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Abstract

One of the long-standing questions in biology and machine
learning is how neural networks may learn important fea-
tures from the input activities with a delayed feedback,
commonly known as the temporal credit-assignment prob-
lem. The aggregate-label learning is proposed to resolve
this problem by matching the spike count of a neuron with
the magnitude of a feedback signal. However, the exist-
ing threshold-driven aggregate-label learning algorithms are
computationally intensive, resulting in relatively low learn-
ing efficiency hence limiting their usability in practical ap-
plications. In order to address these limitations, we propose
a novel membrane-potential driven aggregate-label learning
algorithm, namely MPD-AL. With this algorithm, the easi-
est modifiable time instant is identified from membrane po-
tential traces of the neuron, and guild the synaptic adapta-
tion based on the presynaptic neurons’ contribution at this
time instant. The experimental results demonstrate that the
proposed algorithm enables the neurons to generate the de-
sired number of spikes, and to detect useful clues embedded
within unrelated spiking activities and background noise with
a better learning efficiency over the state-of-the-art TDP1 and
Multi-Spike Tempotron algorithms. Furthermore, we propose
a data-driven dynamic decoding scheme for practical classifi-
cation tasks, of which the aggregate labels are hard to define.
This scheme effectively improves the classification accuracy
of the aggregate-label learning algorithms as demonstrated on
a speech recognition task.

Introduction

Traditional artificial neural networks have made remarkable
achievements in recent years as demonstrated in a wide
range of applications (LeCun, Bengio, and Hinton 2015).
These rate-based computational models despite brain in-
spired, are lacking in several other aspects of biological re-
alism, one being the presence of spiking activities (Ben-
gio et al. 2015). Although it is widely accepted that the
graded activation of these analog neurons is equivalent to
the firing rate of spiking neurons inside the biological neu-
ral network (Rueckauer et al. 2017), the view that precise
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spike timing encodes information in the temporal domain
that is important for neural computation is just as prominent
in the neuroscience community (Gerstner and Kistler 2002;
Giitig and Sompolinsky 2006). Consequently, the spiking
neuron models are proposed to describe the dynamic of
spike generation process, such that the additional temporal
information including precise spike timing and phase could
be better captured (Kasabov et al. 2013).

Although spiking neural networks (SNNs) offer a com-
puting paradigm with the promise of emulating the human
brain, its potential in terms of computing powers and ap-
plications are yet to be exploited. Despite the exact learn-
ing mechanisms in the brain remain unknown, many spike-
based learning algorithms have been proposed for pattern
recognition tasks. Depending on the number of target spikes,
these algorithms can be broadly categorized into single- or
multi-spike based.

One well-known single-spike learning algorithm is the
Tempotron (Giitig and Sompolinsky 2006), whereby the out-
put neuron is trained to fire a single spike in response to
the correct input patterns and remain silent otherwise. The
Rank-Order learning algorithms (Kasabov et al. 2013) up-
date synaptic weights based on the rank order of the arrival
time of incoming spikes. Additionally, the time-to-first spike
decoding scheme is employed at the output layer. The Spike-
Prop and its improved variants (Bohte, Kok, and La Poutre
2002) are other prominent single-spike based learning algo-
rithms, extending the traditional gradient descent algorithm
to SNNs. The objective function is constructed from the dis-
tance between the actual and the desired firing time of the
output neuron, such that the output neuron is trained to gen-
erate a spike at the desired time.

Although single spike learning algorithms have been
applied in several applications (Thorpe, Delorme, and
Van Rullen 2001), only one output spike limits the robust-
ness and amount of information that may be transmitted
across the SNN. Specifically, the presynaptic spikes arriving
after the output spike are discarded, while making a decision
only based on a single local temporal feature. In order to
overcome the aforementioned limitations, multi-spike based
learning algorithms have been proposed to train neurons to
emit multiple spikes with precise timing.



