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Abstract

A new method is proposed for removing text from natural im-
ages. The challenge is to first accurately localize text on the
stroke-level and then replace it with a visually plausible back-
ground. Unlike previous methods that require image patches
to erase scene text, our method, namely ensconce network
(EnsNet), can operate end-to-end on a single image without
any prior knowledge. The overall structure is an end-to-end
trainable FCN-ResNet-18 network with a conditional gen-
erative adversarial network (cGAN). The feature of the for-
mer is first enhanced by a novel lateral connection structure
and then refined by four carefully designed losses: multiscale
regression loss and content loss, which capture the global
discrepancy of different level features; texture loss and to-
tal variation loss, which primarily target filling the text region
and preserving the reality of the background. The latter is a
novel local-sensitive GAN, which attentively assesses the lo-
cal consistency of the text erased regions. Both qualitative
and quantitative sensitivity experiments on synthetic images
and the ICDAR 2013 dataset demonstrate that each compo-
nent of the EnsNet is essential to achieve a good performance.
Moreover, our EnsNet can significantly outperform previous
state-of-the-art methods in terms of all metrics. In addition, a
qualitative experiment conducted on the SBMNet dataset fur-
ther demonstrates that the proposed method can also preform
well on general object (such as pedestrians) removal tasks.
EnsNet is extremely fast, which can preform at 333 fps on an
i5-8600 CPU device.

1. Introduction
Scene text is ubiquitous in our daily life, and it conveys
valuable information. However, various private information,
such as ID numbers, telephone numbers, car numbers, and
home addresses (Inai et al. 2014) may easily be exposed in
natural scene images. Such important private information
can be easily collected automatically by the machines en-
gaged in fraud, marketing, or other illegal activities. There-
fore, a method that can ensconce the text in the wild would
be beneficial. In addition to preventing privacy disclosure,
Scene text erasing can also facilitate many image process-
ing and computer vision applications, such as information
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Figure 1: Examples of scene text erasing. Given a scene text
image, the goal is to ensconce the text and replace it with
a visually plausible background while retaining the non-text
regions. Left: input images. Right: our results.

reconstruction and visual translation.
Examples of scene text erasing are shown in Fig 1. The

challenges of erasing the scene text are as follows: 1) scene
text erasing methods should be able to perceive the stroke-
level position of the text in advance, which is more compli-
cated than bounding-box-level scene text detection methods
that have been comprehensively researched (Liang, Doer-
mann, and Li 2005); 2) after removing text, the original text
region should be filled with a new visually plausible back-
ground; 3) the non-text regions should be retained in their
original appearance.

To the best of our knowledge, the method proposed in
(Nakamura et al. 2017) is the first and the only method
that addresses the scene text erasing issue. However, their
method uses cropped image patches as training data, which
limits the erasing performance due to loss of global context
information.

We herein propose a novel method named the ensconce
network (EnsNet) to address this task, which includes the
following characteristics:
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• EnsNet can erase the scene text end-to-end on the whole
image, which improves the erasing results and executes
very fast.

• A novel lateral connection structure is designed to effec-
tively capture the detailed context information.

• A refined loss function including multiscale regression
loss, content loss, texture loss, and total variation loss (tv)
loss is proposed in the optimization stage to ensure the
background reconstruction and integrity of the non-text
region.

• A local-aware discriminator is proposed to guide the net-
work to replace the text region with a more plausible
background.
In addition, we also synthesized a dataset to benchmark

the scene text erasing and facilitate future research.
The experimental results on both the synthetic dataset and

the ICDAR 2013 dataset (Karatzas et al. 2013) demonstrate
that the EnsNet can significantly outperform previous state-
of-the-art methods in terms of all metrics.

2. RELATED WORK
In recent years, several methods have been proposed to re-
move graphic text from born-digital images such as cap-
tions, subtitles, and annotations (Khodadadi and Behrad
2012; Modha and Dave 2014; Wagh and Patil 2015). How-
ever, these methods required the text to be axis-aligned,
clean, and well focused, therefore they are not applicable
to scene text erasing because of its complexities, uneven il-
luminations, perspective distortions, etc.

Recently, owing to the immense success of deep learn-
ing in computer-vision tasks, (Nakamura et al. 2017) were
the first to successfully design a Scene text eraser to en-
sconce the text in the wild. Specifically, this method used a
single-scaled sliding-window-based neural network to erase
the scene text. However, Nakamura et al.’s method is prone
to dividing large text into multiple image patches, thus sig-
nificantly reducing the consistency of the erasing results. In
addition, using cropped image patches as training data will
restrict the operating speed to some extent.

