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Abstract

Many online platforms have deployed anti-fraud systems to
detect and prevent fraudulent activities. However, there is
usually a gap between the time that a user commits a fraud-
ulent action and the time that the user is suspended by the
platform. How to detect fraudsters in time is a challenging
problem. Most of the existing approaches adopt classifiers to
predict fraudsters given their activity sequences along time.
The main drawback of classification models is that the pre-
diction results between consecutive timestamps are often in-
consistent. In this paper, we propose a survival analysis based
fraud early detection model, SAFE, which maps dynamic
user activities to survival probabilities that are guaranteed to
be monotonically decreasing along time. SAFE adopts recur-
rent neural network (RNN) to handle user activity sequences
and directly outputs hazard values at each timestamp, and
then, survival probability derived from hazard values is de-
ployed to achieve consistent predictions. Because we only
observe the user suspended time instead of the fraudulent ac-
tivity time in the training data, we revise the loss function of
the regular survival model to achieve fraud early detection.
Experimental results on two real world datasets demonstrate
that SAFE outperforms both the survival analysis model and
recurrent neural network model alone as well as state-of-the-
art fraud early detection approaches.

Introduction

Due to the openness and anonymity of the Internet, online
platforms (e.g., online social media or knowledge bases) at-
tract a large number of malicious users, such as vandals,
trolls, and sockpuppets. These malicious users impose se-
vere security threats to online platforms and their legitimate
participants. For example, the fraudsters on Twitter can eas-
ily spread fake information or post harmful links on the plat-
form. To protect legitimate users, most web platforms de-
ploy tools to detect fraudulent activities and further take ac-
tions (e.g., warning or suspending) against those malicious
users. However, there is usually a gap between the time that
fraudulent activities occur and the time that response actions
are taken. Training datasets collected and used for building
new detection algorithms often contain the labeled informa-
tion about when users are suspended instead of when users
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take fraudulent actions. For example, using twitter streaming
APT and crawler can easily collect the suspended time infor-
mation of fraudsters in addition to a variety of dynamically
changing features (e.g., the number of posts or the number
of followers). However, there is no ground truth about when
fraudulent activities occur from the collected data. Hence,
the algorithms trained on such datasets cannot achieve in-
time or even early detection if they do not take into con-
sideration the gap between suspended time and fraudulent
activity time. In this work, we aim to develop effective fraud
early detection algorithms over such training data that con-
tains time-varying features and late response labels.

Fraud early detection has attracted increasing attention in
the research community (Kumar, Spezzano, and Subrahma-
nian 2015; Yuan et al. 2017b; Wu et al. 2017; Zhao, Resnick,
and Mei 2015). The existing approaches for fraud early de-
tection are usually based on classification models (e.g., neu-
ral network, SVM). Given a sequence of user activities that
contain intermittent fraudulent activities, the prediction at
each timestamp from the built classifier is often indepen-
dent to each other. Hence, these classification models tend
to make inconsistent and ad-hoc predictions along the time.
Figure 1 shows an illustrative example. A user takes a fraud-
ulent action at time 5, the classification model predicts the
user as a fraudster at ¢ and ¢4 but as normal user at ¢3. This
is because the prediction probabilities between consecutive
timestamps do not have any relations.

..... time
..... time

Figure 1: Comparison of the survival analysis-based ap-
proach and classification-based approach for fraud early de-
tection. Red square indicates that the user is predicted as
fraudsters at time ¢ while the green circle indicates the user
is predicted as normal.

Classification-
based approach

Survival analysis
based approach

In this work, we propose to use the survival analysis
(Klein and Moeschberger 2006) to achieve consistent pre-
dictions along the time. Survival analysis models the time
until an event of interest occurs and incorporates two types



of information: 1) whether an event occurs or not, and 2)
when the event occurs. In survival analysis, hazard rate and
survival probability are adopted to model event data. The
hazard rate at time ¢ indicates the instantaneous rate at which
events occur, given no previous event whereas the survival
probability indicates the probability that a subject will sur-
vive past time ¢.

In the fraud detection scenario, the event is that a fraud-
ster is suspended by the platform. We use the survival func-
tion, which is monotonically decreasing, to model the like-
lihood of being fraudster for a given user based on his ob-
served activities. Hence, unlike the classification model that
makes ad-hoc predictions, the survival model can keep track
of user survival probabilities over time and provide consis-
tent prediction. When deployed, the survival analysis model
can easily calculate the survival probability of a new user at
each timestamp based on his activities and predict the user
as a fraudster when the survival probability is below some
threshold.