The Remote Supervised Method (ReSuMe) (Ponulak and
Kasiriski 2010) is one such example of multi-spike learn-
ing algorithms, in which synaptic weight updates are based
on a combination of spike time-dependent plasticity (STDP)
and anti-STDP rules; whereas, the Chronotron E-learning
(Florian 2012) and the Spike Pattern Association Neuron
(SPAN) (Mohemmed et al. 2012) learning rules transform
the desired and the actual output spike trains into analog sig-
nals, and then apply standard learning methods to reduce
the discrepancy between the desired and the actual spike
trains. Recently, the membrane-potential driven algorithms
are emerging with instances include the PBSNLR (Xu,
Zeng, and Zhong 2013), HTP (Memmesheimer et al. 2014),
EMPD (Zhang et al. 2018b) and MemPo-Learn (Zhang et
al. 2018a), whereby the loss is computed based on the post-
synaptic membrane potential rather than the spike timing.
In general, the membrane-potential driven algorithms are
more efficient in learning a precise spike train than the other
algorithms. However, they require that the neurons reset
their membrane potential at the desired output spike times,
which run contrary to the neuronal dynamics during learning
(Memmesheimer et al. 2014).

To forecast opportunities or dangers, a neural clue (fea-
ture) detector should fire whenever the clue occurs and re-
main quiescent otherwise (Giitig 2016). If the timing of the
clues is known, the aforementioned multi-spike learning al-
gorithms may be used to learn these desired responses. Typi-
cally, however, the timing of the clues is commonly unavail-
able; setting the desired output spike times hence becomes
challenging. To resolve this problem, Giitig (Giitig 2016)
has proposed an aggregate-label learning algorithm, namely
Multi-Spike Tempotron (MST). This algorithm trains a neu-
ron to output a desired number of spikes that is propor-
tional to the number of available clues, without considering
the precise timing of spikes. The MST employs the gradi-
ent descent strategy, which uses a threshold-driven method
for each iteration of the synaptic update. Within each iter-
ation, the difference between the actual and desired num-
ber of spikes is instead replaced with the distance between
the fixed biological firing threshold ¢ and the closest hypo-
thetical threshold 99* (at which the neuron would fire a de-
sired number of spikes). However, this transformation makes
the learning process indirect and increases the computa-
tional complexity significantly. Despite Yu et. al. have sim-
plified the recursive gradient computation of the MST (Yu,
Li, and Tan 2018) (we refer to to this algorithm as TDPI
henceforth), the necessary computation of ¥* is still time-
consuming.

In this paper, to improve the learning efficiency of
the aggregate-label learning, we proposed a membrane-
potential driven aggregate-label learning algorithm, namely
MPD-AL. In contrast to the existing threshold-driven learn-
ing algorithms, the proposed MPD-AL algorithm constructs
an error function based on the membrane potential trace and
the fixed firing threshold ) of the neuron. The experimen-
tal results demonstrate that the learning speed of the pro-
posed MPD-AL algorithm is faster than the TDP1 and the
MST algorithms. In addition, we propose a dynamic de-
coding scheme for aggregate-label learning. Instead of en-
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forcing a fixed number of desired output spikes across all
classes, we propose to dynamically determine the number of
desired output spikes for each class in a data-driven manner.
Hence, it makes better use of the available input information
to identify the underlying clues and improves the classifica-
tion accuracy as demonstrated on a speech recognition task.

Neuron Model and Learning Algorithm

In this section, we begin by presenting the neuron model
used in this work. Then, we describe the proposed MPD-AL
learning algorithm. Finally, we compare the proposed MPD-
AL algorithm with other existing aggregate-label learning
algorithms and highlight their differences.

Neuron Model

In this work, we employ the current-based leaky integrate-
and-fire neuron model (Giitig 2016). This model is biolog-
ical realistic and yet mathematically tractable compared to
other more detailed neuron models.

