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Abstract

Graph convolutional neural networks (GCNN) have become
an increasingly active field of research. It models the spatial
dependencies of nodes in a graph with a pre-defined Lapla-
cian matrix based on node distances. However, in many appli-
cation scenarios, spatial dependencies change over time, and
the use of fixed Laplacian matrix cannot capture the change.
To track the spatial dependencies among traffic data, we pro-
pose a dynamic spatio-temporal GCNN for accurate traffic
forecasting. The core of our deep learning framework is the
finding of the change of Laplacian matrix with a dynamic
Laplacian matrix estimator. To enable timely learning with
a low complexity, we creatively incorporate tensor decom-
position into the deep learning framework, where real-time
traffic data are decomposed into a global component that is
stable and depends on long-term temporal-spatial traffic rela-
tionship and a local component that captures the traffic fluc-
tuations. We propose a novel design to estimate the dynamic
Laplacian matrix of the graph with above two components
based on our theoretical derivation, and introduce our design
basis. The forecasting performance is evaluated with two real-
time traffic datasets. Experiment results demonstrate that our
network can achieve up to 25% accuracy improvement.

Introduction
Traffic forecasting is fundamental to the performance of
many components in intelligent transportation systems
(ITS). The accurate and reliable traffic forecasting can as-
sist in proactive and dynamic traffic control as well as in-
telligent route guidance, which will help alleviate the huge
congestion problem in the system. In this paper, we are in-
terested in simultaneously predicting the traffic of multiple
road segments in a road network.

Great efforts have been devoted to improve the traffic
forecasting accuracy (Diao et al. 2018). Some studies ap-
ply traditional machine learning methods, such as auto-
regressive and moving average model (ARMA) (Williams
and Hoel 2003) and support vector regression (SVR) (Chen
et al. 2015) and etc, to forecast future traffic. As most
of these methods are linear and not suitable for handling
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volatile traffic data, the forecasting accuracy is often low. In
recent years, the prediction methods based on deep learn-
ing have received considerable attention. Some attempts
have been made to apply deep Recurrent Neural Networks
(RNN)(Wu and Tan 2016) and Convolution Neural Network
(CNN) (Zhang et al. 2016; Zhang, Zheng, and Qi 2016;
Ma et al. 2017) to predict traffic flow. However, these meth-
ods are not suitable to apply to the data points with ir-
regular graph relationship. As graph structure arises natu-
rally in the traffic network, Graph Convolutional Neural Net-
work (GCNN) is the appealing choice (Yu, Yin, and Zhu
2017a). GCNN with deep architectures have proven to be
very efficient in short-term traffic forecasting area (Yao et
al. 2018). By incorporating the spectral graph theory (Fan
1997), GCNN is efficient in handling signals that live on
irregular or non-Euclidean domains. Nevertheless, existing
GCNN frameworks have some limitations that make them
less efficient in traffic forecasting.

GCNN heavily depend on the Laplacian matrix of a graph,
which is defined as the difference between the diagonal ma-
trix of node degrees and the adjacency matrix. Previous
GCNN studies rely on the key assumption that the Lapla-
cian matrix is strictly unchanged and available (i,e. the ad-
jacency matrix of the input graph is constant). However, our
previous studies demonstrate that there are huge differences
between traffic patterns during different time spans. In addi-
tion, traffic accidents may occur every day, which will also
affect the relationship between road segments in the road
network. These factors will lead to the dynamic changes of
adjacency matrix thus the Laplacian matrix. Therefore, the
exact Laplacian matrix of the graph could be time-variant
and generally intractable.

To address the issues above, we propose a novel spatial-
temporal structure to more accurately forecast network-wide
traffic speed, and we call it dynamic GCNN (DGCNN).
Compared with existing GCNN-based methods, our paper
makes the following contributions:

• We creatively incorporate tensor decomposition opera-
tions into the deep learning framework to extract the
global and local components from traffic samples. From
frequency analysis, network-wide traffic samples within a
time span are composed of two components: the global
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one determined by the road network structure and the
local one determined by specific time-of-day or traffic
events. We pre-train our tenor decomposition layer with
a particular loss function.

