoset for each player i. The set of actions that may be
chosen in I is represented as A(I). We represent the set of
all infosets belonging to player i where i acts by Ii.

A strategy σi(I) is a probability vector over actions for
player i in infoset I . The probability of a particular action a
is denoted by σi(I, a). Since all states in an infoset belong-
ing to player i are indistinguishable, the strategies in each
of them are identical. Therefore, for any h ∈ I we define
σi(h, a) = σi(I, a) where i = P (h). We define σi to be
a strategy for player i in every infoset in the game where
player i acts. A strategy profile σ is a tuple of strategies, one
per player. The strategy of every player other than i is repre-
sented as σ−i. ui(σi, σ−i) is the expected payoff for player
i if all players play according to strategy profile 〈σi, σ−i〉.
πσ(h) = Πh′·avhσP (h′)(h

′, a) is the joint probability of
reaching h if all players play according to σ. πσi (h) is the
contribution of player i to this probability (that is, the prob-
ability of reaching h if all players other than i, and chance,
always chose actions leading to h). πσ−i(h) is the contribu-
tion of chance and all players other than i.

A best response to σi is a strategy BR(σi) such that
ui
(
σi, BR(σi)

)
= maxσ′−i ui(σi, σ

′
−i). A Nash equilib-

rium σ∗ is a strategy profile where everyone plays a best re-
sponse: ∀i, ui(σ∗i , σ∗−i) = maxσ′i ui(σ

′
i, σ
∗
−i) (Nash 1950).

The exploitability e(σi) of a strategy σi in a two-player
zero-sum game is how much worse it does versus a best re-
sponse compared to a Nash equilibrium strategy. Formally,
e(σi) = ui

(
σ∗i , BR(σ∗i )

)
− ui

(
σi, BR(σi)

)
. In an ε-Nash

equilibrium, no player has exploitability higher than ε.
In CFR, the strategy vector for each infoset is determined

according to a regret-minimization algorithm. Typically, re-
gret matching (RM) is used as that algorithm within CFR
due to RM’s simplicity and lack of parameters.

The expected value (or simply value) to player i at
state h given that all players play according to strategy
profile σ from that point on is defined as vσi (h). The
value to i at infoset I where i acts is the weighted av-
erage of the value of each state in the infoset, where
the weight is proportional to i’s belief that they are in
that state conditional on knowing they are in I . For-
mally, vσ(I) =

∑
h∈I

(
πσ−i(h|I)vσi (h)

)
and vσ(I, a) =∑

h∈I
(
πσ−i(h|I)vσi (h · a)

)
where πσ−i(h|I) =

πσ−i(h)

πσ−i(I)
.

Let σt be the strategy on iteration t. The instantaneous
regret for action a in infoset I on iteration t is rt(I, a) =

vσ
t

(I, a)− vσt(I) and the regret on iteration T is

RT (I, a) =

T∑
t=1

rT (I, a) (1)

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) =

maxa{RT+(I, a)}. Regret for player i in the entire game is

RTi = max
σ′i

T∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(2)

In RM, a player picks a distribution over actions in an
infoset in proportion to the positive regret on those actions.
Formally, on each iteration T + 1, player i selects actions
a ∈ A(I) according to probabilities

σT+1(I, a) =


RT+(I,a)∑

a′∈A(I) R
T
+(I,a′)

, if
∑
a′ R

T
+(I, a′) > 0

1
|A(I)| , otherwise

(3)
If a player plays according to regret matching in in-
foset I on every iteration, then on iteration T , RT (I) ≤
∆
√
|A(I)|

√
T (Cesa-Bianchi and Lugosi 2006).