We consider a neuron connected with N spiking input
afferents, whose postsynaptic membrane potential is rep-
resented by V'(¢). The membrane potential V' (¢) is initial-
ized at the resting potential V,..;; = 0 when there is no
spike received from the presynaptic neurons. Each incom-
ing spike from the presynaptic neurons will induce a post-
synaptic potential (PSP) at the postsynaptic neuron, which
are integrated over time. The postsynaptic neuron will fire
a spike once its membrane potential V' (¢) reaches the firing
threshold ¥ from below. The post-synaptic membrane poten-
tial V'(¢) of the neuron can be expressed as

N
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where t] denotes the spike time of the jth spike from the
afferent ¢, and w; is the corresponding synaptic weight. Here,
K denotes the normalized PSP kernel, which is defined as
follows
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the shape of the PSP is jointly governed by the mem-
brane and synaptic time constants 7,, and 7, respectively.
K (t — t]) is a causal filter that only considers spikes arriv-
ing at t'g < t. The coefficient V normalizes PSP so that the
maximum value of the PSP kernel is 1. The last term in Eq.
1 is the refractory kernel which occurs at each post-synaptic
spike. tJ denotes the time of the jth spike emitted by the
postsynaptic neuron.
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MPD-AL Learning Algorithm

The goal of the proposed learning algorithm is to modify
the synaptic weights of the neuron so that the trained neu-
ron fires the desired number of output spikes in response to
a given input spike pattern. This goal is violated either when
the actual output spike count N, is less than the desired num-
ber N4 (i.e., Ng > N,), or the neuron fires more spikes than



the desired number (i.e., N, > Ny). To address these two
distinct scenarios, we propose two different learning mech-
anisms, which we describe as follows.

Firing less spikes than desired (N; > N,) When the de-
sired output spike count is more than the actual output spike
count, the synaptic weights should be strengthened to in-
crease the current spike count iteratively till Ny = N,. To
achieve this goal, as shown in Fig. 1a, we identify the easi-
est modifiable time instant ¢*, at which the membrane poten-
tial V'(t*) is the maximum among all peaks of subthreshold
membrane potential. Then, as shown in Eq. 3 and 4, the gra-
dient descent method is applied to increase the membrane
potential V' (¢*) towards the firing threshold ¥ with the aim
of generating one more spike,
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whereby A is the learning rate which defines the magnitude
of synaptic updates. Since V'(¢*) depends on the synaptic
weight also through previous output spike times tJ < t*,j €

{1,2,...,m}. Therefore, dV (t*)/dwj is given by
dv (t* 8V ) — ) Ot 8V t*) ot*
wi = 8t ﬁwl ot*  Ow;

The last term in Eq.5 has no contribution to the synap-
tic update since V' (¢*) is either a local maximum with

V(t*)/0t* = 0 or t* is the time of an inhibitory input
spikes whose arrival time does not depend on w;. From Eq.
1, the first term of Eq. 5 can be expressed as
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For the second term of Eq. 5, applying the chain rule, we
get
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where OV (t*) /0t and OV (1) /Ow; are evaluated as below
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According to the linear assumption of threshold crossing
(Bohte, Kok, and La Poutre 2002; Yu, Li, and Tan 2018), we
get
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Figure 1: Demonstration of learning processes. (a) For Ny >
N,, the modification is performed at time ¢* with the aim to
generate one more spike. The subthreshold membrane po-
tential V' (¢*) is the local maximum that closest to the firing
threshold 9. (b) For Ny < N,, the modification is performed
at the last output spike time #/%** with the aim to remove it.

Firing more spikes than desired (N, > N;) When the
learning neuron fires more spikes than the desired spike
count, the synaptic weights are weakened to reduce the out-
put spike count. To minimize the changes to the membrane
potential trace, as shown in Fig. 1b, the modification is per-
formed at the last output spike time with the aim of removing
it. This choice is desirable as a modification to intermediate
spikes could cause catastrophic effects to the spikes emitted
immediately after it. Assuming that the last output spike is
emitted at ti‘“t, the error function is constructed as

E=V(test)y -9 (12)

Likewise, applying the gradient descent leads to the fol-
lowing update rule

dE

dw;

dV(téaSt)
dwi

Awi = —)\2 —>\2 (13)



where )\, is the learning rate. Since V (£.%*%) depends on the
synaptic weight also through the previous spike times ¢t <
tlast i € {1,2,...,m}; its derivative can be expressed as

dv (tlest)y oV (tlest) = oV (Hlet) ot (14)
dw;  Ow; ot Ow;

j=1
The Eq. 14 is then solved using the same treatments as that
for Eq. 5.