• To learn the Laplacian matrix at a specific time-of-day dy-
namically according to the global and local data compo-
nents, we design a deep learning-based Laplacian matrix
estimator with detailed theoretical derivation and design
basis. The Laplacian matrix estimated in real-time will be
sent to the graph convolutional layers for forecasting.

The rest of this paper is organized as follows. We first sum-
marize the related work of GCNN in Section 2, and in-
troduce the background knowledge in Section 3. We then
present the technical details of our novel DGCNN model
in Section 4. After that, we evaluate the performance of our
proposed model through experiments on real-world data sets
in Section 5, and conclude our work in Section 6.

Related Works
In this section, we summarize the literature work and pro-
vide the motivations of our work.

GCNN is extended from convolutional neural networks
(CNN) with consideration of graph structures. Existing
graph convolutional neural networks can be mainly divided
into two categories according to the convolutional oper-
ator. One is based on concepts from the vertex domain
(Niepert, Ahmed, and Kutzkov 2016; Monti et al. 2017;
Hechtlinger, Chakravarti, and Qin 2017; Puy, Kitic, and
Pérez 2017); The other is based on concepts from the graph
spectral domain. As we cannot express a meaningful trans-
lation operator in the vertex domain (Defferrard, Bresson,
and Vandergheynst 2016), we prefer defining the convolu-
tion operator in the spectral domain in this paper.

Spectral graph theory enables us to extend many of the
important mathematical ideas and intuitions from classical
Fourier analysis to the graph setting. In recent years, GCNN
and its variants have been applied to various areas, such as
image classification and task forecasting (Bruna et al. 2013;
Yu, Yin, and Zhu 2017b; Shuman et al. 2013; Henaff, Bruna,
and LeCun 2015; Defferrard, Bresson, and Vandergheynst
2016; Kipf and Welling 2016; Yu, Yin, and Zhu 2017a;
Srivastava, Greff, and Schmidhuber 2015).

Previous studies on traffic forecasting with GCNN (Yu,
Yin, and Zhu 2017a; Yao et al. 2018; Puy, Kitic, and Pérez
2017) have a fatal drawback. They seldom consider the
change of spatial dependencies with the gradual structural
evolution of the road network. The Laplacian matrix rep-
resents spatial dependencies between road segments. As
shown in Section 3, GCNN heavily depends on the Lapla-
cian matrix L. Keeping the same Laplacian matrix all the
time may lead to a significant performance decrease. Yao et
al. (Yao et al. 2018) apply the traffic flow data of road seg-
ments to model dynamic spatial dependencies between road
intersections. However, this method increases the burden of
data collection and still doesn’t track the dynamic change of
the Laplacian matrix.

To satisfy the forecasting requirements under a dynamic
network structure, we propose a dynamic spatio-temporal

graph convolutional neural network. Our framework will
automatically modify the Laplacian matrix according to
changes of spatial dependencies hidden in the traffic data.

Preliminary
Before presenting our detailed design of the spatial-temporal
framework, we provide some background knowledge in this
paper. Graph CNN helps us make traffic forecasting with
consideration of graph structures in the road network. Based
on the Equation 5 in the area of signal processing, we pro-
pose a deep learning method to learn the Laplacian ma-
trix. We incorporate tensor operations into our deep learn-
ing framework to extract the long-term and short-term traffic
tensor from the real-time tensor.

Graph CNNs
Given a directed graph G = (ν, ε,W ), where the set ν con-
tains |ν| = p vertices; ε represents a set of edges, W denotes
the weight matrix of G. A signal x : ν → R defined on the
nodes of the graph may be represented as a vector x ∈ Rp,
where xi is the signal value at the ith node. We have the
graph Laplacian L = D −W and the eigen decomposition
of L = UΛUT , where D is a diagonal matrix with the ith
element of the diagonal line being the degree of the node i:
Dii =

∑
j Wij and U is an orthogonal matrix.