However, it is nontrivial to adopt survival analysis for
fraud detection. Traditional survival analysis models often
assume a specific parametric distribution of underlying data.
However, it is generally unknown which distribution fits
well in fraud detection scenarios. We need a model to han-
dle the features of user activity sequences (time-varying co-
variates) and further capture general relationships between
the survival time distribution and time-varying covariates.
To tackle this challenge, we develop a neural Survival Anal-
ysis model for Fraud Early detection (SAFE) by combining
the recurrent neural network (RNN) with the survival analy-
sis model. SAFE adopts RNN to handle time-varying covari-
ates as inputs and predicts the evolving hazard rate given the
up-to-date covariates at each timestamp. RNN can capture
the non-linear relations between the hazard rates and time-
varying covariates and does not assume any specific survival
time distributions. Moreover, to tackle the challenge due to
the gap between suspended time (reported in training data)
and fraudulent activity time (unavailable in training data),
we revise the loss function of the regular survival model.
In particular, SAFE is trained to intentionally increase the
hazard rates of fraudsters before they are suspended and de-
crease the hazard rates of normal users.

The contributions of this work are as follows. First, it is
the first work to adopt survival analysis for fraud detection.
Different from classification models, our approach achieves
consistent predictions along the time. Second, our revised
survival model is designed for the training data with late re-
sponse labels and can achieve fraud early detection. Third,
instead of assuming any particular survival time distribu-
tions, we propose the use of RNN to learn the hazard rates of
users from user activities along time and do not assume any
specific distribution. Fourth, we conduct evaluations over
two real-world datasets and our model outperform state-of-
the-art fraud detection approaches.

Related Work

Survival analysis: Survival analysis is to analyze and model
the data where the outcome is the time until the occurrence
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of an event of interest (Wang, Li, and Reddy 2017). In sur-
vival analysis, the occurrence of an event is not always ob-
served in an observation window, which is called censored.

Survival analysis is a widely-used tool in health data
analysis (Liu et al. 2018; Ranganath et al. 2016; Yu et al.
2011) and has been applied to various application fields,
such as students dropout time (Ameri et al. 2016), web
user return time (Jing and Smola 2017; Du et al. 2016;
Barbieri, Silvestri, and Lalmas 2016), and user check-in time
prediction (Yang, Cai, and Reddy 2018). To our knowledge,
the survival analysis has not been investigated in the context
of fraud detection.

Many approaches have been proposed to make use of
censored data as well as the event data. The Cox propor-
tional hazards model (CPH) (Cox 1972) is the most widely-
used model for survival analysis. CPH is semi-parametric
and does not make any assumption about the distribution of
event occurrence time. It is typically learned by optimizing
a partial likelihood function. However, CPH makes strong
assumptions that the log-risk of an event is a linear combi-
nation of covariates, and the base hazard rate is constant over
time. Some researchers proposed parametric censored mod-
els, which assume the event occurrence time follows a spe-
cific distribution such as exponential, log-logistic or Weibull
(Alaa and van der Schaar 2017; Ranganath et al. 2016;
Martinsson 2016). However, it is common that the specific
parametric assumptions are not satisfied in real data.

In recent years, researchers adopt neural networks to
model the survival distribution (Luck et al. 2017; Katz-
man et al. 2018; Lee et al. 2018; Chapfuwa et al. 2018;
Biganzoli et al. 1998). For example, (Luck et al. 2017;
Katzman et al. 2018) combine the feed-forward neural net-
work with the classical Cox proportional hazard model. Al-
though using the deep neural network can improve the ca-
pacity of models, these studies still assume that the base haz-
ard rate is constant. (Lee et al. 2018) transfers the problem
of learning the distribution of survival time to a discretized-
time classification problem and adopts the deep feed for-
ward neural network to predict the survival time. (Chapfuwa
et al. 2018) adopts a conditional generative adversarial net-
work to predict the event time conditioned on covariates,
which implicitly specifies a time-to-event distribution via
sampling. However, the existing models cannot handle the
time-varying covariates. In this work, we adopt the RNN to
take the time-varying covariates as inputs and fit the time-to-
event distribution without making any of the above assump-
tions.