Comparison between the MPD-AL and other
Aggregate-Label Learning Algorithms
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Figure 2: The comparison between MPD-AL and TDPI. (a)
Membrane potential traces before learning. t* denotes the
time instant at which the subthreshold membrane potential
is closest to the firing threshold. (b) The membrane potential
trace of the neuron with spikes generated at the hypothetical
threshold ¥*. Here, the t* corresponds to the time instant at
which the membrane potential reaches ¥*. (c) The shape of
the learning curves, depicting the spike-timing dependence
of a synapse’s contribution to the dV (¢*) /dw. (d) Membrane
potential traces after learning. (e) The accumulated weight
modifications during the learning process.

The existing aggregate-label learning algorithms (MST
and TDP1) are all threshold-driven. These algorithms mod-
ify the synaptic weights based on the error between the fixed
firing threshold ¢ and the hypothetical threshold 9*. There-
fore, it is necessary to determine the ¥* for each iteration
of the synaptic update. For example, as shown in Fig. 2a
(right), the neuron fires five spikes before learning while the
desired spike count is six. The threshold-driven algorithms
will first numerically determine the critical threshold J¢,
with which the neuron fires exactly six spikes as shown in
Fig. 2b (right). However, the ¥* can not be analytically ob-
tained; therefore, ¥* is numerically obtained using interval
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halving, which is very time-consuming. In contrast, the pro-
posed MPD-AL adopts a more direct approach in which the
membrane potential (instead of threshold) is considered as
the relevant signal for synaptic updates. As shown in Fig.
2b (left), MPD-AL need not numerically determine . In-
stead, the learning is directly driven by the error between the
firing threshold ¢ and the membrane potential, whose value
is easily accessible.

In Fig. 2c, the learning curves depict the spike-timing
dependence of a synapse’s contribution to the dV (t*)/dw,
which highlights the differences between the MPD-AL and
the TDP1. In both sub-figures, the weight updates are gov-
erned by these learning curves with the aim to increase the
membrane potential at ¢*. According to the definition of ¢*
in the MPD-AL, V' (¢*) is the subthreshold membrane poten-
tial closest to the firing threshold, which makes the synaptic
update a straight-forward process. In contrast, the TDP1 rule
attempts to potentiate the synaptic weights at a different ¢*
that is typically further away from the threshold, hence re-
quiring more changes. This is shown in Fig. 2e, where MPD-
AL requires fewer modifications to allow the neuron to gen-
erate a desired number of spikes.

Experimental Results
Learning to fire a desired number of spikes

In this section, we first introduce a learning task to demon-
strate the ability of the proposed MPD-AL algorithm to
teach a neuron to fire a desired number of spikes. Next,
we compare the learning efficiency of the MPD-AL against
other competitive aggregate-label learning algorithms.

In the first experiment, a single output neuron with N =
500 afferents is trained to fire 10 spikes under different input
firing rates. The input spike patterns are generated over a
time window of 7" = 500 ms and each presynaptic neuron
fires at a Poisson firing rate r;,, = 5 Hz (Fig. 3a, 3b) and
20 Hz (Fig. 3c, 3d). The initial synaptic weights are drawn
randomly from a Gaussian distribution with a mean of 0.01
and a standard deviation of 0.01.
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Figure 3: Neuron’s membrane potential traces before (a, c)
and after learning (b, d). The neuron is trained to emit 10
desired spikes under different initial firing rates, i.e., (a, b)
rn = 5 Hz and (c, d) r;,, = 20 Hz.

The Fig. 3a depicts the neuron’s membrane potential trace
before learning, in which no output spike initially. After



training, the neuron successfully emits the desired number
of spikes, distributing throughout the simulation as shown
in Fig. 3b. In contrast, Fig. 3c depicts responses of the neu-
ron with an input firing rate of 20 Hz, in which the neu-
ron exhibits bursting behavior at the beginning. Likewise, as
shown in Fig. 3d, the MPD-AL algorithm adjusts the synap-
tic weights so that the trained neuron emits the desired num-
ber of spikes, much less than the initial bursting activities.

