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Abstract 

Cognitive systems must reason with large bodies of general 
knowledge to perform complex tasks in the real world. 
However, due to the intractability of reasoning in large, ex-
pressive knowledge bases (KBs), many AI systems have 
limited reasoning capabilities. Successful cognitive systems 
have used a variety of machine learning and axiom selection 
methods to improve inference. In this paper, we describe a 
search heuristic that uses a Monte-Carlo simulation tech-
nique to choose inference steps. We test the efficacy of this 
approach on a very large and expressive KB, Cyc. Experi-
mental results on hundreds of queries show that this method 
is highly effective in reducing inference time and improving 
question-answering (Q/A) performance.  

 Introduction   

Deductive reasoning is an important component of many 

cognitive systems. Modern cognitive systems need large 

bodies of general knowledge to perform complex tasks 

(Lenat & Feigenbaum 1991, Forbus et al 2007). However, 

efficient reasoning systems can be built only for small-to-

medium sized knowledge bases (KBs). Very large 

knowledge bases contain millions of rules and facts about 

the world in highly expressive languages. Due to the in-

tractability of reasoning in such systems, even simple que-

ries are timed-out after several minutes. Therefore, re-

searchers believe that resolution-based theorem provers are 

overwhelmed when they are expected to work on large 

expressive KBs (Hoder & Voronkov 2011).    

 The goal query in knowledge-based systems (KBS) is 

typically provable from a small number of ground atomic 

formulas (GAFs) and rules. However, unoptimized infer-

ence engines can find it difficult to distinguish between a 

small set of relevant rules and the millions of irrelevant 

ones. Hundreds of thousands of axioms that are irrelevant 

for the query can inundate the reasoner with millions of 
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paths. Therefore, to make the search more efficient in such 

a KBS, an inference engine is expected to assess the utility 

of further expanding each incomplete path. A naïve order-

ing algorithm can cause unproductive backtracking. To 

solve this problem, researchers have used two types of 

search control knowledge: (i) Axiom/premise selection 

heuristics: These heuristics attempt to find the small num-

ber of axioms that are the most relevant for answering a set 

of queries, and (ii) Certain researchers have worked on 

ordering heuristics for improving the order of rule and 

node expansions. 

 In the current work, we describe a simulation-based ap-

proach for learning an ordering heuristic for controlling 

search in large knowledge-based systems (KBS). The key 

idea is to simulate several thousand paths from a node. 

New nodes are added to a search tree, and each node con-

tains a value that predicts the expected number of answers 

from expanding the tree from that node. The search tree 

expansion guides simulations along promising paths, by 

selecting the nodes that have the highest potential values. 

The algorithm produces a highly selective and asymmetric 

search tree that quickly identifies good axiom sequences 

for queries. Moreover, the evaluation function is not hand-

crafted: It depends solely on the outcomes of the simulated 

paths. This approach has the characteristics of a statistical 

anytime algorithm: The quality of evaluation function im-

proves with additional simulations. The evaluation func-

tion is used to order nodes in a search. Experimental results 

show that: (i) this approach helps in significantly reducing 

inference time and, (ii) by guiding the search towards more 

promising parts of the tree, this approach improves the 

question-answering performance in time-constrained cog-

nitive systems. 

 This paper is organized as follows: We start by discuss-

ing relevant previous work. Our approach to using simula-

tions to learn a search heuristic is explained next. We con-

clude after analyzing the experimental results. 
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Related Work 

Learning of search control knowledge plays an important 

role in the optimization of KBS for at least two reasons: 

