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Abstract

Geographic information systems’ (GIS) research is widely
used within the social and physical sciences and plays a cru-
cial role in the development and implementation by govern-
ments of economic, education, environment and transporta-
tion policy. While machine learning methods have been ap-
plied to GIS datasets, the uptake of powerful deep learning
CNN methodologies has been limited in part due to chal-
lenges posed by the complex and often poorly structured na-
ture of the data. In this paper, we demonstrate the utility
of GCNNs for GIS analysis via a multi-graph hierarchical
spatial-filter GCNN network model in the context of GIS sys-
tems to predict election outcomes using socio-economic fea-
tures drawn from the 2016 Australian Census. We report a
marked improvement in performance accuracy of Hierarchi-
cal GCNNs over benchmark generalised linear models and
standard GCNNs, especially in semi-supervised tasks. These
results indicate the widespread potential for GIS-GCNN re-
search methods to enrich socio-economic GIS analysis, aid-
ing the social sciences and policy development.

Introduction
Geographical information systems (GIS) are frameworks
for the storage, ordering and representation of geospatial
data. They are integral to many social and physical sciences
and to the functioning of modern economies and govern-
ments, playing an important role in infrastructure, agricul-
ture, transport, logistics, urban management and economic
management policy design and implementation (Manage-
ment Association 2013). Complementary GIS data, such as
Census and other demographic surveys in particular, con-
stitute important datasets upon which researchers and pol-
icymakers rely. Despite their ubiquity and utility, the size
and complexity of many GIS datasets can present tractabil-
ity challenges that limit the capacity of traditional models
to fully leverage the relationships between geospatial fea-
tures. Many current techniques ignore the geography in-
herent in GIS data (including spatial boundaries, cluster-
ing effects and distance measures), opting to treat the sep-
arate regions as independent and identically distributed. In
the context of deep learning, the heterogeneous nature of
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the intrinsic graphs constructible from GIS data render tra-
ditional neural-network and convolutional neural network
(CNN) approaches problematic. Recent developments in
spectral and spatial filtering graph CNN (GCNN) method-
ologies (Such et al. 2017) together with novel adaptive graph
representation learning, provide a potential means of over-
coming these limitations by opening up heterogeneous data-
structures to CNN-driven analysis.

In this paper, we build upon state-of-the art GCNN ap-
proaches to develop a hierarchical spatial-filtering GCNN
(Hierarchical GCNN) model (equipped with an adaptive
distance learning metric) that significantly enhances the pre-
dictive power of socio-economic Census data (from the Aus-
tralian Bureau of Statistics (ABS)) in the prediction of Aus-
tralian election results (from the Australian Electoral Com-
mission (AEC)). By connecting the neighbouring statisti-
cal regions into a planar graph and performing graph con-
volutions along these edges, our experiments demonstrate
a root mean-squared error (RMSE) measures of 2.20%
compared with optimal standard generalised linear model
(GLM) benchmark RMSEs of 7.75%, a decrease of nearly
70%. We additionally demonstrate that defining auxiliary
networks and embedding operations based upon a Hierar-
chical GCNN model to feed in residual information from
higher levels of statistical agglomeration outperforms stan-
dard GCNN approaches by up to an additional 14% in
semi-supervised tasks. Code for the models is provided at
https://github.com/mili7522/Hierarchical-GCNN.

Related Work
Machine Learning with GIS
GIS data is analysed in a rich variety of ways, incorporat-
ing tools from topology, graph theory and linear algebra. It
is characterised by process modelling (Heywood, Cornelius,
and Carver 2011) which seeks to model complex behaviour
of spatial systems (Jakeman, Beck, and McAleer 1995) via
a priori models (that seek explanatory theories) and a pos-
teriori models to test and explore the domain of theories
(Heywood, Cornelius, and Carver 2011). GIS approaches
utilise diverse mathematical models depending upon the re-
search questions (usually classification or regression-based)
of interest: GLMs, such as linear or logistic regression, are
common where the input features are known. This is espe-
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cially the case in quantitative social sciences assessing geo-
graphic drivers of inequality and the social impact of policy
in which survey data (e.g. Census or HILDA datasets) has
a geographical component (Baum, Bill, and Mitchell 2008;
Baker et al. 2016). Where input features are uncertain,
stochastic methods are also commonly used (Heywood, Cor-
nelius, and Carver 2011). In most cases, the research objec-
tive is usually the probabilistic prediction of a geospatially-
situated outcome of interest.
Machine learning and neural networks have been used with
GIS since the 1990s (Hewitson and Crane 2012; Openshaw
and Openshaw 1997). More recently, deep learning based
methods have been used for flood-route modelling (Peters,
Schmitz, and Cullmann 2006), the analysis of soil erosion
and mineral deposit identification (Noack et al. 2012), traf-
fic flow prediction problems (Polson and Sokolov 2017) and
even forest-fire modelling in concert with gradient boosting
(Sachdeva, Bhatia, and Verma 2018).