The Fourier transform for x is defined as x̂ = UTx.
Hence, the graph convolution of x and y defined in the
Fourier domain is

x ∗G y = U((UTx)
⨀

(UT y)), (1)

where
⨀

is the element-wise Hadamard product. It follows
that a signal x is filtered by gθ as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)U
Tx. (2)

To make the filter K-localized in space and reduce its com-
putational complexity, Eq. (2) can be further defined as

y = Ugθ(Λ)U
Tx = U(

K−1∑
k=0

θkΛ
k)UTx =

K−1∑
k=0

θkL
kx.

(3)
where the parameter θ ∈ RK is a vector of polynomial
Fourier coefficients. This filter restricts the hop distance
dg(i, j) between two nodes i and j to be within K hops, that
is LK

i,j = 0 when dg(i, j) ≥ K. Consequently, spectral fil-
ters represented by Kth-order polynomials of the Laplacian
are exactly K-localized.

A signal on graph G of p nodes can be described as a ma-
trix X consisting of cin vectors of size p. Consequently, for
the signal X = [x1, x2, · · · , xcin ], a 1-D graph convolution
operation with a kernel tensor θ of size (cin, cout,K) is

yj =
∑

i∈[1,cin],k∈[1,K]

θijkL
kxi, j = 1, 2, ..., cout (4)

where cin and cout represent the size of the input feature
map and the output feature map respectively.
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Graph Signal Processing
In the area of signal processing on graphs, signals are mod-
eled as functions on the vertices of a weighted graph. A
major challenge in this field is that of learning the graph
structure from data. The learned graph must have a meaning-
ful interpretation and be useful for analysis. Given a set of
nodes V and a set of corresponding signals on those nodes,
the graph structure is learnt by estimating a matrix L whose
nonzero patterns define the edge connectivity of the graph.

Given a p-dimensional random graph signal x and its N
observations x1, · · · ,xN , its sample covariance is Q =
1
N

∑N
i=1 xix

T
i . It’s often formulated as a matrix optimiza-

tion problem and focus on an efficient algorithmic solution.
According to the maximum likelihood estimate of L, we
have (Pavez and Ortega 2016)

min
L≽0;Lij60,∀i ̸=j;

− log det(L) + tr(QL) (5)

Minimizing tr(QL) is equivalent to promoting the average
smoothness. The log det function acts as a barrier on the
minimum eigenvalue of L, thus enforcing the positive semi-
definite constraint. The sign constraints can be handled using
Lagrange multipliers.

Tensor Operations
Tensor operations are widely used in various applications
(Xie et al. 2018; Xie et al. 2017), such as traffic prediction
and anomaly detection.

Tensor Unfolding: For an N-way tensor χ∈RI1×···×IN ,
its mode-n unfolding χ[n] ∈ RIn×(In+1In+2···INI1I2···In−1)

contains the tensor element ai1,i2,··· ,iN at the position in the
unfolding matrix with its row index in and column index
equal to

∑N
k=1,k ̸=n ik ×

∏N
m=k+1,m ̸=n Im.

n-mode product: The n-mode product of an N -way ten-
sor χ∈RI1×···In···×IN with matrix U ∈ RJ×In produces a
tensor with size (I1 × · · · × In−1 × J × In+1 × · · · × IN )
and defined as

(χ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNUjin (6)

where ×n is the n-mode product operation.

Tucker decomposition: Given a tensor χ ∈ RI1×···×IN ,
we can decompose it into a low rank core G ∈
Rr1×r2×···×rN by projecting along each of its modes with
projection factors (U1, · · · , UN ), with Uk ∈ Rrk×Ik , k ∈
(1, · · · , N). We can write as:

χ = G×1 U1 ×2 U2 × · · · ×N UN (7)

where rk represents the selected rank in mode-k of the ten-
sor χ.

Problem and Model
In this section, we introduce the problem of network-wide
traffic forecasting, and the basic framework of our proposed
system.

We are interested in simultaneously forecasting the traffic
speed of multiple road segments. We define a road network
as a directed graph G = (ν, ε,W ), where ν is a set of ver-
tices each corresponding to a road segment, ε represents a
set of edges with each edge connected between two road
segments in the network, W denotes the adjacency matrix
of G. The average traffic speed of the road segment i in the
time interval t is represented by vi(t).
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Figure 1: The framework of DGCNN

Given historical speed observations of p road segments
{vi(·)}pi=1 at time (t−m+1, · · · , t− 1, t), our task is to
predict the value of {vi(t+∆))}pi=1, where ∆ denotes the
prediction horizon. If we put the historical data together, we
can get a data matrix X .