We also notice that some studies adopt RNN to model
the time-to-event distributions. Those studies mainly focus
on modeling the recurrent event instead of the terminated
event. For example, (Du et al. 2016; Jing and Smola 2017;
Grob et al. 2018) adopt RNN to model the web user return
times, which focus on the recurrent event data other than
the censored data. Hence, RNN is to capture the gap time
between user active sessions. Moreover, unlike the existing
work that focuses on “just-in-time” prediction, we adapt the
survival analysis for fraud early detection in the scenario
where training data contains late response labels.

Fraud early detection: The misleading or fake informa-



tion spread by malicious users could lead to catastrophic
consequences because the openness of online social me-
dia enables the information to be spread in a timely man-
ner. Therefore, detecting fake information or malicious users
is a critical research topic (Ying, Wu, and Barbard 2011;
Yuan et al. 2017a; Wu et al. 2013; Manzoor et al. 2016;
Kumar and Shah 2018). In recent years, extensive stud-
ies focus on the rumor early detection (Wu et al. 2017;
Zhao, Resnick, and Mei 2015). Besides early detecting the
fake information, early detecting the malicious users who
create the fake information is also important. (Kumar, Spez-
zano, and Subrahmanian 2015; Yuan et al. 2017b) aim
to early detect vandals in Wikipedia. All the existing ap-
proaches adopt classification models for fraud early detec-
tion. In this work, we combine the survival analysis with
RNN to predict whether a user is a fraudster.

Preliminary: Survival Analysis

Survival analysis models the time until an event of interest
occurs. Compared with the common regression models, in
a survival analysis experiment, we may not always be able
to observe event occurrence from start to end due to miss-
ing observation or a limited observation window size. For
example, in health data analysis, the time of death can be
missing in some patient records. Such phenomenon is called
censoring. In this work, we focus on two types of censoring:
1) an uncensored sample indicates the event is observed; 2)
a right censored sample indicates the event is not observed
in the observation window but we know it will occur later.
Survival time 7' is a continuous random variable rep-
resenting the waiting time until the occurrence of an

event, with the probability density function f(t) =

. < . . . .
limg¢ o w and the cumulatlve distribution func-

tion F(t) = P(T < t) fo
The survlval functzon S(t) 1nd1cates the probability of the
event having not occurred by time ¢:

S(t)=P(T >1t)=1— F(t) = /too fl@)dz. (1)

The hazard function \(t) refers to the instantaneous rate
of occurrence of the event at time ¢ given that the event does
not occur before time ¢:

Pt <T<t+dt|T >t} f(t)
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Additionally, S(t) is associated with A(t) by
S(t) = e Jo Ma)dz, 3)

Discrete time. In many cases, the observation time is dis-
crete (seconds, minutes or days). When 7' is a discrete vari-
able, we denote ¢ a timestamp index and have the discrete
expression:
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Likelihood function. Given a training dataset with N sam-
ples where each sample i has an aggregated covariate x’, a
last-observed time ¢¢, and an event indicator ¢’, the survival
model adopts maximum likelihood to estimate the hazard
rate and the corresponding survival probability. If a sam-
ple i has the event (¢! = 1), the likelihood function seeks
to make the predicted time-to-event equal to the true event
time t%, i.e., maximizing P{T = t'}; if a sample i is cen-
sored (¢! = 0), the likelihood function aims to make the
sample survive over the last-observed time tt, i.e., maximiz-
ing P{T > t'}. The joint likelihood function for a sample i
is:

P{T — ti}ci . P{T > ti}l—ci _ f(tl)(/ls(tl)l_(/l (7)

The negative log-likelihood function for a sample 7 can be
written as:

0= —[ci In(P{T = t'}) +

Z)\ e”fl)

where \; = \(t|x%;0) is the conditional hazard rate given
covariate x with parameters 6.
The overall loss function over the whole training data is:
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The survival analysis models learn the relationship between
the covariate x* and the survival probability S(¢) by opti-
mizing parameters 6 to estimate \;.

SAFE: A Neural Survival Analysis Model for
Fraud Early Detection

In the fraud detection scenario, event of interest refers to
users being suspended by platforms; then, survival time
corresponds to the length of time that a user is active.
Hence, users who are suspended in the observation window
are event samples; users who are not suspended are right-
censored samples.