If a player plays according to CFR on every iteration, then

RTi ≤
∑
I∈Ii

RT (I) (4)

So, as T →∞, R
T
i

T → 0.
The average strategy σ̄Ti (I) for an infoset I is

σ̄Ti (I) =

∑T
t=1

(
πσ

t

i (I)σti(I)
)∑T

t=1 π
σt
i (I)

(5)

CFR minimizes external regret (Zinkevich et al. 2007), so
it converges to a coarse correlated equilibrium (Hart and
Mas-Colell 2000). In two-player zero-sum games, this is
also a Nash equilibrium. In two-player zero-sum games, if
both players’ average regret satisfies RTi

T ≤ ε, then their av-
erage strategies 〈σ̄T1 , σ̄T2 〉 are a 2ε-Nash equilibrium (Waugh
2009). Thus, CFR is an anytime algorithm for finding an ε-
Nash equilibrium in two-player zero-sum games.

Although CFR theory calls for both players to simultane-
ously update their regrets on each iteration, in practice far
better performance is achieved by alternating which player
updates their regrets on each iteration. However, this compli-
cates the theory for convergence (Farina, Kroer, and Sand-
holm ; Burch, Moravcik, and Schmid 2018).

CFR+ is like CFR but with the following small changes.
First, after each iteration any action with negative regret
is set to zero regret. Formally, CFR+ chooses its strategy
on iteration T + 1 according to Regret Matching+ (RM+),
which is identical to Equation (3) but uses the regret-like
value QT (I, a) = max{0, QT−1(I, a) + rt(I, a)} rather
thanRT+(I, a). Second, CFR+ uses a weighted average strat-
egy where iteration T is weighted by T rather than using
a uniformly-weighted average strategy as in CFR. The best
known convergence bound for CFR+ is higher (that is, worse
in exploitability) than CFR by a constant factor of 2. Despite
that, CFR+ typically converges much faster than CFR and
usually even faster than O( 1

ε ).
However, in some games CFR+ converges slower than

1
T . We now provide a two-player zero-sum game with this
property. Consider the payoff matrix

[
1 0.9
−0.7 1

]
(where P1

chooses a row and P2 simultaneously chooses a column; the
chosen entry in the matrix is the payoff for P1 while P2 re-
ceives the opposite). We now proceed to introducing our im-
provements to the CFR family.

1830



Weighted Averaging Schemes for CFR+
As described in the previous section, CFR+ traditionally
uses “linear” averaging, in which iteration t’s contribution
to the average strategy is proportional to t. In this section we
prove a bound for any sequence of non-decreasing weights
when calculating the average strategy. However, the bound
on convergence is never lower than that of vanilla CFR (that
is, uniformly equal weight on the iterations).
Theorem 1. Suppose T iterations of RM+ are played
in a two-player zero-sum game. Then the weighted aver-
age strategy profile, where iteration t is weighed propor-
tional to wt > 0 and wi ≤ wj for all i < j, is a

wT∑T
t=1 wt

∆|I|
√
|A|
√
T -Nash equilibrium.

The proof is in the appendix. It largely follows the proof
for linear averaging in CFR+ (Tammelin et al. 2015).

Empirically we observed that CFR+ converges faster
when assigning iteration t a weight of t2 rather than a weight
of t when calculating the average strategy. We therefore use
this weight for CFR+ and its variants throughout this paper
when calculating the average strategy.

Regret Discounting for CFR and Its Variants
In all past variants of CFR, each iteration’s contribution
to the regrets is assigned equal weight. In this section we
discuss discounting iterations in CFR when determining
regrets—in particular, assigning less weight to earlier iter-
ations. This is very different from, and orthogonal to, the
idea of discounting iterations when computing the average
strategy, described in the previous section.

To motivate discounting, consider the simple case of an
agent deciding between three actions. The payoffs for the
actions are 0, 1, and -1,000,000, respectively. From (3) we
see that CFR and CFR+ assign equal probability to each ac-
tion on the first iteration. This results in regrets of 333,333,
333,334, and 0, respectively. If we continue to run CFR or
CFR+, the next iteration will choose the first and second ac-
tion with roughly 50% probability each, and the regrets will
be updated to be roughly 333,332.5 and 333,334.5, respec-
tively. It will take 471,407 iterations for the agent to choose
the second action—that is, the best action—with 100% prob-
ability. Discounting the first iteration over time would dra-
matically speed convergence in this case. While this might
seem like a contrived example, many games include highly
suboptimal actions. In this simple example the bad action
was chosen on the first iteration, but in general bad actions
may be chosen throughout a run, and discounting may be
useful far beyond the first few iterations.