X =

⎡⎢⎣v1(t−m+ 1) v1(t−m+ 2) · · · v1(t)
v2(t−m+ 1) v2(t−m+ 2) · · · v2(t)

· · · · · · · · ·
vp(t−m+ 1) vp(t−m+ 2) · · · vp(t)

⎤⎥⎦
(8)

As shown in Figure 1 A, our deep learning framework
is composed of three modules: a Laplacian matrix estima-
tor, two spatial-temporal convolutional blocks and an output
layer. Each spatial-temporal convolutional block is formed
as a “sandwich” structure as in Figure 1 B with two gated
temporal convolutional layers and a spatial graph convolu-
tional layer in between. So we can take full advantage of
spatial dependencies and temporal dependencies hidden in
traffic data to assist our forecasting task. The downscaling of
channels in the spatial graph convolution layer can also help
reduce the number of parameters and the time consumption
in training. The output layer contains a temporal convolu-
tional layer and a fully connected layer which transforms
the size of the temporal dimension to 1 and generate the fi-
nal output (Rp×1). As the focus of this paper, the Laplacian
matrix estimator will extract a real-time Laplacian matrix L
according to the input data and pass it to the latter graph con-
volutional neural network in spatial-temporal convolutional
blocks.
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Compared with RNN-based models with an iterative op-
eration over each time slot, CNN-based models process a
block of data together and have the superiority of fast train-
ing and simple structures. Therefore we employ entire con-
volutional structures on time axis for a window of data to
capture dynamic temporal behavior of traffic flows. Next we
will give a detailed description of the Laplacian matrix esti-
mator and the spatial-temporal convolutional block.

Dynamic Spatial-Temporal Graph
Convolutional Neural Network

The Laplacian matrix is crucial for determining the recep-
tive field of the graph convolutional operation. An inaccurate
Laplacian matrix will reduce the forecasting accuracy. For a
graph with N nodes, the Laplacian matrix has N×N entries.
Obtaining accurate Laplacian matrix in real-time faces two
major challenges. First, the number of parameters to learn
for the complete matrix will increase quickly with the net-
work size. Second, the traditional convergent gradient de-
scent algorithm is time consuming and cannot update the
Laplacian matrix quickly upon the arrival of new traffic data
to meet the need of online traffic forecasting.

We first present our design of a dynamic Laplacian matrix
estimator, and then propose a novel spatial-temporal convo-
lutional neural network for efficient traffic prediction.

Dynamic Laplacian Matrix Estimator
Given a global Laplacian matrix that represents the static
graph structure of a traffic network, the real-time Laplacian
matrix will fluctuate up and down around it. The perturba-
tion is the result of minor changes of the graph structure,
which is mainly caused by short-term traffic pattern and ac-
cidents. Thus we only need to determine the variation of
Laplacian matrix based on the short-term traffic. As a result
of spatial and temporal correlation, long-term traffic data
form a low rank tensor. Because the traffic dynamics and
abnormality are rare in the temporal dimension, short-term
data form a sparse tensor in the temporal dimension.

We thus incorporate the tensor operation into the neural
network and decompose the traffic tensor into two compo-
nents, a low-rank tensor that maintains the long-term and
highly correlated traffic information, and a sparse tensor
that tracks the dynamic changes of traffic. Accordingly, our
Laplacian matrix estimator includes two parts, a Tensor De-
composition Layer (TDL) and a unit for dynamic Laplacian
matrix learning.