Furthermore, we compare the learning efficiency of differ-
ent algorithms with the desired spike counts varying from 2
to 20 at an interval of 2. The input firing rate for presynap-
tic neurons is set to SHz. For each setup, 20 experiments
are carried out with randomly generated input spike patterns
and initial synaptic weights. The average number of learning
epoch and CPU time used for each setup are calculated and
reported in Fig. 4.
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Figure 4: The comparison among MPD-AL, TDP1 and MST
algorithms in terms of learning efficiency, i.e., (a) the re-
quired number of learning epochs and (b) the required CPU
time.

As shown in Fig. 4a, due to the nature of the iterative op-
timization scheme employed, the required number of train-
ing epochs grow for all the algorithms with increasing spike
count. The proposed MPD-AL algorithm consistently out-
performs other algorithms and requires the lowest amount of
training epochs as well as CPU time. Specifically, when the
desired spike count is 20, the proposed MPD-AL algorithm
requires about 250 learning epochs, while the TDP1 and the
MST require more than 600 and 800 learning epochs, re-
spectively. As shown in Fig. 4b, the average CPU time re-
quired for the MPD-AL algorithm is about 2s for the de-
sired spike count of 20, while the TDP1 and the MST algo-
rithms require 6s and 13s, respectively. These results could
be explained as below: firstly, as illustrated in Fig. 4a, the
MPD-AL algorithm requires fewer learning epochs to reach
the desired spike count due to the more direct adaptation
strategy taken. On the other hand, both the TDP1 and MST
need to numerically determine the ¥*, which requires more
computation times at each learning epoch. Consequently, the
MPD-AL offers a better learning efficiency.
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Learning Predictive Clues

To learn predictive sensory clues, an organism must bridge
the gap between the time when a clue occurs and when
the feedback arrives (Giitig 2016). The temporal credit-
assignment problem is a core challenge in both cognition
and machine learning. In this section, we will demonstrate
that the temporal credit-assignment problem can be solved
using the proposed MPD-AL algorithm.
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Figure 5: Learning predictive clues. (a) Input spike pattern,
of which only 10% of the 500 synaptic afferents are shown.
Colored rectangles represent 10 different sensory features
(50 ms each) that are embedded within a stream of spon-
taneous background activities. (b) and (c) show the mem-
brane potential traces after being trained to fire one or a burst
of five spikes in response to a single clue (blue rectangle).
(d) and (e) show the membrane potential traces after being
trained to selectively respond to only five clues out of the
total ten feature patterns. The neuron is expected to fire only
a single spike (d) or distinct number of spikes {1,2, 3,4, 5}
(e) in response to each clue.

Similar to the tasks proposed in (Giitig 2016), ten brief
(50ms) spiking patterns are constructed from 500 afferents
with a firing rate of ry = 4 Hz, which may represent spiking
activities in response to perceived features from the envi-
ronment. A certain number of these ten spike patterns will
be designated as useful clues, while the rest as distractors.
The single neuron connected to these sensory afferents is
expected to signal all the useful features by firing a spe-
cific number of spikes. In contrast, the neuron should re-
main silent in the event of background activities or distrac-
tors. In each experimental trial, these ten spike patterns are
sparsely embedded in background spike activity with dura-
tion Ty. The number of occurrence of each such pattern is
drawn from a Poisson distribution with mean P,,. In or-
der to better simulate non-stationarity of the environment,
the background spike activities are generated according to a
spontaneous firing rate varying from 0O to 4 Hz (with mean
rate 2 Hz). During the training phase, we set the value of P,
and T}, to 0.1 and 500 ms, respectively. In the testing phase,
these two values are set to 2 and 1,000 ms correspondingly to
allow more exposure to both clues and distractors. For train-
ing, we generate 100 samples based on the above described
method.