Discounting prior iterations has received relatively lit-
tle attention in the equilibrium-finding community. “Opti-
mistic” regret minimizing variants exist that assign a higher
weight to recent iterations, but this extra weight is tempo-
rary and typically only applies to a short window of re-
cent iterations; for example, counting the most recent it-
erate twice (Syrgkanis et al. 2015). We investigate opti-
mistic regret minimizers as part of CFR later in this paper.
CFR+ discounts prior iterations’ contribution to the aver-
age strategy, but not the regrets. Discounting prior iterations
has also been used in CFR for situations where the game

structure changes, for example due to interleaved abstrac-
tion and equilibrium finding (Brown and Sandholm 2014;
2015b). There has also been some work on applying dis-
counting to perfect-information game solving in Monte
Carlo Tree Search (Hashimoto et al. 2011).

Outside of equilibrium finding, prior research has ana-
lyzed the theory for discounted regret minimization (Cesa-
Bianchi and Lugosi 2006). That work investigates applying
RM (and other regret minimizers) to a sequence of itera-
tions in which iteration t has weight wt (assuming wt ≤ 1
and the final iteration has weight 1). For RM, it proves that
if
∑∞
t=1 wt = ∞ then weighted average regret, defined as

Rw,Ti = maxa∈A
∑T
t=1(wtr

t(a))∑T
t=1 w

t is bounded by

Rw,Ti ≤
∆
√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
(6)

Prior work has shown that, in two-player zero-sum games, if
weighted average regret is ε, then the weighted average strat-

egy, defined as σw,Ti (I) =
∑
t∈T

(
wtπ

σt

i (I)σti(I)
)

∑
t∈T (wtπ

σt
i (I))

for infoset

I , is a 2ε-Nash equilibrium (Brown and Sandholm 2014).
While there are a limitless number of discounting

schemes that converge in theory, not all of them perform
well in practice. This paper introduces a number of variants
that perform particularly well also in practice. The first algo-
rithm, which we refer to as linear CFR (LCFR), is identical
to CFR, except on iteration t the updates to the regrets and
average strategies are given weight t. That is, the iterates
are weighed linearly. (Equivalently, one could multiply the
accumulated regret by t

t+1 on each iteration. We do this in
our experiments to reduce the risk of numerical instability.)
This means that after T iterations of LCFR, the first itera-
tion only has a weight of 2

T 2+T on the regrets rather than a
weight of 1

T , which would be the case in CFR and CFR+. In
the motivating example introduced at the beginning of this
section, LCFR chooses the second action with 100% proba-
bility after only 970 iterations while CFR+ requires 471,407
iterations. Furthermore, from (6), the theoretical bound on
the convergence of regret is only greater than vanilla CFR
by a factor of 2√

3
. One could more generally use any poly-

nomial weighting of t.
Since the changes from CFR that lead to LCFR and CFR+

do not conflict, it is natural to attempt to combine them into a
single algorithm that weighs each iteration t proportional to
t and also has a floor on regret at zero like CFR+. However,
we empirically observe that this algorithm, which we refer to
as LCFR+, actually leads to performance that is worse than
LCFR and CFR+ in the games we tested, even though its
theoretical bound on convergence is the same as for LCFR.

Nevertheless, we find that using a less-aggressive dis-
counting scheme leads to consistently strong performance.
We can consider a family of algorithms called Discounted
CFR with parameters α β, and γ (DCFRα,β,γ), defined by
multiplying accumulated positive regrets by tα

tα+1 , negative

regrets by tβ

tβ+1
, and contributions to the average strategy by

( t
t+1 )γ on each iteration t. In this case, LCFR is equivalent
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to DCFR1,1,1, because multiplying iteration t’s regret and
contribution to the average strategy by t′

t′+1 on every itera-
tion t ≤ t′ < T is equivalent to weighing iteration t by t

T .
CFR+ (where iteration t’s contribution to the average strat-
egy is proportional to t2) is equivalent to DCFR∞,−∞,2.