Problem Statement

Let D = {(x,¢", ")}, denote a set of training triplets,
where x' = (xl, X, xii) indicates the sequence data of
user 4; ¢’ indicates whether the user 7 is suspended (¢! = 1)
or un-suspended (¢! = 0) in the observation window; ¢* de-
notes the time when the user ¢ is suspended by the platform
or the last-observed time for an un-suspended user; /N de-
notes the size of the dataset. We consider the problem of de-
tecting fraudsters in a timely manner. Because ¢’ is the sus-
pended time by the platform instead of the time of commit-
ting malicious activities, we require the detected time earlier
than the suspended time ¢'. The goal of learning is to train a
mapping function between time-varying covariates and the
survival probabilities, i.e., Sy = f(x}). The learned map-
ping function can be deployed to predict whether a new user
is a fraudster at time ¢ based on his activities by comparing
the survival probability Sy with a threshold 7.
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Hazard rate

Time varying covariates of user i

Figure 2: An RNN-based survival analysis model for fraud
early detection

Model Description

Figure 2 describes the basic framework of SAFE. RNN is
taken to handle the time-varying covariates and its outputs
are hazard rates along time. At timestamp ¢, RNN maintains
a hidden state vector h; € R” to keep track of users’ se-
quence information from the current input x; and all of the
previous inputs Xg, s.t. k < t.

In this work, we adopt the gated recurrent unit (GRU)
(Cho et al. 2014), a variant of the traditional RNN, to model
the long-term dependency of time-varying covariates. With
x4 and h;_ 1, the hidden state h; is computed by

ht = GRU(Xt, htfl). (10)

As shown in Figure 2, at time ¢, hazard rate \;, which in-
dicates the instantaneous rate of a user should be suspended
given that the user is still alive at time ¢, is derived from h;
by

At = softplus(wyah;) = In(1 + exp(wyrhy)),  (11)

where softplus(-) is deployed to guarantee that hazard rate
A is always positive, and w is the weight vector of RNN
output layer. Note that the softplus function can be replaced
by other non-linear functions with positive outputs.

Based on Equation 6, the survival probability, which in-
dicates the probability of a user having not been suspended
until time , can be calculates as S(t) = e~ =k=12(*)_ By
comparing the survival probability with a threshold 7, we
can predict whether a user should be suspended at time ¢.
The survival probability S(¢) is monotonically decreasing
along time, hence we can achieve consistent predictions.

For outputs, unlike previous works (Martinsson 2016;
Alaa and van der Schaar 2017), we do not assume hazard
rate A follows one certain parametric distribution, such as
Weibull or Poisson, because, in context of fraud early detec-
tion, we do not know whether A follows one particular dis-
tribution. Instead, SAFE directly outputs A which actually
follows a general distribution potentially captured by RNN.
We conduct experiments to compare two designs and evalu-
ation results demonstrate SAFE outperforms the design with
specific parametric distributions.

Loss function. The loss function shown in Equation 9 for
traditional survival analysis cannot be used for learning
fraud detection model over the training data with late re-
sponse labels. In our fraud detection scenario, we aim to de-
tect fraudsters as early as possible while let censored users
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survive over the last-observed time. However, Equation 9
can let censored users pass over the last-observed time but
cannot detect fraudsters as early as possible.

Aiming to fraud early detection, a simple but non-trivial
adaption is performed on Equation 9 to obtain our early-
detection-oriented likelihood function, i.e. Equation 12. For
simplicity, first, we take user ¢ as an example to give the ex-
pression of likelihood and loss function, and then show the
overall loss function for the whole dataset.

P{T <t} . P{T > ¢}}1=¢
— (F(t")" - S(th)*
—(1—e" i A (e =

i

o (312)

)\t)l—c
= (ezi;l At — 1)01 e Z:Z:l >\t_

Compared with the likelihood function of a regular sur-
vival model shown in Equation 7, Equation 12 changes
P{T = t'}¢ to P{T < t'}¢. After this adaption, intu-
itively, we can realize that it does match the fraud early de-
tection: with user ¢ being a fraudster (¢* = 1), all of hazard
rates before ¢* will naturally increase as maximizing the term
P{T < t'}.

Taking the negative logarithm, we could get loss function
of user ¢:

t* ]
f=(Cn) - e, 0y
t=1

Then, given a set of training samples with /N users, the
overall loss function is defined as:

N
L=y r
i=1

Next we illustrate why SAFE is appropriate for fraud
early detection. We denote the model trained by the origi-
nal loss function £, (shown in Equation 9) as SAFE-r. For
simplicity, instead of two overall loss functions, our follow-
ing discussions focus on £ and £*.