We first train the neuron to detect a single clue ¢ among
9 distractors and background activities. In each trial, the
desired spike count Ny is set to the number of clue event
i (Ng = c;). Whenever the neuron fires greater or fewer
spikes than the desired count Ng, the proposed MPD-AL
learning algorithm will weaken or potentiate the synaptic
connections, respectively, so as to reach the desired spike
count 4. Fig. 5b illustrates the testing result, in which the
neuron fires exactly one spike whenever the correspond-
ing clue activity pattern (blue rectangle) occurs and remains
silent otherwise. The NV is not necessarily equal to the num-
ber of clue events since each clue may trigger more than one
spike. To simulate this scenario, we design a task where the
neuron is required to fire a burst of 5 spikes to the clue ¢
(Ng = 5¢;) and remain silent otherwise as demonstrated
in Fig. Sc. Intriguingly, the proposed learning algorithm en-
ables the trained neuron to decompose the feedback signal
and associate each clue with a distinct desired spike count,
such that Ny = > ; ¢id;, whereby c; is the number of clue
events ¢ within a trial and d; is the corresponding desired
spike count belonging to that clue ¢. Fig. 5d and 5e show the
testing results of these challenging scenarios, where the d;
values for the five clues are set as {1, 1, 1, 1, 1} and {1, 2,
3, 4, 5}, respectively. The experimental results highlight the
capabilities of the proposed MPD-AL learning algorithm to
decompose the delayed feedback signal.

Application to Speech Recognition

SNNs transform spatiotemporal spike patterns into desired
output patterns, and are hence well suited for processing
temporally rich signals, for instance, motion and speech
recognition. However, the lack of efficient learning algo-
rithms limits application of SNN to mostly small toy prob-
lems that do not fundamentally involve spatiotemporal spike
time computations (Zenke and Ganguli 2018). Although
some promising learning algorithms (Lee, Delbruck, and
Pfeiffer 2016; Neftci et al. 2017) have been proposed re-
cently, they are applied to datasets of static images. There-
fore, the temporal pattern classification tasks remain a chal-
lenging topic warranting further investigation.

To demonstrate the capability of the MPD-AL learning
algorithm in a temporal pattern classification task, we ap-
ply it to solve a speaker-independent spoken digit classifica-
tion task. The TIDIGITS corpus (Leonard and Doddington
1993) is investigated in this work, which is one of the most
common datasets for benchmarking speech recognition al-
gorithms (Wu, Chua, and Li 2018; Wu et al. 2018). This
dataset consists of isolated spoken digit strings from a vo-
cabulary of 11 words (i.e., ‘zero’ to ‘ nine” and ‘oh’) and
speakers from 22 different dialectical regions. In this exper-
iment, we use the standard training and testing sets, consist-
ing of 2464 and 2486 speech utterances, respectively.

Firstly, the raw speech waveform is filtered by a Constant-
Q Transform (CQT) cochlear filter bank (Pan et al. 2018) to
extract the spectral information. Here, we use 20 cochlear
filters ranging from 200 Hz to 8 KHz. Next, as shown in Fig.
6, the threshold-coding mechanism (Giitig and Sompolinsky
2009) has been applied to convert incoming speech signals
into spike patterns.
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The encoded spike patterns are transmitted to the next
layer for classification; there are eleven groups of output
neurons in this layer with each group corresponding to
one class. Each group consists of ten neurons. In order to
discriminate between different spoken digits, neurons are
trained to generate the desired number of spikes (N;) only
when a spike pattern from their assigned class is presented,
and remain silent otherwise. However, how the value of Ny
is set remains an open question. On the one hand, each spo-
ken digit is formed by different number of sub-patterns and
hence one common Ny for all classes is undesirable. On the
other hand, a small value of [NV, limits the use of available
local temporal features, while a large N4 value is prone to
the overfitting problem. To resolve this problem, we propose
a data-driven dynamic decoding scheme.

When a training spike pattern is presented, we observe the
membrane potential trace of the corresponding output neu-
ron. The Ny is decided based on the following three cases:

e If the membrane potential V() remains lower than the
firing threshold ¥ and no spike is generated (as shown in
Fig. 7(a)), then Ny < 1.

e If the neuron generates N, spikes and V' (¢*) is above the
pre-defined encoding threshold 9. (as shown in Fig. 7(b)),
then Ny + N, + 1.

e If the neuron generates N, spikes and V' (¢*) is below the
pre-defined encoding threshold ¥, (as shown in Fig. 7(c)),
then Ny < N,.