Tensor Decomposition Layer In our Laplacian matrix es-
timator, we apply TDL to extract the global and local com-
ponent of the traffic data with two operations, contraction
and recovery. On the right part of Figure 2, we show a 3-
order traffic tensor χ with (p,m, c) corresponding to the
number of nodes in the spatial domain, number of time slots
to consider in the temporal domain and the number of chan-
nels thus states to monitor. We set c to 1 in this paper to fo-
cus on the monitoring of traffic speed. (r1, r2) corresponds
to the rank of the spatial and temporal modes, and will be
generally lower than p and m due to the traffic correlation in
spatial and temporal domains.
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Figure 2: Laplacian Matrix Estimator

In the contraction operation, TDL runs two n-mode prod-
ucts along the spatial and temporal modes with the projec-
tion factors U1 ∈ Rp×r1 , U2 ∈ Rm×r2 to project χ into the
low-dimensional space:

χ = G×1 U1 ×2 U2. (9)

Given χ, U1 and U2, we can easily calculate the low-
dimensional tensor G according to the Equation 9. In the
recovery operation, TDL estimates the low-rank tensor χs

through the expansion from the low dimensional space:

χs = G×1 U1 ×2 U2 ×2 U
T
2 ×1 U

T
1 (10)

The projection factors U1 and U2 are set as the parame-
ters to learn through gradient back-propagation in our deep
learning framework. Once the training process is completed,
the two projection factors can be applied to estimate the
long-term traffic χs and used in each time slot, so we can
obtain the short-term dynamic traffic tensor χe as follows:

χe = χ− χs. (11)

Learning of Dynamic Laplacian Matrix The approxi-
mated low-rank tensor χs is impacted by the long-term
and global dependencies in spatial and temporal dimensions.
The sparse tensor χe represents the local fluctuation within
a specific time span of a day, which is affected by short-term
spatial and temporal dependencies as well as external factors
such as traffic accidents and weather.

We define the dynamic Laplacian matrix at any time as
L = Ls + Le, where Ls and Le represent the global Lapla-
cian matrix and the local Laplacian matrix respectively. Le

acts as a short-term perturbation on L. We compute the
global Laplacian matrix based on the distances among sen-
sors employed on each road segment.

To find the detailed Laplacian matrix Le, we make the
estimation with the low-rank tensor χs and sparse tensor χe.
To find the Laplacian matrix with the Eq. (5), the Lagrangian
is − log det(L) + tr(QL) + tr(ZL), where Z represents
the Lagrange multiplier matrix with the values of diagonal
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elements being zero. According to the Karush-Kuhn-Tucker
(KKT) conditions we have:

L = (Q+ Z)
−1

subject to Z = ZT , Zij > 0
(12)

The matrix Z acts as a perturbation on the sample co-
variance matrix Q such that the learned Laplacian matrix
Z can represent the spatial dependencies of the road net-
work. Through unfolding and zero-mean normalization, we
can transfer the low-rank tensor χs and sparse tensor χe to
two matrices Xs ∈ Rp×(r2∗r3) and Xe ∈ Rp×(r2∗r3). Xs

can be considered as a low-rank matrix that corresponds to
the long-term traffic data. Replacing the sample covariance
matrix with XsXs

T , based on Eq. 12, we have:

Ls = (XsXs
T + Zs)

−1
(13)

Similarly, inserting the real-time Laplacian matrix L = Ls+
Le and its corresponding traffic data X = Xs +Xe into the
Eq. (12), then:

Ls + Le = [(Xs +Xe)(Xs +Xe)
T
+ Zs + Ze]

−1

=[(Xs +Xe)(Xs
T +Xe

T ) + Zs + Ze]
−1

=[(XsXs
T +Zs)+(XsXe

T +XeXs
T +XeXe

T +Ze)]
−1

=[Ls
−1+(XsXe

T +XeXs
T +XeXe

T +Ze)]
−1

(14)
where Ls represents the global Laplacian matrix and Zs rep-
resents the corresponding Laplacian multipliers.

Eq. (13) and Eq. (14) give the global Laplacian matrix Ls

and the dynamic Laplacian matrix L respectively. Although
Ls is given in advance, the complexity of finding the matrix
inversion is O(n3). To simplify the calculation, we would
like to get rid of the inverse operations in Eq. (14), and then
learn Le based on deep learning methods.