First, the inference algorithms of KBS (e.g., backward 

chaining, tableaux algorithms in description logic (DL)), 

typically represent their search space as a graph. Hundreds 

of rules can apply to each node in a large KBS, and re-

searchers have shown that the specific order of node and 

rule expansion can have a significant effect on efficiency 

(Tsarkov & Horrocks 2005). Further still, first-order logic 

(FOL) theorem provers have been used as tools for such 

reasoning with very expressive languages (e.g., OWL DL, 

the Semantic Web Rule Language (SWRL)), where the 

language does not correspond to any decidable fragment of 

FOL, or where reasoning with the language is beyond the 

scope of existing DL algorithms (Tsarkov et al. 2004, Hor-

rocks & Voronkov 2006). Researchers have also examined 

the use of machine learning techniques to identify the best 

heuristics for problems (Bridge et al. 2014). There has 

been work as well on the premise selection algorithms  

(Hoder & Voronkov 2011, Sharma & Forbus 2013, Meng 

& Paulson 2009, Kaliszyk et al. 2015, Kaliszyk & Urban 

2015, Alama et al. 2014). In contrast, we focus on design-

ing ordering heuristics that will enable the system to work 

with all axioms. In (Tsarkov & Horrocks 2005), the au-

thors proposed certain rule-ordering heuristics, and expan-

sion ordering heuristics (e.g., a descending order of fre-

quency of usage of symbols). In contrast, we believe that 

rule-ordering heuristics should be based on the search 

state. In other recent work (Sharma, Witbrock & Goolsbey 

2016, Sharma & Goolsbey 2017),   researchers have used 

different machine learning techniques to improve the effi-

ciency of theorem provers, ore approach is different from 

all aforementioned research because none have shown how 

Monte Carlo tree search/UCT-based approach can be used 

to improve reasoning in a very large and expressive KBS. 

The work in other fields (Chaudhuri 1998, Hutter et al. 

2014, Brewka et al. 2011) is also less relevant because it 

does not address the complexity of reasoning needed for 

large and expressive KBS. 

 

Background 
 

We assume familiarity with the Cyc representation lan-

guage (Lenat & Guha 1990). In Cyc, concepts are repre-

sented as collections. For example, “Cat” is the set of cats 

and only cats. Concept hierarchies are represented by the 

“genls” relation. For example, (genls Telephone Artifact-

Communication) holds. The “isa” relation is used to link 

things to any kind of collections of which they are instanc-

es. For instance, (isa MicrosftInc PubliclyHeldCorpora-

tion) holds. For any entity e, Cyc keeps track of the most 

specific collections of which it is an instance. This set is 

referred to as MostSpecificCollections (e). 

 Reasoning with Cyc representation language is difficult 

due to the size of the KB and the expressiveness of the 

language. The Cyc representation language uses full first-

order logic with higher-order extensions. Some examples 

of highly expressive features of its language include: (a) 

Cyc has more than 2000 rules with quantification over 

predicates, (b) it has 267 relations with variable arities, and 

(c) Although first-order logic with three variables is unde-

cidable (Tsarkov et al. 2004), Cyc ahs several thousand 

rules with more than three variables. The number of rules 

in Cyc with three, four and five variables are 48160, 23813 

and 14014 respectively. Moreover, 29716 rules have more 

than five variables. In its default inference mode, the Cyc 

inference engine uses the following types of rules/facts 

during inference: (i) 28,429 role inclusion axioms; (ii) 

3,623 inverse role axioms, (iii) 494,405 concepts and 1.1 

million concept inclusion axioms; (iv) 814 transitive roles; 

(v) 120,547 complex role inclusion axioms; (vi) 77,170 

other axioms; (vii) 35,528 binary roles and 10,508 roles 

with arities greater than two. The KB has 27.3 million as-

sertions and 1.14 million individuals. 

 To efficiency search in such a large KBS, inference en-

gines often use control strategies. They define: (i) set of 

support, i.e. the set of important facts about the problem.; 

and (ii) the set of usable axioms, i.e. the set of all axioms 

outside the set of support. At every inference step, the in-

ference engine has to select an element from the set of usa-

ble axioms and resolve it with an element of the set of sup-

port. To perform efficient search, a heuristic control strate-

gy measures the “weight” of each clause in the set of sup-

port, picks the “best” clause, and adds to the set of support 

the immediate consequences of resolving it with the ele-

ments of the usable list (Russell & Norvig 2003). Cyc uses 

a set of heuristic modules to identify the best clause from 

the set of support. If S is the set of all states, and A is the 

set of actions (i.e. inference steps), then a heuristic module 

is a tuple hi: (wi., fi) , where fi is a function fi: S ×A  R, 

which assesses the quality of an inference step, and wi is 

the weight of hi. The net score of an inference step is ∑ 

wifi(s, a) and the inference step with the highest score is 

selected. Cyc uses several heuristics including the success 

rates of rules, decision trees (Sharma, Witbrock and 

Goolsbey 2016), regression-based models (Sharma, Wit-

brock, and Goolsbey 2016) and a large database of useful 

rule sequences (Sharma & Goolsbey 2017). We can define 

a policy that uses these heuristics: 