The application of powerful CNN methods to GIS data is,
however, underdeveloped. This is in part because while spa-
tial ordering of GIS data provides a degree of intrinsic struc-
ture for GIS data, graph relations between geospatial fea-
tures can often be heterogeneous or otherwise highly com-
plex. Graphs where vertex number and edge connection dis-
tribution differ across a geospatial manifold cannot be easily
adapted for use with conventional CNNs (Defferrard, Bres-
son, and Vandergheynst 2016) because they lack the grid-
like translational structure needed for traditional CNN, met-
rics and dyadic clustering (Bruna et al. 2014).

For these reasons, the application of CNN methods to GIS
has involved the imposition of homogeneous (grid) struc-
ture on features (e.g. satellite image classification analy-
sis (Albert, Kaur, and Gonzalez 2017)) or remote sensing
(Nogueira, Penatti, and Santos 2017). Developing means
of applying CNN methods to GIS therefore has potentially
wide application in geospatial sciences in general and socio-
economic research in particular.

Graph-CNNs and Spatial Filtering
A potential means of overcoming barriers to the applica-
tion of CNN methods to unstructured GIS datasets are GC-
NNs, which utilise graph relations of underlying features to
impose structure on datasets necessary for the application
of CNN filtering (Bruna et al. 2014; Defferrard, Bresson,
and Vandergheynst 2016; Seo et al. 2018; Kipf and Welling
2016; Henaff, Bruna, and LeCun 2015).

Early GCNNs relied predominantly on spectral filtering
in which learning occurs in the frequency (or Fourier) do-
main via harmonic analysis of adjacency matrices. Even
though these methods could only be applied to fixed graph
structures (since the eigendecomposition of the graph Lapla-
cian is unique for each graph structure (Monti, Otness, and
Bronstein 2018)), such methods have been able to be used
to adapt the features of compositionality in order to solve
higher-dimensional learning problems in a non-euclidean
setting (Bruna et al. 2014; Defferrard, Bresson, and Van-
dergheynst 2016). An example of a classification task ap-
plied to a fixed network is the integration of fMRI data over
a functional brain network to predict disease. In contrast, the

graph structure represented in a GIS context just depends on
some arbitrary parcellation of the underlying area.

One means of handling the heterogeneity of GIS datasets
is provided by alternative spatial filtering of GCNNs in
which filters are framed as polynomial functions of the usual
adjacency matrix (Bruna et al. 2014; Sandryhaila and Moura
2013; Such et al. 2017) and learning occurs in the spatial do-
main. Spatial filtering has the additional advantage of over-
coming the non-localised filter problem of some spectral
GCNN algorithms, since it acts per node by construction.
These localised interactions allow well-defined connections
between graphs in a multi-graph context and this extension
enables spatial GCNNs to tackle the hierarchical nature of
many GIS datasets.

Graph Data Generation and Analysis
GIS Data Analysis Our experiments tested the efficacy
of GCNNs and Hierarchical GCNNs (explained below) for
modelling geographically-specific electoral results from the
2016 Australian federal election. Our features were selected
from the 2016 Australian Census, a half-decadal national de-
scriptive statistical survey of the Australia’s population held
on a specific night at the dwelling they are located at the time
(ABS 2016).

Census data is considered among the highest quality
socio-economic data available. It is provided to the pub-
lic via anonymised aggregated features whereby populations
are grouped into geospatial areas according to the Australian
Statistical Geography Standard - essentially tiling the nation
into polygonal areas. The smallest of such areas for which
the suite of Census socioeconomic data is available is the
Statistical Area Level 1 (SA1) level, followed by a hierar-
chy of successively larger regional aggregations (SA2, SA3
and so on). The SA1s are constructed as polygons using GIS
ESRI shape files (provided by both the ABS and the AEC)
which are two-dimensional maps geocoded according to a
coordinate reference system. SA1 population counts vary
between around 200 to 800 persons for most SA1s, with
an average size of 400 persons (ABS 2016). GIS software
was used to determine which SA1s neighboured each other
from which a one-hop SA1 graph was constructed (see Fig-
ure (1)). This process was repeated for the SA2 level (and
SA3 level in one experiment). Links between SA1 and SA2-
nodes were constructed using an ABS correspondence file
connecting the levels.

GIS datasets have been used previously within politi-
cal science literature (Schram 1992) to assess spatial pat-
terns of voter behaviour. In particular, (Stimson and Shyy
2013) developed spatial typologies of voter support com-
bining 2007 Australian federal election with the then-most
recent 2006 Census. The model developed in this paper
builds upon and expands the Census-derived SA1 and SA2
features used in the literature (Stimson and Shyy 2013;
Liao, Shyy, and Stimson 2009) such as: age and sex, family
and household structure, housing tenure, ethnicity/ancestry,
residential mobility, digital accessibility, labour force data,
industry and occupation, education, religious affiliation and
income. The benchmark models used in (Stimson and Shyy
2013) are primarily GLMs including linear regression, least
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Figure 1: Network of neighbouring regions constructed by
finding polygon neighbours using GIS software. The edges
connect the centroids of neighbouring regions. Colour in-
dicates the two party preferred values used as the training
signal. Some areas of the network span regions with missing
data from the AEC source.

squares/robust line-fitting, MANOVA clustering and dis-
criminant analysis. The experiments in this paper tested the
efficacy of similar GLMs against standard and Hierarchical
GCNN architectures.