Based on (Henderson and Searle 1981), for two matrices
A and B with A and A+B invertible, we have

(A+B)
−1

=A−1−A−1B(E+A−1B)
−1

A−1 (15)

E represent an identity matrix. Let B represent (XsXe
T+

XeXs
T+XeXe

T+Ze), based on Eq. (15), the Eq. (14) can
be rewritten as:

Ls + Le= Ls−LsB(E+LsB)
−1

Ls

Le= −LsB(E+LsB)
−1

Ls
(16)

Iteratively applying the Eq. (15) to expand (E+LsB)
−1,

Eq. (16) can be further expanded as:

Le=

∝∑
i=1

(−1)
i
Ls(BLs)

i (17)

We can estimate Le with a finite number of summation
operations:

Le=

I∑
i=1

(−1)
i
Ls(BLs)

i
+ o(BLs) (18)

where o(BLs) is the error from Eq. 17.
The equation used to estimate Le doesn’t include

the inverse operations, which greatly reduces the time
consumption of our deep learning framework. As
XsXe

T , XeXs
T , XeXe

T can be computed directly
with matrices Xs, Xe, we only need to learn Ze in B.
Ze ∈ Rp×p, where p equals to the number of road segments
on the road network. To avoid involving too many parame-
ters in training and ensure the scalability of our model with
the expansion of the road network, we employ two 2-D
convolutional layers for the data fitting.

For the overall dynamic Laplacian matrix estimator
shown on the left part of Figure 2, the input data will go
through five sub-processes as follows:

1. Tensor Decomposition. The Tensor Decomposition
Layer (TDL) incorporates the tensor operations into the
neural network and splits the traffic tensor χ into a low
rank tensor χs and a sparse tensor χe.

2. Unfolding-Normalization. After an unfolding operation
along the spatial dimension and an zero-mean normaliza-
tion, the two tensors generated by the first sub-process are
further translated to two zero-mean matrices Xs, Xe ∈
Rp×(m∗c), based on which we can easily find the values
of XsXe

T,XeXs
T,XeXe

T.
3. 2-D Conv. We stack two 2-D convolutional layers to fit

the Lagrange multipliers Ze. The input data of the first
convolutional layer is a 3-D tensor Rp×p×3, which is
formed by stacking XsXe

T,XeXs
T,XeXe

T together. The
size of the output feature maps on the two convolutional
layers are set to 3 and 1 respectively.

4. Estimator. We find matrices B and Le according to the
Eq. (18).

5. Normalization. We find L = Ls+Le and then normalize
L through D−1/2LD−1/2, where D is a diagonal matrix
with the element on a row equal to the absolute value of
the summation of L’s off-diagonal elements on that row.
Compared with most graph learning methods in the liter-

ature, our deep learning framework has higher execution ef-
ficiency. Without the inverse operation, our estimator won’t
increase the burden of the deep learning framework when
performing traffic forecasting.

Pre-training the TDL Before training the whole deep
learning framework, we pre-train TDL to initialize its pa-
rameters. The corresponding loss function is

L(U1, U2) =

ξ∑
tr(XsLsX

T
s ) + β∥Xe∥F . (19)

where U1, U2 are trainable parameters in TDL, Ls is the
global Laplacian matrix given in advance. ξ represents the
total number of data samples for training. tr is a trace op-
eration. Xs is the matrix extracted from the traffic com-
ponent χs by TDL, and β is a weight coefficient which
controls the proportion of two items in Eq. (19). Minimiz-
ing tr(XsX

T
s Ls) is equivalent to promoting the average

smoothness with respect to Ls. This allows us to associate

894



Ls with Xs and guarantees that Xs extracted by TDL can
meet the Eq. (13).

Spatial-Temporal Convolutional Block
In our learning framework, we apply a spatio-temporal con-
volutional block to jointly process graph-structured time se-
ries and fuse features from both temporal and spatial do-
mains.

Gated CNNs for Extracting Temporal Features We set
a 2-D temporal convolutional layer to capture short-term
temporal features of traffic flows. Given the input of tem-
poral convolutional layer χ ∈ Rp×m×cin , where p, m,
cin represent the size of the spatial, temporal and chan-
nel dimensions respectively, the convolutional kernel Γ ∈
R1×K×cin×2cout will map the input to an output element
[Y1, Y2] ∈ Rp×(m−K+1)×(2cout) (Y1, Y2 are split into half
with the same size of channels). As shown in Figure 1 C, the
temporal gated convolution can be defined as:

Γ ∗τ χ = Y1

⨀
σ(Y2) (20)

where Y1, Y2 ∈ Rp×(m−K+1)×cout are the input of gates
in gated linear units (GLU) separately, and

⨀
denotes the

element-wise Hadamard product. The sigmoid gate σ(Y2)
controls which inputs Y1 of the current status are relevant for
discovering compositional structure and dynamic variances
in time series.