The first partial derivatives of ¢%. and ¢! w.r.t \ are listed

N

> [(i At)—c-In (eZill e —1)}. (14)

i=1

as follows:
ot 1 0<t<tt
ro_ { i e i (15)
a)\t 1 — C" - m t=1t
—1-¢d. 2 g<t<t. (16)
O\ 622:1 A 1
For a fraudster i (¢! = 1), we can see gij =1 >

0,(0 < t < #%). It means /. is an increasing function
w.rt A so that A\, (0 < t < t%) is decreasing as minimiz-
ing ¢%. Moreover, in accordance with Equation 6, survival
probability S; is increasing with the decrement of A;, which
means survival probability S; is increasing with the min-
imization of ¢%. That is, instead of detecting the fraudster



© before t', SAFE-r tends to make the fraudster i survive
over t*. On the contrary, for SAFE, we can observe that

. %
o0 _ 4 i _ek=1*k
vl 1—c

tt
ezkzl k

=1- < 0. It means

eZhii Mk g Shoi Mg
0% is a decreasing function w.r.t X so that \; (0 < t < t%)
is increasing as minimizing ¢*. Similarly, we can achieve
that survival probability S, is decreasing with ¢ minimized,
which implies that SAFE does have a tendency to detect
fraudster 7 before the suspended time ¢*.
ot _ o0 _ 4
e — O :
Both ¢/ and ¢ are increasing functions w.r.t \. As minimiz-
ing ¢2 or #7, \; is becoming smaller. SAFE and SAFE-r both
have a tendency to make censored user j survive over the
last-observed time 7.

The above theoretical analysis shows why SAFE can
achieve the fraud early detection better than SAFE-r. Exper-
imental results in the experiment section also validate this

theoretical analysis.

For a censored user j (¢/ = 0), we obtain

Experiments
Experimental Settings

Datasets. We conduct our experiments on two real-world
datasets:

o Twitter. We randomly collect 51608 Twitter users on Au-
gust 13, 2017, monitor the user statuses every three days
until October 13, 2017, and get the data with 21 times-
tamps. For each user, at each timestamp, the following
5 features are recorded: 1) the number of followers, 2)
the number of followees, 3) the number of tweets, 4) the
number of liked tweets, and 5) the number of public lists
that the user is a member of. During this period, 7790
users (15.0%) are suspended; the remaining 43818 users
(85.0%) are still active, i.e., right-censored. We then select
suspended users who have the observed timestamps rang-
ing from 12 to 21 and randomly choose the censored users
to compose a balanced dataset. To this end, twitter con-
sists of 2770 fraudsters and 2770 normal users. We take
the change values of five features between two consecu-
tive timestamps as inputs to RNN. Fig.3a details the com-
ponents of twitter involving numbers of event-censored
users at different last-observed timestamps.

Wiki. We adopt the UMDWikipedia dataset (Kumar,
Spezzano, and Subrahmanian 2015) to build the wiki
dataset for early vandal detection. Wiki contains 1759
users whose editing sequence lengths are between 12 and
20, where 900 are vandals and 859 are benign users. We
collect eight features at each edit for each user: 1) whether
the user edits a Wikipedia meta-page, 2) whether the cat-
egory of the edit page is an empty set, 3) whether the con-
secutive re-edit is less than one minute, 4) whether the
consecutive re-edit is less than three minutes, 5) whether
the consecutive re-edit is less than fifteen minutes, 6)
whether the current edit page has been edited before, 7)
whether the user edits the same page consecutively, and
8) whether the consecutive re-edit pages have the common
category. Fig.3b illustrates the components of wiki involv-
ing event-censor numbers at different last-observed times-
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tamps. Different from twitter where the censored users
are in the last timestamp, there are censored users at each
timestamp on wiki.

Baselines. We compare SAFE with the following baselines:

e SVM is a classical classifier. Given a user time-varying
covariate, we average the sequence of each covariate as
input to train the SVM and predict the user types (fraud-
sters or normal users) at each timestamp at the testing
phase.

CPH (Cox proportional hazard model) is a classical sur-
vival regression model (Cox 1972). Similar to SVM, we
adopt the average covariates of users as input to train CPH
and conduct fraud early detection with the first k£ times-
tamps. We adopt Lifelines ! to implement the CPH model.