In preliminary experiments we found the optimal choice
of α, β, and γ varied depending on the specific game. How-
ever, we found that setting α = 3/2, β = 0, and γ = 2 led
to performance that was consistently stronger than CFR+.
Thus, when we refer to DCFR with no parameters listed, we
assume this set of parameters are used.

Theorem 2 shows that DCFR has a convergence bound
that differs from CFR only by a constant factor.
Theorem 2. Assume that T iterations of DCFR are con-
ducted in a two-player zero-sum game. Then the weighted
average strategy profile is a 6∆|I|(|

√
|A|+ 1√

T
)/
√
T -Nash

equilibrium.
We provide the proof in the appendix. It combines el-

ements of the proof for CFR+ (Tammelin et al. 2015)
and the proof that discounting in regret minimization is
sound (Cesa-Bianchi and Lugosi 2006).

One of the drawbacks of setting β ≤ 0 is that suboptimal
actions (that is, actions that have an expected value lower
than some other action in every equilibrium) no longer have
regrets that approach−∞ over time. Instead, for β = 0 they
will approach some constant value and for β < 0 they will
approach 0. This makes the algorithm less compatible with
improvements that prune negative-regret actions (Brown and
Sandholm 2015a; 2017a). Such pruning algorithms can lead
to more than an order of magnitude reduction in compu-
tational and space requirements for some games. Setting
β > 0 better facilitates this pruning. For this reason in our
experiments we also show results for β = 0.5.

Experimental setup
We now introduce the games used in our experiments.

Description of heads-up no-limit Texas hold’em
We conduct experiments on subgames of HUNL poker, a
primary benchmark for imperfect-information game solv-
ing. In the version of HUNL we use, and which is standard
in the Annual Computer Poker Competition, the two players
(P1 and P2) start each hand with $20,000. The players alter-
nate positions after each hand. On each of the four rounds of
betting, each player can choose to either fold, call, or raise.
Folding results in the player losing and the money in the pot
being awarded to the other player. Calling means the player
places a number of chips in the pot equal to the opponent’s
share. Raising means the player adds more chips to the pot
than the opponent’s share. A round ends when a player calls
(if both players have acted). Players cannot raise beyond the
$20,000 they start with. All raises must be at least $100 and
at least as larger as any previous raise on that round.

At the start of each hand of HUNL, both players are dealt
two private cards from a standard 52-card deck. P1 places
$100 in the pot and P2 places $50 in the pot. A round of
betting then occurs. Next, three community cards are dealt
face up. Another round of betting occurs, starting with P1.

After the round is over, another community card is dealt face
up, and another round of betting starts with P1 acting first.
Finally, one more community card is revealed and a final
betting round occurs starting with P1. Unless a player has
folded, the player with the best five-card poker hand, con-
structed from their two private cards and the five community
cards, wins the pot. In the case of a tie, the pot is split evenly.

Although the HUNL game tree is too large to traverse
completely without sampling, state-of-the-art agents for
HUNL solve subgames of the full game in real time during
play (Brown and Sandholm 2017b; Moravčı́k et al. 2017;
Brown and Sandholm 2017c; Brown, Sandholm, and Amos
2018) using a small number of the available bet sizes. For ex-
ample, Libratus solved in real time the remainder of HUNL
starting on the third betting round. We conduct our HUNL
experiments on four subgames generated by Libratus 1. The
subgames were selected prior to testing. Although the inputs
to the subgame are publicly available (the beliefs of both
players at the start of the subgame about what state they are
in, the number of chips in the pot, and the revealed cards),
the exact bet sizes that Libratus considered have not been
publicly revealed. We therefore use the bet sizes of 0.5x and
1x the size of the pot, as well as an all-in bet (betting all re-
maining chips) for the first bet of each round. For subsequent
bets in a round, we consider 1x the pot and all-in.