Graph CNNs for Extracting Spatial Features Given the
input of graph convolutional layer as χ ∈ Rp×m×cin , where
p, m, ci represent the size of the spatial, temporal and chan-
nel dimensions respectively. We split the input data into m
parts along the temporal dimension, with each being a ma-
trix Rp×cin , and then capture spatial features of each part by
a 1-D graph convolutional layer. In order to speed up the 1-
D graph convolutional operation, we employ the Chebyshev
polynomial Tk(x) to approximate kernels (Yu, Yin, and Zhu
2017a). The graph convolution in Eq. (4) can then be rewrit-
ten as:

yj =
∑

i∈[1,cin],k∈[1,Ks]

θijkTk(L̃)xi, j = 1, 2, ..., cout (21)

where yj ∈ Rp×cout . Tk(L̃) is the Chebyshev polynomial of
order k evaluated at the scaled Laplacian L̃ = 2L/λmax−In.

Experiments
Experimental Settings
Data. We evaluate the performance of our proposed model
using two real-world large-scale datasets collected from the
monitoring of traffic in New York City (NYC) and in Cali-
fornia, respectively:
• NYC: This traffic dataset contains traffic information col-

lected from traffic speed detectors deployed on road seg-
ments of Manhattan district in New York city. We select
50 sensors and collect 2 months of data ranging from De-
cember 1st2017 to January 30th2018.

Table 1: Forecasting error given by MAE and RMSE on
NYC dataset (15/30/45 min)

MAE RMSE

VAR 4.14/ 4.84/ 5.29 6.01/ 6.63/ 7.45
FNN 3.60/ 3.79/ 4.16 5.80/ 5.87/ 6.20

GCGRU 3.20/ 3.36/ 3.49 5.23/ 5.31/ 5.50
STGCN 3.18/ 3.31/ 3.44 5.18/ 5.30/ 5.42
DGCNN 3.06/ 3.14/ 3.29 5.02/ 5.22/ 5.30

• PeMS: This traffic dataset contains real-time speed data
from freeways in California. We select 50/142/228 de-
tectors and collect 6 months of data range from April
1st2017 to September 30th2017.

The traffic data are aggregated and output by each detec-
tor every 5 minutes. All studies use one hour as the histori-
cal time window to forecast the traffic condition in the next
15/30/45 minutes according to 12 observed data points in
the window.

Evaluation Metric and Baselines. We adopt Mean Aver-
age Error (MAE) and Rooted Mean Square Error (RMSE)
to evaluate the performance of different methods. We also
implement four baseline schemes for the performance ref-
erence: 1. Vector Autoregression (VAR); 2) Feed-Forward
Neural Network (FNN); 3) Graph Convolutional GRU (GC-
GRU, published in ICLR-2018) (Li et al. 2017); and 4)
Spatio-Temporal Graph Convolutional Networks (STGCN,
published in IJCAI-2018) (Yu, Yin, and Zhu 2017a).

All these deep learning models are trained for 50 epochs
with batch size as 50. The initial learning rate is 10−3 with a
decay rate of 0.7 after every 5 epochs. Both the graph convo-
lution kernel size and temporal convolution kernel size are
set to 3. The size of the output feature map in the spatial-
temporal convolution block of DGCNN are 64, 16, 64 re-
spectively.

Performance Comparison
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Figure 3: Test MAE versus the parameter I in DGCNN (left);
Test MAE versus the number of training epochs (right).
(PeMS-50)

Parameter Selection and Training Efficiency In order to
select a suitable parameter I for the Eq. (18) in our Lapla-
cian matrix estimator, we test the impact of I on the left
of the Figure 3. As expected, the test MAE decreases with
the increase of I for the better estimation of the changes of

895



Laplace matrix. When the parameter I is greater than 6, the
rate of decline tends to be slow. Therefore, we set the param-
eter I to 6 in this paper.
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Figure 4: Forecasting accuracy: 1) DGCNN, 2) STGCN, 3)
GCGRU, 4) FNN, 5) VAR.