(Isola et al. 2017) proposed an extremely fast Pix2Pix
method that not only learns the mapping from the input im-
age to output image, but also introduces a novel loss function
to train the mapping. Although this state-of-the-art method
is not proposed specifically to handle the scene text erasing
task, it can be easily reproduced for comparison.

3. METHODOLOGY
3.1. Framework Overview
Fig. 2 shows the overall architecture of the proposed EnsNet,
which consists of two primary parts: a generator G and a
discriminator D. Given a scene text image x and the ground
truth z, EnsNet attempts to produce a non-text image y that
is as real as possible by solving the following optimization
problem:

min
G

max
D

Ex∼pdata(x),z [log(1−D(x, G(x, z)))] +

Ex∼pdata(x,y),z [logD(x, y)] .
(1)

Following the ideas of previous GAN-based methods
(Mirza and Osindero 2014; Goodfellow et al. 2014), the pro-
posed method alternatively updates G and D, and the entire
procedure is end-to-end trainable.

3.2. Generator
The construction of G contains three mutually promoted
modules: a lightweight Fully-Convolution-Network (FCN)
backbone, lateral connections, and refined loss.

Fully convolution network The FCN consists of a
convolution-pathway and a deconvolution-pathway. The for-
mer utilizes a lightweight Resnet18 network. Based on the
last convolutional layer of the Resnet18, a 1×1 convolu-
tional layer converted by the last fully-connected layer is
applied to predict the text/non-text score map. The deconvo-
lution pathway consists of five deconvolutional layers, with
kernel size set 4, stride step set 2, and padding size set 1 for
each layer.

Lateral connections It is typically considered that lower
level features exhibit stronger semantics, while higher level
exhibit semantically weak features but more detailed infor-
mation including pixel-level color, texture, the position in-
formation of objects, etc (Shen et al. 2017; Dong, Loy, and
Tang 2016). Hence, we designed the lateral connections,
as shown in Fig. 3, to integrate the higher-level semantics
with details from the lower layers. The proposed lateral con-
nection includes a transforming block and an up-sampling
block:

1) The transforming block starts with a shrinking layer,
that reduces the feature dimensions by using a 1×1 convolu-
tion. Subsequently, two same-size (3×3) convolutional lay-
ers are stacked to perform a nonlinear transformation, that
can not only replace large-kernel convolutions (Dong et al.
2016) to achieve large receptive fields, but also improve the
computation efficiency. Finally, we use an expanding layer
to enlarge the feature map channels by a 1×1 convolution as
reverse of the shrinking operation. The transformation block
takes the Residual2b to the Residual5b of the Resnet18 as
input.

2) For the up-sampling block, we used a deconvolu-
tional layer to enlarge the feature map. The up-sampled fea-
tures maps are then element-wise summed with the cor-
responding ones from the transforming block. Addition-
ally, unlike previous CNN-based methods, we replaced all
ReLU/LeakyReLU layers with the ELU layers (Clevert, Un-
terthiner, and Hochreiter 2016; Yang, Lu, and et al 2017) af-
ter each layer except the layers in the convolution pathway.
The ELU layers render the generator network training more
stable compared with the ReLU/LeakyReLU layers (Nair
and Hinton 2010) as it can handle large negative responses
during the training process.

Refined loss Our loss functions target both per-pixel re-
constructed accuracy as well as composition, i.e. how
smoothly the text regions can harmonize with their sur-
rounding context. As shown in Fig. 2, there are four func-
tions designed for our generative network: multiscale regres-
sion loss, content loss, texture loss, and total variation loss.
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Figure 2: The overall structure of EnsNet. The network consists of three seamlessly-connected components: 1) the refined
generator backbone (enhanced by the lateral connections); 2) refined-loss modules; 3) EnsNet discriminator. The network is
end-to-end trainable with extremely high efficiency.

Figure 3: The structure of lateral connection.

1) The multiscale regression loss. Given an input image
with text Iin, initial binary maskM (0 for non-text regions
and 1 for text regions), the generator prediction Iout, and the
ground truth image Igt, we extracted features from differ-
ent deconvolutional layers to form outputs of different sizes.
By adopting this, more contextual information from differ-
ent scales can be captured.