M-LSTM (Multi-source LSTM) is a classification-based
fraud early detection model that adopts LSTM to capture
the information of time-varying covariates and dynami-
cally predict the user type at each timestamp based on the
logistic regression classifier (Yuan et al. 2017b).
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Figure 3: The distributions of event and right-censored users
over the timestamps on twitter and wiki datasets

Hyperparameters. SAFE is trained by back-propagation
via Adam (Kingma and Ba 2015) with a batch size of 16
and a learning rate 10~3. The dimension of the GRU hidden
unit is 32. We randomly divide the dataset into a training
set, a validation set, and a testing set with the ratio (7:1:2).
The threshold 7 for fraud early detection is set based on the
performance on the validation set. We run our approach and
all baselines for 10 times and report the mean and standard
deviation of each metric. For all the baselines, we use the
default parameters provided by the public packages.
Evaluation Metrics. We use Precision, Recall, F1 and Ac-
curacy to evaluate the fraud early detection performance of
various models given the first K -timestamps. For instance,
AccuracyQk (k=1,2,3,4,5) indicates the accuracy given the
first K-timestamp inputs. We further report the “percent-
age of early detected fraudsters” to show the portion of
correctly early detected fraudsters and the “early detected
timestamps” to show the number of early-detected times-
tamps of fraudsters.

Repeatability. Our software together with the datasets are
available at https://github.com/PanpanZheng/SAFE.

"https://lifelines.readthedocs.io
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Table 1: The average performance of fraud early detection
on the twitter and wiki datasets given the first 5-timestamps

Dataset | Algorithm | Precision | Recall F1 Accuracy
SVM 0.7370 0.2733 | 0.3875 0.5916
twitter CPH 0.4594 | 0.7410 | 0.5440 0.5453
M-LSTM 0.6336 0.3521 | 0.4400 0.5755

SAFE 0.8198 | 0.5569 | 0.6537 | 0.7180
SVM 0.5484 0.6413 | 0.5911 0.6754
wiki CPH 0.5557 0.6206 | 0.5784 0.6679
M-LSTM 0.5255 | 0.9044 | 0.6556 0.5528

SAFE 0.7114 | 0.8798 [ 0.7866 | 0.7640

Experimental Results

Fraud early detection. Table 1 shows the average of met-
rics of SAFE and baselines for fraud early detection on twit-
ter and wiki from @1 to @5. It is easily observed that SAFE
significantly outperforms three baselines: on twitter, accu-
racies and F1 scores of three baselines are all under 0.60
and 0.55, respectively, especially for CPH with accuracy
0.5453 and SVM with F1 0.3875, while SAFE obtains the
acceptable accuracy 0.7180 and F1 0.6537; although three
baselines improve their performance on wiki, especially for
SVM with accuracy 0.6754 and M-LSTM with F1 0.6556,
however, SAFE is still far superior to them and achieves
satisfiable accuracy 0.7640 and F1 0.7866. Noticeably, al-
though CPH and M-LSTM achieve the best recall on rwit-
ter and wiki (0.7410 and 0.9044), however, they sacrifice
their precisions with only 0.4594 and 0.5255 respectively,
which indicate very high false positive rates; on the con-
trary, SAFE performs well on holding the balance between
precision and recall such that it achieves precision 0.8198
and recall 0.5569 on twitter and precision 0.7114 and recall
0.8798 on wiki.

The reason why SAFE performs better than three base-
lines in early detection is owed to its early-detection-
oriented loss function shown in Equation 14. Meanwhile, it
also indicates that classification and typical survival models
are not appropriate to early detection because their internal
mechanisms do not support early detection.

Table 2 shows the comparison results performed on twit-
ter. In accordance with Table 2, generally speaking, the F1
and accuracy of SAFE and three baselines increase from
@1 to @5. That is, whether for SAFE or three baselines,
there is actually some improvement, more or less, in the per-
formance of early detection as timestamp extends. Further-
more, we can also see SAFE performs significantly better
than three baselines: at @1, accuracies of three baselines are
all under 0.57, especially CPH with 0.49, which to some ex-
tent equals to random guess, while SAFE obtains an accept-
able accuracy 0.6464 underlying a tracking sequence with
a minimum length 12; until @5, SAFE’s accuracy reaches
0.7519 while, except for SVM, Cox and M-LSTM have only
0.5098 and 0.6167, respectively. Noticeably, it seems to be
abnormal for CPH’s recall trend that it starts with 0.0035,
then reaches 0.7971, and ends up with 0.9838. Although its
recall is big enough, however, it has a random-guess preci-
sion around 0.5 which is not acceptable. Moreover, the rea-
son why CPH’s recall trend is so weird, we suspect, it is
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related to that, at least in first five timestamps, the hazards
provided by time-series CPH are extremely uneven so that
an appropriate survival threshold is unavailable to balance
well between recall and precision expected in early detec-
tion.
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Figure 4: Comparison of SAFE and M-LSTM for fraud early
detection on the twitter dataset