Subgame 1 begins at the start of the third betting round
and continues to the end of the game. There are $500 in the
pot at the start of the round. This is the most common situ-
ation to be in upon reaching the third betting round, and is
also the hardest for AIs to solve because the remaining game
tree is the largest. Since there is only $500 in the pot but up
to $20,000 could be lost, this subgames contains a number
of high-penalty mistake actions. Subgame 2 begins at the
start of the third betting round and has $4,780 in the pot at
the start of the round. Subgame 3 begins at the start of the
fourth (and final) betting round with $500 in the pot, which
is a common situation. Subgame 4 begins at the start of the
fourth betting round with $3,750 in the pot. Exploitability
is measured in terms of milli big blinds per game (mbb/g),
a standard measurement in the field, which represents the
number of big blinds (P1’s original contribution to the pot)
lost per hand of poker multiplied by 1,000.

Description of Goofspiel
In addition to HUNL subgames, we also consider a ver-
sion of the game of Goofspiel (limited to just five cards per
player). In this version of Goofspiel, each player has five
hidden cards in their hand (A, 2, 3, 4, and 5), with A being
valued as 1. A deck of five cards (also of rank A, 2, 3, 4, and
5), is placed between the two players. In the variant we con-
sider, both players know the order of revealed cards in the
center will be A, 2, 3, 4, 5. On each round, the top card of the
deck is flipped and is considered the prize card. Each player
then simultaneously plays a card from their hand. The player
who played the higher-ranked card wins the prize card. If
the players played the same rank, then they split the prize’s
value. The cards that were bid are discarded. At the end of

1https://github.com/CMU-EM/LibratusEndgames
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the game, players add up the ranks of their prize cards. A
player’s payoff is the difference between his total value and
the total value of his opponent.

Experiments on Regret Discounting and
Weighted Averaging

Our experiments are run for 32,768 iterations for HUNL
subgames and 8,192 iterations for Goofspiel. Since all the
algorithms tested only converge to an ε-equilibrium rather
than calculating an exact equilibrium, it is up to the user to
decide when a solution is sufficiently converged to termi-
nate a run. In practice, this is usually after 100 - 1,000 iter-
ations (Brown and Sandholm 2017c; Moravčı́k et al. 2017).
For example, an exploitability of 1 mbb/g is considered suf-
ficiently converged so as to be essentially solved (Bowling
et al. 2015). Thus, the performance of the presented algo-
rithms between 100 and 1,000 iterations is arguably more
important than the performance beyond 10,000 iterations.
Nevertheless, we show performance over a long time hori-
zon to display the long-term behavior of the algorithms. All
our experiments use the alternating-updates form of CFR.
We measure the average exploitability of the two players.

Our experiments show that LCFR can dramatically im-
prove performance over CFR+ over reasonable time hori-
zons in certain games. However, asymptotically, LCFR ap-
pears to do worse in practice than CFR+. LCFR does par-
ticularly well in subgame 1 and 3, which (due to the small
size of the pot relative to the amount of money each player
can bet) have more severe mistake actions compared to sub-
games 2 and 4. It also does poorly in Goofspiel, which also
likely does not have severely suboptimal actions. This sug-
gests that LCFR is particularly well suited for games with
the potential for large mistakes.

Our experiments also show that DCFR 3
2 ,0,2

matches or
outperforms CFR+ across the board. The improvement is
usually a factor of 2 or 3. In Goofspiel, DCFR 3

2 ,0,2
results in

essentially identical performance as CFR+.
DCFR 3

2 ,−∞,2
, which sets negative regrets to zero rather

than multiplying them by 1
2 each iteration, generally also

leads to equally strong performance, but in rare cases (such
as in Figure 2), can produce a spike in exploitability that
takes many iterations to recover from. Thus, we generally
recommend using DCFR 3

2 ,0,2
over DCFR 3

2 ,−∞,2
.

DCFR 3
2 ,

1
2 ,2

multiplies negative regrets by
√
t√
t+1

on itera-
tion t, which allows suboptimal actions to decrease in regret
to −∞ and thereby facilitates algorithms that temporarily
prune negative-regret sequences. In the HUNL subgames,
DCFR 3

2 ,
1
2 ,2

performed very similarly to DCFR 3
2 ,0,2

. How-
ever, in Goofspiel it does noticeably worse. This suggests
that DCFR 3

2 ,
1
2 ,2

may be preferable to DCFR 3
2 ,0,2

in games
with large mistakes when a pruning algorithm may be used,
but that DCFR 3

2 ,0,2
should be used otherwise.