The multiscale regression loss function is defined as:

Lm (M, Iout, Igt) =
n∑

i=1

λi(‖Mi � (Iout(i)−

Igt(i))‖1+α‖(1−Mi)� (Iout(i) − Igt(i))‖1),
(2)

where Iout(i) indicates the ith output extracted from the de-
convolutional pathway,Mi, Igt(i) indicates the binary mask
and ground truth that have the same scale as that of Iout(i)
respectively, and α weights the importance between text and
non-text regions. λi is the weight for the ith scale. Con-
cretely, the output of the last, and 3rd and 5th last layers are
used, whose sizes are 1

4 , 1
2 , and 1 of the input size, respec-

tively. Practically, we set α to 6 and λi to 0.6, 0.8, 1.0 to put

more weight at the larger scale. L1 loss is adopted on the
network output for the text regions and the non-text regions,
respectively.

2) The content loss. Recently, a loss function measured
on different high-level features has been demonstrated effec-
tive for feature reconstructing (Johnson, Alahi, and Li 2016).
To further enhance the text erasing performance, we intro-
duce content constraints on high-level features that we term
as content loss. The content loss penalizes the discrepancy
between the features of the output image and the correspond-
ing ground truth image on certain layers in the CNN. We
feed an output image and the corresponding ground truth to
the CNN, and enforce the response of the output image to
match that of the ground truth at the predetermined feature
layers of the CNN, which will facilitate the network in de-
tecting and erasing text regions. The content loss is defined
as follows:

LC =

N−1∑
n=1

‖(An(Iout)−An(Igt)‖1

+

N−1∑
n=1

‖(An(Icomp)−An(Igt)‖1.

(3)

Where, Icomp is the output image Iout, with the non-text
regions of Iout being set to the ground truth. An is the ac-
tivation map of the n-th selected layer. In our method, we
compute the feature loss at layers pool1, pool2, and pool3 of
a pretrained VGG16 (Simonyan and Zisserman 2014).

3) The texture loss. As discussed earlier, the visual qual-
ity should also be considered into the optimization function.
Hence, we introduce the texture loss that ensures that the
restored text regions match with the non-text regions. The

803



loss is motivated by the recent success of neural style trans-
fers (Gatys, Ecker, and Bethge 2015). Texture loss performs
an autocorrelation (Gram matrix) (Gatys, Ecker, and Bethge
2016) on each high-level feature map before applying the L1
loss, which can be defined as follows:

LTout
=

N−1∑
n=1

‖ 1

CnHnWn
((An(Iout))T

(An(Iout))− ((An(Igt))T (An(Igt))‖1,

(4)

LTcomp =

N−1∑
n=1

‖ 1

CnHnWn
((An(Icomp))

T

(An(Icomp))− ((An(Igt))T (An(Igt))‖1,

(5)

where the (HnWn) × Cn is the shape of the high-level ac-
tivation map, An. Similar to the idea proposed in (Zhang,
Sindagi, and Patel 2017) , we aim to penalize the discrep-
ancy of the texture appearance of text regions and non-text
regions, such that the network can capture the globally style
features for more reasonably displacing the text regions.
Again, we include loss terms for the raw output Iout and
the output of text-erased regions Icomp.

4) The total variation loss. The last Ltv (Johnson, Alahi,
and Li 2016) is targeted at global denoising, as defined be-
low:

Ltv =
∑
i,j

‖Ii,jout − I
i+1,j
out ‖1+‖I

i,j
out − I

i,j+1
out ‖1, (6)

where i, j is the pixel position.
To exploit all merits, we combine these four novel losses

together with the appropriate weights to form the refined loss
function, which is defined as the following:

Lrefined = LM + λeLC + λiLT + λtLtv. (7)

The hyper-parameters λe, λi, and λt in Eq. 7 control the bal-
ance between the four losses. For our model, not all the loss
weighting schemes for the refined loss will generate satisfac-
tory results. Fig. 4 shows the result of the model trained with
small or large weights of content loss and texture loss. In our
experiments, λe, λi, and λt are empirically set to 0.5, 50.0,
and 25.0, respectively. It is noteworthy that such parameters
setting works well when generalizing to other tasks, which
is discussed in Section. 4.5.

3.3. Discriminator
To differentiate fake images from real ones, the original
GANs (Goodfellow et al. 2014) discriminate the results
based on the whole image level. However, the non-text re-
gions occupy a large proportion of the image and are typ-
ically real, which makes the discriminator difficult to focus
on the text regions. Therefore, it is intuitive to design a local-
aware discriminator to attentively maintain the consistency
of text-erased regions and their surrounding texture.