SAFE vs M-LSTM. To show the advantage of survival
analysis model, we further take a fine-grained comparison
between SAFE and M-LSTM for fraud early detection. M-
LSTM is a classification-based model, which adopts LSTM
to handle time-varying covariates. SAFE and M-LSTM have
the similar neural network structure but are trained by dif-
ferent objective functions. In this study, we separate all the
fraudsters on twitter into different groups by their suspended
timestamps, e.g., “T12” indicates the the group of fraud-
sters that are suspended at the 12-th timestamp. Figure 4a
shows the percentages of early detected fraudsters for each
group by SAFE and M-LSTM. We can clearly observe that,
compared with M-LSTM, SAFE has a stronger early detec-
tion capability with more early-detected fraudsters in each
group. For example, at the 12-th suspended timestamp, 92%
of fraudsters are early-detected by SAFE while only 54%
of fraudsters are early-detected by M-LSTM. Overall, for
twitter, 82% of fraudsters can be correctly early-detected by
SAFE, while only 24% of fraudsters can be early-detected
by M-LSTM.

Figure 4b shows the number of early-detected timestamps
of fraudsters for each group on twitter. We can observe that
the early-detected timestamps of SAFE are still larger than



Table 2: Experimental results (mean=std.) of fraud early detection on the twitter dataset at the first 5-timestamps

Timestamp | Algorithm Precision Recall F1 Accuracy

SVM 0.7500 £ 0.0000 0.2050 £ 0.0000 0.3220 £ 0.0000 0.5683 £ 0.0000
@1 CPH 0.1333 &+ 0.0000 0.0035 £ 0.0000 0.0069 £ 0.0000 0.4901 £ 0.0000
M-LSTM 0.6307 £ 0.1072 0.2350 £ 0.1174 0.3211 £ 0.1374 0.5483 £ 0.0331

SAFE 0.8312 1+ 0.0313 | 0.3731 + 0.0987 | 0.5053 £ 0.0870 | 0.6495 £ 0.0309
SVM 0.7260 £ 0.0000 0.1906 + 0.0000 0.3019 4 0.0000 0.5593 £ 0.0000
@2 CPH 0.6166 +0.0000 | 0.7971 &£ 0.0000 | 0.6953 £ 0.0000 | 0.6508 & 0.0000
M-LSTM 0.6291 £ 0.0734 0.2952 £ 0.0500 0.3962 + 0.0424 0.5584 £+ 0.0300

SAFE 0.8265 £ 0.0297 | 0.5206 £ 0.0564 0.6360 £0.0362 | 0.7070 £ 0.0154
SVM 0.7473 + 0.0000 0.2553 + 0.0000 0.3806 % 0.0000 0.5845 £ 0.0000
@3 CPH 0.5309 £0.0000 | 0.9389 £ 0.0000 | 0.6783 £ 0.0000 0.5547 = 0.0000
M-LSTM 0.6239 + 0.0479 0.3579 &+ 0.0458 0.4515 + 0.0360 0.5720 £ 0.0223

SAFE 0.8193 £ 0.0267 | 0.6016 £0.0260 | 0.6929 £ 0.0133 | 0.7361 & 0.0089
SVM 0.6463 £ 0.0000 0.1906 £ 0.0000 0.2944 £+ 0.0000 0.5431 £+ 0.0000
@4 CPH 0.5112 £0.0000 | 0.9820 &£ 0.0000 | 0.6724 £ 0.0000 0.5215 £ 0.0000
M-LSTM 0.6256 £ 0.0387 0.3988 + 0.0600 0.4837 £ 0.0435 0.5822 £+ 0.0200