NormalHedge for CFR Variants
CFR is a framework for applying regret minimization in-
dependently at each infoset in the game. Typically RM is

Figure 1: Convergence in HUNL Subgame1.

Figure 2: Convergence in HUNL Subgame2.

Figure 3: Convergence in HUNL Subgame 3.

used as the regret minimizer primarily due to its lack of pa-
rameters and its simple implementation. However, any re-
gret minimizer can be applied. Previous research investi-
gated using Hedge (Littlestone and Warmuth 1994; Freund
and Schapire 1997) in CFR rather than RM (Brown, Kroer,
and Sandholm 2017). This led to better performance in small
games, but worse performance in large games. In this section
we investigate instead using NormalHedge (NH) (Chaud-
huri, Freund, and Hsu 2009) as the regret minimizer in CFR.

In NH, on each iteration T + 1 a player i selects actions
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Figure 4: Convergence in HUNL Subgame 4.

Figure 5: Convergence in 5-card Goofspiel variant.

a ∈ A(I) proportional to RT+(I,a)

ct
exp

( (RT+(I,a))2

2ct

)
where

ct > 0 satisfies 1
N

∑N
i=1 exp

( (RT+(I,a))2

2ct

)
= e. If a player

plays according to NH in infoset I , then cumulative regret
for that infoset is at most O(∆

√
T ln(|A|) + ∆ ln2(|A|)).

NH shares two desirable properties with RM: it does not
have any parameters and it assigns zero probability to ac-
tions with negative regret (which means it can be easily used
in CFR+ with a floor on regret at zero). However, the NH op-
eration is more computationally expensive than RM because
it involves exponentiation and a line search for ct.

In our experiments we investigate using NH in place of
RM for DCFR 3

2 ,0,2
and in place of RM for LCFR. We found

that NH did worse in all HUNL subgames compared to RM
in LCFR, so we omit those results. Figure 6 and Figure 8
shows that NH outperforms RM in HUNL subgames when
combined with DCFR 3

2 ,0,2
. However, it does worse than RM

in Figure 7 and Figure 9. The two subgames it does better in
have the largest “mistake” actions, which suggest NH may
do better in games that have large mistake actions.

In these experiments the performance of NH is measured
in terms of exploitability as a function of number of itera-
tions. However, in our implementation, each iteration takes
five times longer due to the exponentiation and line search
operations involved in NH. Thus, using NH actually slows

convergence in practice. Nevertheless, NH may be prefer-
able in certain situations where the cost of the exponenti-
ation and line search operations are insignificant, such as
when an algorithm is bottlenecked by memory access rather
than computational speed.

Optimistic CFR Variants
Optimistic Hedge (Syrgkanis et al. 2015) is a regret min-
imization algorithm similar to Hedge in which the last it-
eration is counted twice when determining the strategy for
the next iteration. This can lead to substantially faster con-
vergence, including in some cases an improvement over the
O( 1

ε2 ) bound on regret of typical regret minimizers.
We investigate counting the last iteration twice when cal-

culating the strategy for the next iteration (Burch 2017).
Formally, when applying Equation (3) to determine the
strategy for the next iteration, we use a modified regret
RTmod(I, a) =

∑T−1
t=1 rt(I, a) + 2rT (I, a) in the equation

in place of RT (I, a). We refer to this as Optimistic RM,
and any CFR variant that uses it as Optimistic. We found
that Optimistic DCFR 3

2 ,0,2
did worse than DCFR 3

2 ,0,2
in all

HUNL subgames, so we omit those results. Figure 6 and
Figure 8 shows that Optimistic LCFR outperforms LCFR in
two HUNL subgames. However, it does worse than LCFR
in Figure 7 and Figure 9. Just as in the case of NH, the
two subgames that Optimistic LCFR does better in have the
largest “mistake” actions, which suggests that Optimistic
LCFR may do better than LCFR in games that have large
mistake actions. These are the same situations that LCFR
normally excels in, so this suggests that in a situation where
LCFR is preferable, one may wish to use Optimistic LCFR.