ΠBASELINE(s)= argmaxa ∑ wifi(s, a)                            …(1)  

 

In (1), we use all heuristics mentioned above to calculate 

the score of an inference step. In its default inference 

mode, Cyc uses a policy function π BASELINE (s), to guide 
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the search. This is used as the “baseline” in the experi-

ments discussed below. 

We consider the problem of finding proofs for first-order 

formulas in large KBs. The search begins with a root state 

so
1
. At each turn, the inference engine selects an action that 

is an element of A(s), where s is the current state, and A(s) 

is the set of inference steps applicable to the state s. This 

sequential sampling of states and actions continues, with-

out backtracking, until the search finishes upon reaching a 

terminal state with outcome z. The aim of the reasoner is to 

maximize z. A policy π is a function that maps states to 

actions. π(s) is defined as maxaQ(s, a) where Q(s, a) is used 

to denote the value of selecting action a in state s. It is 

simply the expected reward of action a. 

 

Q(s, a) = N(s, a) 
-1

* ∑ Ii(s, a) * zi   

 

where N(s, a) is the number of times action a has been se-

lected in state s, N(s) is the total number of times the simu-

laton has passed through state s, zi is the outcome of the i
th

 

simulation, and Ii(s, a) is 1 if action a was selected in state 

s in the i
th

 simulation, and 0 otherwise (Browne et al 2012).  

 

Simulation-Based Learning 
 
The basic premise of this approach is that we can learn to 

search for answers in large expressive KBS by taking ran-

dom samples in the search space and these samples could 

be used to approximate the true value of choosing an infer-

ence step. Monte Carlo tree search (MCTS) algorithms use 

Monte Carlo simulations to evaluate the quality of nodes in 

a search tree. The search tree contains a node for each state 

s that has been generated during simulations. Each state s 

in the tree stores three types of values: N(s), N(s, a) and 

Q(s, a) for every action that applies to s. the generation of 

search trees is guided by the outcomes of previous explora-

tions, and the estimates become progressively more accu-

rate (Browne et al. 2012, Gelly & Silver 2007). 

 

Figure 1 shows the high-level approach of the simulation 

algorithm. The algorithm takes a state and depth cutoff as 

input. The state contains information about the query that 

has to be answered. The algorithm can be divided into two 

distinct phases: (i) a tree policy is used until depth d: Dur-

ing this stage, the algorithm selects actions according to 

knowledge contained with the search tree (ii) when the 

depth of the node is greater than d, then a default policy is 

used to complete the simulation. Finally, the outcome of 

the simulation is “backed up” through the selected nodes to 

update their statistics.  

                                                 
1 In search problems, an agent needs to find the correct move for each 
position encountered during search. Therefore, each node generated in a 
search graph is a state, and is represented by a set of features (discussed 
below).  

 

Tree policy: In step 2(a) of the algorithm in Figure 1, we 

use the UCT algorithm to build a tree over the state space 

with the current node as the root node. The execution of 

the TreePolicy uses the following mechanism: if there ex-

ists an action in A(s), the set of possible actions in state s, 

which has never been selected, the algorithm defaults to 

selecting it before any sampled action. Otherwise, the UCT 

algorithm selects an action that maximizes the upper confi-

dence interval given by 

 

Figure 1: High-Level Description of the Simulation Algorithm 

 

Q*(s, a)  Q(s, a) + c * (log (N(s) / N(s, a))
1/2

          …(2) 

 

The first term in (2), Q(s, a) favors actions that have led to 

better outcomes in the past. The second term provides a 

balance between exploiting actions that currently appear 

sub-optimal but may turn out to be better in the long run 

(Gelly & Silver 2011, Bella & Fern 2009, Finnsson & 

Bjornsson 2008). When an action is chosen, N(s, a) in-

creases, and all other actions become more likely to be 

selected. The value of the exploration parameter c helps is 

in biasing the search toward or against exploration. In this 

paper, we report results of several experiments that show 

how performance changes with c. the tree policy is used to 

generate a tree until depth d. 