The proposed local-aware discriminator only penalizes
the erased text patches. Specifically, following the Patch-
GAN (Isola et al. 2017), we execute our discriminator across

Figure 4: In the top row, images from left to right: input im-
age; result with small content loss and texture loss weights;
result with refined loss. In the bottom row, images from left
to right: input image; result using large content loss and tex-
ture loss weights; result with refined loss.

an image and obtain an S×S (S=62) feature tensor. By desig-
nation, each entry of the tensor corresponds to a N×N (N =
70) patch (i.e., receptive filed) of the image, and is assigned
a label to indicate its realness. The key novelty of our dis-
criminator is the labeling strategy. For the typical condition
discriminative network (Isola et al. 2017), they will assign
negative labels for any generated images, which is contrary
to our purpose. Therefore, we assign a locality-dependent
label for the each position of the 62*62 tensor according to
the text mask.

label =

{
0, if sum(M) > 0,
1, otherwise.

(8)

Where M is the binary mask (as mentioned in the above
section). Given the discriminator predictionPi, and the label
Li for each N × N patch, we define the loss as follows:

LD = −
S2∑
i=1

sum(Mi)

N ×N
(1− Li)(log(Pi)). (9)

The scaling factor sum (Mi) applies the appropriate scal-
ing to adjust for the varying amount of text-erased regions.
Our underlying idea is to guide our discriminator to focus
on regions indicated by the text mask. The structure of the
discriminative architecture is shown in Fig. 2.

4. EXPERIMENT
To quantitatively evaluate the performance of scene text
erasing methods, a dataset should provide both text images
with stroke-level ground truths and real background images
without text. However, such text dataset does not exist cur-
rently; thus, we constructed a synthetic dataset for evaluating
the performance. In addition, we evaluated the performance
on the ICDAR 2013 (Karatzas et al. 2013) dataset following
the same metric as reported by (Nakamura et al. 2017) for
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Figure 5: Illustration of improvements obtained using different components of our network. Images from left to right: (a): input
images; (b): erased results by baseline; (c): erased results by lateral connections; (d): erased results of refined loss; (e): erased
result by the complete architecture (EnsNet).

a fair comparison; the metric utilizes an auxiliary detector
to validate whether the text of images can be detected after
processing by the erasing method. An ablation study is also
conducted to evaluate each component of EnsNet.

4.1. Dataset and evaluation metrics
Synthetic data We apply text synthesis technology
(Gupta, Vedaldi, and Zisserman 2016) on scene images to
generate samples, as shown in the first row of Fig. 6. Com-
pared to the inpainting algorithm (Criminisi, Pérez, and
Toyama 2004), the label generated by the synthesis process
is more accurate and reasonable. In our experiments, the
training set consists of a total of 8000 images and the test
set contains 800 images; all the training and test samples are
resized to 512 × 512. The synthetic data are available at:
https://github.com/HCIILAB/Scene-Text-Removal.

Real-word dataset ICDAR 2013 (Karatzas et al. 2013) is
a widely used dataset for scene text detection, containing
229 images for training, and 223 for testing. ICDAR 2017
MLT (Nayef et al. 2017) is a benchmark multi-lingual scene
text dataset. In our experiment, we collected 1000 images
from the ICDAR 2017 MLT subdataset which only contains
English text to enlarge real data, and the background image
(label) is generated by manually erasing the text. An exam-
ple is shown in Fig. 6. For a fair comparison, all our method
and counterpart methods strictly use the same training set
and hyper-parameters.

Evaluation metrics (Nakamura et al. 2017) proposed a
new evaluation method that utilizes a baseline detector to ad-
versely evaluate the erased results by computing how low the
precision is, as well as the recall and f-score of the ICDAR
2013 test set (Karatzas et al. 2013). However, this method

Figure 6: Examples of training samples for EnsNet learning.
Top: synthetic sample. Bottom: real sample.

does not consider the quality of the erased image, i.e, if the
image contents are completely erased, the result would be
the best, which is not reasonable. Therefore, to impartially
compare the proposed method with other methods on the
synthetic dataset, we adopted the previous image inpaint-
ing (Yang, Lu, and et al 2017; Liu et al. 2018) metrics to
evaluate our method, which includes the following: 1) `2 er-
ror, PSNR, which computes the peak signal to noise ratio
(PSNR) for an image; 2) SSIM (Wang et al. 2004), which
computes the mean structural similarity index between two
images; 3) AGE, which calculates the average of the gray-
level absolute difference between the ground truth and the
computed background image; 4) pEPs, which calculate the
percentage of error pixels; 5) pCEPS, which calculates the
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percentage of clustered error pixels (number of pixels whose
four-connected neighbors are also error pixels). A higher
SSIM and PSNR or lower AGE, pEPs, pCEPS and the `1
error represent better results. For the real dataset, because
we do not have ground truth background images, we follow
the same procedure as reported by (Nakamura et al. 2017)
to calculate the precision, recall, and f-score. Additionally,
visual estimates are also used on real dataset to qualitatively
compare the performance of various methods.