Figure 6: Convergence in HUNL Subgame 1.

Discounted Monte Carlo CFR
Monte Carlo CFR (MCCFR) is a variant of CFR in
which certain player actions or chance outcomes are sam-
pled (Lanctot et al. 2009; Gibson et al. 2012). MCCFR com-
bined with abstraction has produced state-of-the-art HUNL
poker AIs (Brown and Sandholm 2017c). It is also partic-
ularly useful in games that do not have a special structure
that can be exploited to implement a fast vector-based im-
plementation of CFR (Lanctot et al. 2009; Johanson et al.
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Figure 7: Convergence in HUNL Subgame 2.

Figure 8: Convergence in HUNL Subgame 3.

Figure 9: Convergence in HUNL Subgame 4.

2011). There are many forms of MCCFR with different sam-
pling schemes. The most popular is external-sampling MC-
CFR, in which opponent and chance actions are sampled ac-
cording to their probabilities, but all actions belonging to the
player updating his regret are traversed. Other MCCFR vari-
ants exist that achieve superior performance (Jackson 2017),
but external-sampling MCCFR is simple and widely used,
which makes it useful as a benchmark for our experiments.

Figure 10: Convergence of MCCFR in HUNL Subgame 3.

Figure 11: Convergence of MCCFR in HUNL Subgame 4.

Although CFR+ provides a massive improvement over
CFR in the unsampled case, the changes present in CFR+
(a floor on regret at zero and linear averaging), do not lead
to superior performance when applied to MCCFR (Burch
2017). In contrast, in this section we show that the changes
present in LCFR do lead to superior performance when
applied to MCCFR. Specifically, we divide the MCCFR
run into periods of 107 nodes touched. Nodes touched is
an implementation-independent and hardware-independent
proxy for time that counts the number of nodes traversed (in-
cluding terminal nodes). After each period n ends, we multi-
ply all accumulated regrets and contributions to the average
strategies by n

n+1 . Figure 10 and Figure 11 demonstrate that
this leads to superior performance in HUNL compared to
vanilla MCCFR. The improvement is particularly noticeable
in subgame 3, which features the largest mistake actions. We
also show performance if one simply multiplies the accumu-
lated regrets and contributions to the average strategy by 1

10
after the first period ends, and thereafter runs vanilla MC-
CFR (the “Initial Discount MCCFR” variant). The displayed
results are the average of 100 different runs.

Conclusions
We introduced variants of CFR that discount prior itera-
tions, leading to stronger performance than the prior state-
of-the-art CFR+, particularly in settings that involve large
mistakes. In particular, the DCFR 3

2 ,0,2
variant matched or

outperformed CFR+ in all settings.
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Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science.
Nash, J. 1950. Equilibrium points in n-person games. Pro-
ceedings of the National Academy of Sciences 36:48–49.
Nesterov, Y. 2005. Excessive gap technique in nons-
mooth convex minimization. SIAM Journal of Optimization
16(1):235–249.
Pays, F. 2014. An interior point approach to large games
of incomplete information. In AAAI Computer Poker Work-
shop.
Syrgkanis, V.; Agarwal, A.; Luo, H.; and Schapire, R. E.
2015. Fast convergence of regularized learning in games. In
Neural Information Processing Systems, 2989–2997.
Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving heads-up limit texas hold’em. In IJCAI.
Tammelin, O. 2014. Solving large imperfect information
games using cfr+. arXiv preprint arXiv:1407.5042.
Waugh, K. 2009. Abstraction in large extensive games. Mas-
ter’s thesis, University of Alberta.
Zinkevich, M.; Johanson, M.; Bowling, M. H.; and Pic-
cione, C. 2007. Regret minimization in games with incom-
plete information. In Neural Information Processing Sys-
tems (NIPS), 1729–1736.

1836