SAFE 0.8136 £+ 0.0237 | 0.6330+£0.0322 | 0.7111 £ 0.0168 | 0.7456 £+ 0.0108
SVM 0.8156 4+ 0.0000 | 0.5251 &+ 0.0000 0.6389 £ 0.0000 0.7032 £ 0.0000
@5 CPH 0.5050 £ 0.0000 | 0.9838 £ 0.0000 | 0.6674 £ 0.0000 0.5098 £+ 0.0000
M-LSTM 0.6591 £ 0.0547 0.4739 + 0.0793 0.5477 £ 0.0583 0.6167 £ 0.0374

SAFE 0.8084 £+ 0.0424 0.6564 £0.0337 | 0.7235 £0.0160 | 0.7519 £ 0.0107

those of M-LSTM in most cases. For example, for group
“T12”, SAFE can detect fraudsters with 9 timestamps ahead
of the true suspended time while the early-detected times-
tamp of M-LSTM is 5.3. For twitter, the average early-
detected timestamp of SAFE is 11.1, while the average
early-detected timestamp of M-LSTM is 9.6. Consequently,
in terms of both the percentage of early-detected fraudsters
and the number of early-detected timestamps, we can see
SAFE obviously outperforms M-LSTM in the fraud early
detection scenario.
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Figure 5: Comparison of SAFE and SAFE-r for fraud early
detection on the twitter dataset.

SAFE vs. SAFE-r. To show the advantage of the early-
detection-oriented loss function, we compare SAFE with
SAFE-r that adopts regular loss function of survival analy-
sis. Figures 5a and 5b show the variation of F1 and accuracy
along the timestamps on twitter. Generally speaking, as the
timestamp extends, the F1 and accuracy of SAFE and SAFE-
1 both increase, so their early detection performance roughly

1284

Table 3: The average performance of neural survival model
for fraud early detection on the twitter dataset with and with-
out assuming prior distributions given the first 5-timestamps

Algorithm Precision | Recall F1 Accuracy
Rayleigh-RNN 0.5333 0.0012 | 0.0025 0.5051
Poisson-RNN 0.4857 0.0012 | 0.0024 0.5051
Exponential-RNN | 0.7824 0.0589 | 0.1044 0.5267
Weibull-RNN 0.7381 0.2865 | 0.3850 0.5920
SAFE 0.8198 | 0.5569 | 0.6537 | 0.7180

gets better. Nevertheless, we see SAFE is obviously superior
to SAFE-r: from T1 to TS5, the curves of SAFE for F1 and
accuracy are significantly above the one of SAFE-r. Con-
cretely, SAFE’s accuracy reaches over 0.75 while SAFE-r
just has 0.60 at T5. The reason behind this performance dif-
ference is associated with their loss functions. For SAFE-r,
there is no internal mechanism to support it for early detec-
tion and its small performance improvement, such as accu-
racy from 0.57 to 0.60, is mainly due to information accu-
mulation between steps provided by RNN; however, based
on the modification of survival analysis, SAFE has its inter-
nal mechanism for early detection.

SAFE vs. Specific Distributions. One advantage of SAFE
is that SAFE does not assume any specific distributions.
We further evaluate the performance of the neural survival
model with and without assuming any specific distributions.
In this experiment, we train RNN to predict the parameters
of a particular distribution instead of hazard rate given time-
varying covariates. We adopt three common distributions for
modeling the survival time, i.e., Rayleigh, Poisson, Expo-
nential and Weibull distributions. Table 3 shows the aver-



age performance of fraud early detection on twitter given the
timestamps from 1 to 5. We can observe that SAFE, which
does not assume any survival time distribution, significantly
outperforms the other approaches by at least 10% in terms of
accuracy and 25% in terms of F1. The experimental results
indicate that SAFE, a model without assuming any specific
distribution, is more appropriate to fraud early detection.

Conclusion

In this paper, we have developed SAFE that combines sur-
vival analysis and RNN for fraud early detection. Without
assuming any fixed distribution for hazard rate, SAFE treats
time-varying covariates by RNN and directly outputs haz-
ard values at each timestamp, and then, survival probability
derived from hazard values is employed to make prediction.
The monotonically decreasing survival function guarantees
the consistent predictions along the time. Moreover, we re-
vise the loss function of the regular survival model to han-
dle training data with the late response labels. Experimen-
tal results on two real world datasets demonstrate that SAFE
outperforms classification-based models, the typical survival
model, and RNN-based survival models with specific distri-
butions. In the future, we plan to extend SAFE to predict
when fraudulent activities are taken with only observed in-
formation of suspended time.
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