Forecasting Accuracy We run each model 10 times and
report the average results. From Table 1 and Figure 4, our
proposed DGCNN outperforms all competing baselines by
achieving the lowest RMSE and MAE on both datasets for
the traffic forecasting.

In brief, the traditional linear prediction method VAR per-
forms the worst due to its incapability of handling volatile
traffic data. Compared with other three deep learning mod-
els, our DGCNN also perform better with on average 8% −
10% accuracy improvement. Traffic patterns and spatial de-
pendencies on road network are dynamic. Overlooking the
dynamic changes of spatial dependencies on the road net-
work, the forecasting error of reference schemes are higher.
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Figure 5: Fault-tolerance comparison with state-of-the-art
models based on graph CNNs: 1) DGCNN, 2) STGCN
(IJCAI-2018), 3) GCGRU (ICLR-2018).

Fault Tolerance Comparison The real-time traffic sam-
ples may be partial abnormal as a result of sensor malfunc-
tion or traffic accidents on some road segments. To examine

the fault-tolerance ability in extreme environments, we ran-
domly select a fraction (10% to 100%) of road segments to
sabotage their 12 historical observations. We carry out two
groups of studies and forecast the traffic condition in the next
45 minutes: On the top row of Figure 5, the damaged ob-
servations from nodes selected are replaced with zero-mean
white Gaussian noise (variances 1.0). On the bottom row,
zeros are used to replace the “damaged” observations.

Fusing the spatial-temporal information with dynamic
Laplacian matrix, our model is shown to be more fault tol-
erant with on average 10% − 25% accuracy improvement
compared with two state-of-the-art models based on graph
CNNs. Even when the fault ratio reaches 0.9, DGCNN still
has a strong forecast capability. With the same amount of
noise contamination, other models’ performance drops dra-
matically without exception. Comparing the results over
three PeMS datasets, the performance gain of our model
will become larger with the increase of road network scale.
Our DGCNN model can detect the changes of spatial de-
pendencies hidden in “contaminated” traffic samples and ad-
just the receptive field of graph convolution operations. The
right of Figure 3 shows the learning curves of three mod-
els with roughly the same number of parameters. With the
increase of training epochs, DGCNN achieves the lowest
validation error compared with GCNN and STGCN, which
shows its training effectiveness. The intuition is that the dy-
namic Laplacian matrix estimator gives the model the ability
and flexibility to capture the influence from various factors
in the road network.
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Figure 6: Spatial dependencies learning on two consecutive
time spans.

Spatial Dependencies Learning To identify the capabil-
ity of our novel model in learning the spatial dependencies
of a traffic network, we carry out many simulations over two
datasets. We first measure the impact of spatial order of the
input data on the learning of spatial dependencies, as done
in (Cui, Ke, and Wang 2018). We randomly rearrange the
spatial dimension of input data and retrain our model. The
learned Laplacian matrix and the forecasting accuracy of our
model do not have obvious changes, which demonstrates the
efficiency of our model. In addition, we measure the influ-
ence of different time spans of a day on the learning of spa-
tial dependencies. As shown in Figure 6, the heatmaps of
the learned Laplacian matrix on any two consecutive time
spans are very close to each other, which means that our
novel model is able to learn the long-term structure of the
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Laplacian matrix. The two locations marked with “LOC1”
and “LOC2” also demonstrate that our model can learn the
local changes of the Laplacian matrix.

Conclusion and Future Work
In this paper, we propose a novel dynamic graph convolution
neural network (DGCNN) for traffic forecasting. To the best
of our knowledge, this is the first graph convolution neural
network that can follow the evolution of spatial dependen-
cies. The experiment results demonstrate that our proposed
neural network can achieve on average 10% − 25% higher
accuracy compared to other models. The proposed dynamic
Laplacian matrix estimator plays an important role in the
forecasting process. In the future work, we also plan to com-
bine our DGCNN with other deep learning methods to learn
the structured features hidden in the input data.
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