4.2. Ablation study
In this section, we apply the sensitivity analysis to verify the
contributions of different components of EnsNet: Baseline,
Lateral Connections, Refined Loss, and EnsNet.

All experiments use exactly the same settings (input size
is set to 512 × 512). The quantitative results are shown in
Tab. 1, and the qualitative results can be visualized in Fig. 5.

Baseline We directly apply fully convolution network to
train baseline model only with L1 loss.

Lateral connections In Tab. 1, compared with the base-
line model, the lateral connections obtain a lower `2 error.
This implies that the lateral connections can effectively learn
more detailed information to restore the image detail. Mean-
while, from the Fig. 5, we found that lateral connections are
conducive for our generative network to achieve clearer re-
sults.

Refined Loss Tab. 1 shows that the refined loss can im-
prove erasing result on any type of metric mentioned above.
Some intuitive examples are shown in Fig. 5, where the fish
scale artifacts or blocky checkerboard artifacts caused by
cGAN are ameliorated by our refined loss, thereby demon-
strating the effectiveness of using the proposed refined loss.

EnsNet By seamlessly connecting with the proposed
local-awareness discriminative network, the performance of
EnsNet can be further improved, as shown in both Tab. 1 and
Fig. 5. EnsNet alleviates the dilemma of the extreme imbal-
ance between the text regions and the non-text regions; thus,
it can attentively replace the text with a more plausible back-
ground.

4.3. Comparison with state-of-the-art methods
We compared the performance of the proposed EnsNet with
the relevant and recent state-of-the-art methods: Pix2Pix
(Isola et al. 2017) and Scene text eraser (Nakamura et al.
2017).

The results on the synthetic and real dataset are shown
in Tab. 1, and demonstrate that the proposed EnsNet can
significantly outperform previous state-of-the-art methods
(Isola et al. 2017; Nakamura et al. 2017) in all metrics. Tab.
2 adopts two different detection methods (Zhou, Yao, and
et al 2017) (Fu et al. 2017) and two protocols: the DetE-
val and the ICDAR 2013 evaluation (Karatzas et al. 2013;
Wolf and Jolion 2006) to further demonstrate the robustness
of our method. The speeds of different methods are also
listed in Tab 1. Our method can achieve 333 fps on a i5-
8600 CPU device. Although EnsNet is slightly slower than

Pix2Pix (Isola et al. 2017) , it is twice faster than the scene
text eraser (Nakamura et al. 2017).

Furthermore, we qualitatively compared the results gener-
ated by different methods, as shown in Fig. 7. Based on the
observation, we found that Pix2Pix (Isola et al. 2017) can
only remove parts of the text region, and the restored regions
contain many fish scale artifacts. As for the scene text eraser
(Nakamura et al. 2017), most of the text in the images can
not be erased completely; meanwhile, some non-text back-
grounds are also influenced. In contrast, the effectiveness of
our method can be intuitively visualized in Fig. 7. The re-
sults demonstrate that the EnsNet can not only almost per-
fectly erase the text regions (even large-size text) but also
maintain the reality of the backgrounds.

Figure 7: Results of comparing a few different methods on
sample images from a real dataset. Images from left to right:
input image, Pix2Pix (Isola et al. 2017), Scene text eraser
(Nakamura et al. 2017), and our method.

4.4. Generalization to general object removal
In this section, an experiment on the general object removal
task is conducted to test the generalization ability of EnsNet.
We evaluate EnsNet on a well-known Scene Background
Modeling (SBMnet) dataset (Jodoin et al. 2017), which
is targeted at background estimation algorithms. However,
SBMnet is a video-based dataset, implying that the methods
can take advantage of the sequence frames to reconstruct all
the background information. Therefore, it is not fair to quan-
titatively compare our method with other methods because
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Table 1: Quantitative evaluation results of different components of our method and other methods on synthetic and real datasets.
B: Baseline; LC: lateral connections; RL: refined loss; TD: text discriminator; R: recall; P: precision; F: f-measure. RPF metric
is calculated by ICDAR 2013 Evaluation, and DSSD (Fu et al. 2017) is adopted as an auxiliary detector. Note that although the
results of the baseline contain lower values in RPF, it is significantly worse than other methods in terms of other metrics such
PSNR and SSIM (%). This implies that the previously used RPF metric is not a perfect metric (visualization results and other
metrics should also be taken into considered).