 

Default policy: our algorithm uses a default policy for ex-

panding nodes that have depth greater than the pre-

specified depth limit. Cyc’s existing mechanism for select-

ing inference steps (discussed above) is used as the default 

policy. The default policy is executed for a fixed duration 

of time (set to 30 seconds). 

 

Updating Values: In step 2 (c) of the algorithm shown 

above, the algorithm reaches a terminal state and observes 

the number of answers obtained from the simulation, then 

the following updates are made for any state action pair on 

the simulation path: 

 

N(s, a)  N(s, a) +1 

N(s)  N(s) +1 

Q(s, a)  Q(s, a) + N(s, a)
-1

 * [ R-Q(s, a)]  … (3) 

Input: A state s 

           A depth cutoff, d 

 
1. Create a root node with states. 

2. While within computational budget, 
do 

a. s’ TreePolicy (s, d) 

b. z  DefaultPolicy (s’) 

c. UpdateValues (s’, z) 
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Search Space Formulation 

 
We now define a search space that can be used the UCT 

algorithm. We used 2,698 features to represent an abstract 

state in search space. These features were identified by 

selecting the commonly occurring types in the most specif-

ic collections of entities in the KB [defined as 

MostSpecificCollections() on page 2]. These features can 

be grouped into three types: (i) 2,664 features were used 

represent whether a certain argument of the focal literal
2
 is 

a sub-type of a given collection
3
; (ii) 33 features were used 

to represent whether a certain argument of the focal literal 

is an instance of a given collection
4
; and (iii) the depth of 

the sub-goal in the tree. Each node in the search space is 

described by a vector of 2,698 features. Edges in our 

search space correspond to resolution steps that transform 

one node into another. Let us consider an example. During 

training, an agent might create a root node with query Q1 

from the training set
5
. 

 

(relationAllExists parts Nivalenol Carbon)              … (Q1) 

 

During the MCTS simulation, the UCT algorithm might 

lead the algorithm to choose the inference step A1 shown 

below: 

(memberOfList ?element ?list) . 

(completeAtomicComposition-List ?compound ?list 

?coefficients)   

(relationAllExists parts ?compound ?element)     …(A1) 

 

The selection of inference step A1 will lead to a child state 

with the query Q2: 

 

(memberOfList Carbon ?list) AND 

(completeAtomicComposition-List Nivalenol ?list 

?coefficients)                                                         …(Q2) 

 

The Monte Carlo tree search continues for a given number 

of simulations, and it learns the relative contribution of 

each feature to the likelihood of deriving an answer. The 

action value function Q(s, a) is approximated by a partial 

tabular representation µ ⸦ S × A, where S and A are the 

sets of all states and actions respectively. µ contains the 

search tree  of all visited states and it is a subset of all 

(state, action) pairs. Unfortunately, this tabular representa-

                                                 
2 In a conjunctive or disjunctive query, the inference engine might decide 
to resolve one of the literals in the query. The literal that is resolved is 
called the focal literal.  
3 An example of the feature for query Q1 would be that second and third 
arguments of the focal literal are sub-types of “Trichothecene” and 
“NonMetal” respectively. 
4 An example of this feature for the query Q1 would be that the first ar-
gument of the focal literal is an instance of TransitiveBinaryPredicate. 
5 (relationAllExists parts A B) means that for any instance A1 of A, there 
exists an instance B1 of B, such that (parts A1 B1) holds. 

tion does not allow for easy generalization between states. 