As shown in Table.1, it is encouraging to note that the pro-
posed MPD-AL algorithm with dynamic decoding achieves
an accuracy of 97.52%, outperforming all other bio-inspired
baseline systems. Moreover, to investigate the effectiveness
of the proposed dynamic decoding strategy, we perform ex-
periments with fixed N; € {1,2,3,4,5,6,7,8,9,10} and
the best accuracy of 95.35% is achieved when N4 = 3. This
result highlights the effectiveness of the dynamic decoding
strategy, which could be applied for all temporal classifica-
tion tasks. In this work, the classification performance is im-
proved by training with margins and spike time noise (Giitig
2016). It is worth mentioning that the accuracy of this work
can still be improved when the model is scaled up with hid-
den layers using techniques proposed in (Lee, Delbruck, and
Pfeiffer 2016; Neftci et al. 2017).

Table 1: Comparison of the proposed framework against
other baseline frameworks.

Model Accuracy
Single-layer SNN and SVM (Tavanaei and Maida 2017b) 91.00%
Spiking CNN and HMM (Tavanaei and Maida 2017a) 96.00%
AER Silicon Cochlea and SVM (Abdollahi and Liu 2011) 95.58%
Auditory Spectrogram and SVM (Abdollahi and Liu 2011)  78.73%
AER Silicon Cochlea and Deep RNN (Neil and Liu 2016) 96.10%
Liquid State Machine (Zhang et al. 2015) 92.30%
MPD-AL with Ng =3 95.35%
MPD-AL with Dynamic Decoding 97.52%
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Figure 6: Illustration of the threshold coding mechanism. (a) The raw speech waveform and the spectrogram generated from the
CQT cochlear filter bank. (b) The spectrogram is further encoded into spikes using the threshold coding. The top and bottom
sub-figures depict the upward (red dots) and downward (blue dots) crossing events, respectively. For better visualization, only
the output from the 1st cochlear filter is displayed. (c) The upward and downward events from (b) are merged to visualize the
neuronal activation trajectory. The upward and downward crossing events for the 1st cochlear filter are represented by afferents
1-15 and 16-30, respectively. The threshold coding preserves temporal dynamics of the filtered spectral information. (d) The
entire threshold-encoded spike pattern by concatenating the spike events from (c) vertically. The spike events that corresponds

to the first filter in (c) is shaded in grey.

(a)

Time (ms)

Figure 7: Illustration of the dynamic output decoding strat-
egy.

Discussion and Conclusion

In this paper, we propose a novel aggregate-label learn-
ing algorithm MPD-AL to tackle the challenging temporal
credit assignment problem efficiently. In contrast to exist-
ing aggregate-label learning algorithms including MST and
TDP1, we adopt a membrane-potential driven approach in-
stead of the threshold-driven one, where the easiest mod-
ifiable time instants are identified from the membrane po-
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tential traces and used to update the synaptic weights. This
more direct training scheme has significantly improved the
learning efficiency. The ability of the proposed learning al-
gorithm to detect useful clues embedded among distractors
and background spiking activities as well as to decompose
an aggregate delayed feedback signal to its individual clues
are demonstrated in our experiments. We further propose a
data-driven dynamic decoding scheme and integrate it with
our MPD-AL learning algorithm.

Although the proposed MPD-AL learning algorithm is
simple and more efficient, there are areas to improve on.
Firstly, MPD-AL increases the output spike count using t*
at which V' (¢*) is the maximum peak of the subthreshold
membrane potential. However, when there is no such sub-
threshold peak between any two adjacent output spikes, then
the learning mechanism of MPD-AL fails. Secondly, in the
experiments of learning predictive clues, clues and distrac-
tors are embedded sparsely in training trials to reduce the
difficulty of learning. We find that if clues and distractors
are dense, the learning performance of MPD-AL decreases.
Thirdly, we expect better learning performance and classifi-
cation results when the proposed MPD-AL is scaled up to
include multiple hidden layers. We will address these areas
of improvement in future work.
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