Method
Synthesis ICDAR 2013

FPS
PSNR SSIM(%) `2 error AGE pEPs pCEPS R P F R P F

Original images - - - - - - 53.65 68.21 60.06 86.11 95.66 90.64 -
B 20.30 62.18 0.4256 13.84 0.1918 0.1091 0.10 1.41 0.19 2.28 41.67 4.33 -

B + LC 24.83 86.74 0.0627 5.48 0.0538 0.0385 26.72 40.89 32.32 51.91 79.20 62.71 -
B + LC + RL 30.23 92.78 0.0234 2.51 0.0227 0.0121 8.35 26.59 12.71 14.64 72.21 24.34 -

B + LC + RL + TD (EnsNet) 37.36 96.44 0.0021 1.73 0.0069 0.0020 1.14 23.45 2.17 12.58 70.00 21.33 333
Erased by Pix2Pix (2017) 25.60 89.86 0.2465 5.60 0.0571 0.0423 28.31 65.30 39.50 32.33 85.08 46.84 382

Erased by Scene Text Eraser (2017) 14.68 46.13 0.7148 13.29 0.1859 0.0936 22.35 30.12 25.66 34.48 60.57 43.95 166

Table 2: Comparison among previous methods and proposed method. R: Recall; P: Precision; F: F-measure.

Detection
Image dataset Synthesis ICDAR 2013

Evaluation protocol ICDAR Eval DetEval ICDAR Eval DetEval
Methods R P F R P F R P F R P F

DSSD (2017)

Original image 53.65 68.21 60.06 55.19 68.94 61.30 86.11 95.66 90.64 86.08 95.87 90.71
Erased by Pix2Pix (2017) 28.31 65.30 39.50 29.54 65.89 40.79 32.33 85.08 46.85 33.97 85.95 48.70

Erased by Scene text eraser (2017) 22.35 30.12 25.66 22.67 30.76 26.10 34.48 60.57 43.95 35.27 61.37 44.79
Erased by Our 1.14 23.45 2.17 1.21 23.45 2.29 12.58 70.00 21.33 13.46 70.62 22.61

EAST (2017)

Original image 51.22 79.10 62.18 52.50 79.14 63.12 70.10 81.50 75.37 70.70 81.61 75.77
Erased by Pix2Pix (2017) 21.03 77.12 33.05 21.78 77.44 34.00 10.19 69.45 17.78 10.37 69.45 18.05

Erased by Scene text eraser (2017) 24.30 40.30 30.32 24.74 40.61 30.75 10.08 39.09 16.03 10.35 39.09 16.37
Erased by Our 0 0 0 0 0 0 5.66 73.42 10.51 5.75 73.42 10.67

our method uses only one static image as the input with-
out any context information of other frames. It is notewor-
thy that this is a novelty of EnsNet that enables a plausible
background to be reconstructed. The qualitative results are
shown in Fig. 8. Without specific tuning, our method can
still generalize excellently to the pedestrian removal task.

Figure 8: Experimental results on pedestrian removal. Im-
ages from left to right: input images and removal results.

5. CONCLUSION
This paper proposes EnsNet - a novel method that can effec-
tively erase text from scene text images.

All components of EnsNet are proved crucial to achieve
good erasing results, including 1) lateral connection, which

can effectively integrate high-level semantics and low-level
detailed information; 2) a novel refined loss, which can re-
markably reduce the artifacts; and 3) a simple but highly
effective local-aware discriminator, which ensures the local
consistency of the text-erased regions. We also constructed
a new synthetic dataset for the scene text erasing task, which
will be published for future research.

To the best of our knowledge, EnsNet is the first method
that can be trained end-to-end to directly erase the text on
a whole image level, thus achieving outstanding erasing
performance on a synthetic dataset and the ICDAR 2013
dataset. It also significantly outperformed previous state-of-
the-art methods in terms of all metrics.

Furthermore, a qualitative experiment conducted on
SBMNet proved that our method could perform well in gen-
eral object removal tasks, and further investigations would
be carried out in future research.
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