Therefore, we consider a simple k-nearest neighbor algo-

rithm to generalize from similar states. We define the fol-

lowing: 

 

QNN(s, a) = k
-1

∑ Q(s(i), a), 

 

where s(i) is an element of NN(k, s)  …(4) 

 

In (4), NN(k, s) denotes the k-nearest neighbor of state s, 

where we use the Manhattan distance to compute the dis-

tance between two states. 

 

Given (4), we can define a heuristic module with the fol-

lowing cost and policy function: 

 

fMCTS(s, a) = QNN(s, a)                           … (5) 

πMCTS(s) = argmax a QNN(s, a)                … (6) 

 

This heuristic module uses the k-nearest neighbor algo-

rithm on the output of the Monte Carlo tree search algo-

rithm, an to evaluate the quality of inference steps. In the 

next section, we use this heuristic module to order infer-

ence steps and discuss its performance.  

Experimental Results 

The selection of benchmark problems for training models 

and evaluating algorithms is a critical aspect of research. 

Our decision to select problem instances was based on fol-

lowing principles: (a) Artificially generated problems have 

played an important role in the development of SAT algo-

rithms However, the generation of artificial problems has 

not received sufficient attention in the commonsense rea-

soning community. Therefore, we focused on the problems 

from the real world. These queries were created by the 

knowledge engineers and the programmers to test the per-

formance of different applications and the inference en-

gine
6
.  Query Q1 discussed above is an example of a query 

that is part of our test sets. (b) We believe that heuristics 

and algorithms should be tested using the most difficult 

problems. The Cyc KB has thousands of queries of various 

levels of difficulty. Some queries are quite simple, and can 

be answered in a few milliseconds (e.g., (isa BarackObama 

Person)). On the other hand, some require generation of a 

large search space, and cannot be answered in several 

minutes. In this work, we have included problems from the 

latter group, and the results from the baseline experiment 

show that many queries cannot be answered within 10 

minutes. Moreover, the Cyc KB is the largest and most 

                                                 
6 The query parameters (e.g., the number of desired answers) were set by 
knowledge engineers and programmers. In most cases, we were expected 
to find one answer for a fully bound query (e.g., query Q1 discussed 
above).  
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expressive knowledge base that is amenable to deductive 

reasoning
7
.  Therefore, our algorithm has been tested on 

one of the most difficult reasoning problems. 

 We divided the queries into four parts. One of the four 

parts was used as a test set, while the queries from the re-

maining three were used for training purposes
8
. This pro-

cess was repeated with each of the four parts to produce 

four experiments. In each experiment, we tried to answer 

the following questions: 

 How does search performance change with the 

number of simulations? 

 How does search performance change with the 

value of c? 

The results of these four experiments are shown in Figures 

2-5. We compared the performance of πBASELINE(s) and 

πMCTS(s) in these experiments. In the results, speedup in 

experiment e is defined as: 

 

Speedup(s) = Time(πBASELINE, e)/ Time (πMCTS , e) 

 

where Time (π, e) refers to the time required by the infer-

ence engine to answer queries in the experiment e when it 

uses the search policy π. The graphs also show how the 

proportion of queries that could be answered changes with 

the value of ‘c’ and the number of simulations. The exper-

imental data reported here was collected on a 4-core 3.40 

GHz Intel processor with 32 GB of RAM. Due to the large 

time requirements of some of these queries, we restricted 

the cutoff time for each query to 10 minutes. In Table 1, 

we show the parameter values for the best results obtained 

for each of the four experiments. For example, in the first 

experiment we could answer 46% of 266 queries in the 

                                                 
7 KBs like ConceptNet might have more GAFs than the Cyc KB, but they 
do not have axioms for deductive reasoning. Researchers have shown that 
Cyc-based problems are 1-3 orders of magnitude larger than other prob-
lems (see Table 1 in Hoder & Voronkov 2011).    
8 For example, in experiment 2, query set 2 was used for testing purposes, 
whereas queries from sets 1, 3 and 4 formed the training set. 

baseline experiment. The best results from the MCTS sim-

ulation was obtained when c was set to 100, and we al-

lowed 400,000 simulations to learn the Q-values. This led 

to a speedup of 7.1 and we could answer 92% of all que-

ries.   

 

 

The results demonstrate the following: 

 The search policy learned from MCTS simulation 

leads to significant speedup compared to the base-

line. 

 Moreover, we see that MCTS-based learning has 

also led to significant improvement in the Q/A 

performance. 

 For small values of simulations (~100k), higher 

values of c (i.e., c = 1000) led to the best perfor-

mance. However, the performance asymptotes 

soon. And the best performance is obtained for 

small to medium values of c (i.e., c = 10 or 100). 

 

 

 
 

Figure 2b: Effect of exploration factor (‘c’) and number 

of simulations on Q/A performance in Experiment 1. 

 
 

Figure 2a: Effect of exploration factor (‘c’) and number 

of simulations on search performance (‘Speedup’) in 

Experiment 1. Figure 3a: Effect of exploration factor (‘c’) and 

number of simulations on search performance 

(‘Speedup’) in Experiment 2. 
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We also divided the queries by “degree of difficulty” as 

measured by the time required to answer them by the base-

line version of the inference engine. The speedup and im-

provement in the Q/A performance for the best MCTS set-

tings are shown in Table 2. For example, there were 597 

queries that needed between 0 and 100 seconds in the base-

line version. The best speedup obtained from MCTS simu-

lations for these 597 queries was 1.23 and there was no 

change in the number of answerable queries.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b: Effect of exploration factor (‘c’) and 

number of simulations on Q/A performance in Ex-

periment 2. 

 
 

Figure 4a: Effect of exploration factor (‘c’) and 

number of simulations on search performance 

(‘Speedup’) in Experiment 3. 

 

Figure 5a: Effect of exploration factor (‘c’) and 

number of simulations on search performance 

(‘Speedup’) in Experiment 4. 

 

Figure 5b: Effect of exploration factor (‘c’) and 

number of simulations on Q/A performance in 

Experiment 4. 

 

Figure 4b: Effect of exploration factor (‘c’) and 

number of simulations on Q/A performance in 

Experiment 3. 
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Conclusions 

Deductive reasoning is an important issue for building 

large cognitive systems. To make deductive reasoning 

more efficient, in this work, we have proposed a sample-

based search paradigm for learning search control 

knowledge. In this approach, we learn from simulated epi-

sodes that can be sampled from the model. Results for 

hundreds of queries from a very large and expressive KB 

show that this approach can lead to a significant reduction 

in inference time. It can also lead to notable improvement 

in Q/A performance. These results suggest several areas 

for future work: (i) First, we want to test these methods on 

a larger set of queries to ensure their generality, (ii) since 

feature selection plays an important role in the perfor-

mance of learning algorithms, we will experiment with 

other schemes of feature selection, and (iii) we will design 

techniques to make Monte Carlo searches more efficient by 

including more domain knowledge in the simulation algo-

rithm. 

 

E Π #Q %A C TS S I(%) 

1 B 266 46 - - - - 

 MCTS 266 92 100 400k 7.1 100 

2 B 254 66 - -  - 

 MCTS 254 94 100 500k 5.4 42 

3 B 261 76 - - - - 

 MCTS 261 94 100 500k 4.1 24 

4 B 241 82 - -  - 

 MCTS 241 94 10 300k 3.3 14 

 

Table 1: The experiment numbers are shown in the first column 

(labeled ‘E’), and the second column shows the search policy that 

was used in the experiment: baseline (B) or MCTS. The third 

column (labeled #Q) shows the number of queries in each of the 

experiments. The proportion of queries answered is shown in the 

fourth column. The next column (labeled ‘c’) shows the value of c 

that led to these results. The sixth column (labeled ‘TS’) shows 

the number of simulations used in the Monte Carlo search. The 

column labeled ‘S’ shows the speedup obtained in the experiment. 

Finally, the last column (labeled I(%) shows the improvement in 

the number of queries answered w.r.t. to the baseline).   

 

 

 

 

 

Table 2: Column 1 shows the time requirement for the query in 

baseline version. The second column shows the number of queries 

in the group. The third column shows the speedup w.r.t. to the 

baseline. And the fourth column (labeled I(%)) shows the percent 

improvement in the number of queries that were answered. 
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