Election data was sourced from the AEC, which pro-
vides publicly available datapacks containing results from
the 2016 election (AEC 2016). This includes electorate, SA1
and polling booth data available for download from their
website. Our models were trained on the two-party preferred
(2PP) vote which gives results give the results of ballots af-
ter preferences have been distributed, usually between the
Australian Labor Party and the Liberal/National Coalition.
Adapting (Stimson and Shyy 2013), the 2PP results by booth
were mapped onto the AEC’s publicly provided dataset de-
tailing the number of voters from each SA1 at each respec-
tive polling booth for the 2016 election, providing an esti-
mate of 2PP at the SA1 level.

Hierarchical GCNN Much GIS data, especially Census
data, falls within a natural hierarchical structure given by
successively larger regional agglomerations. Hierarchical
socio-economic GIS data can be decomposed into distinct
heterogeneous graphs where lower-scale individual GIS fea-
ture maps and graphs may differ from high-level regional or
catchment-area data. A primary motivation of exploring the
efficacy of GCNN models was the desire to capture the hier-
archical nature of heterogeneous GIS networks. However,
simply combining multi-level GIS graphs into one single
large graph can become computationally intractable or lead
to overfitting during model training and filter learning due
to expanded parametrisation that comes from consolidation
of adjacency matrices into an expanded adjacency relation.
Therefore the capacity to run parallel GCNNs across net-
worked but distinct graphs while controlling when to trans-
mit information from one graph to another is important for
GCNN GIS analysis. In this Hierarchical GCNN scenario,

the training and prediction is still made at the lowest level
(SA1) of aggregation, but the higher level hierarchies pro-
vide auxiliary information that is integrated using a residual
connection near the end of the network.
Our starting point is to consider a two-level GIS hierar-
chy comprising lower-level statistical areas (SA1s) (around
300 households each) and higher-level regional (suburban)
statistical areas (SA2s) built from SA1 aggregations. Each
level has its own graph generated via the GIS centroidal co-
ordinates, with adjacency restricted to nearest-neighbours.
For an SA1 graph of n nodes and SA2 graph of m nodes
(m < n) we have an SA1 adjacency matrix A1 ∈ Rn×n

and an SA2 adjacency matrix A2 ∈ Rm×m. Matrices A3 ∈
Rn×m and A4 ∈ Rm×n are linear operators that facilitate
information-sharing between the different-dimensional fea-
ture spaces of each level. The embedding

A(n×m)
3 : Rm×1 → Rn×1, V(m×1) ↦→ V(n×1) (1)

transfers information from the SA2 level graph to the SA1
level graph by acting on SA2 vertex vectors V(m×1) (one for
each SA1 feature), while the projection

A(m×n)
4 : Rn×1 → Rm×1, V(n×1) ↦→ V(m×1) (2)

transfers information from the SA1 to SA2 level by acting
on SA1 vertex vectors V(n×1) (one for each SA2 feature).
Here superscript terms in brackets indicate the dimension of
the operator or vector. Filter-learning is conducted on both
levels separately using a combination of graph convolution
and graph pool embedding (Such et al. 2017) layers, with in-
termittent projections and embeddings of features across the
graph levels before combining to output an n-dimensional
SA1-level output estimate for our predictor, 2PP vote by
SA1.

Spatial domain convolutional filters for the SA1 and
SA2 graphs are given by linear approximations to Cheby-
shev polynomials (Such et al. 2017; Sandryhaila and Moura
2013) F =

∑k
i=0 hkA

k. Here the filter F is a kth-degree
polynomial of the graph adjacency matrix Ak where the or-
der k of each polynomial term Ak encodes the number (k)
of hops from a given vertex multiplied by the given filter tap
(we set k = 1 for simplicity). Vertices V are convolved with
F via matrix multiplication Vout = FVin ∈ Rn. Each hier-
archical graph level’s convolution can then be approximated
as:

F
(n×n)
1 ≈ h1A

(n×n)
1 F

(m×m)
2 ≈ h2A

(m×m)
2 (3)

where there are several convolutional layers for each graph
level, depending on the depth of the network. The hierarchi-
cal model deploys parallel filter-learning at different graph
levels with intermediate transfer of information between
graphs using the learnt embedding operator filters E = h3A3

and learnt projection operator filters P = h4A4:

E(n×m)V(m×1) → V(n×1) (4)

P(m×n)V(n×1) → V(m×1) (5)

This approach is generalisable for c multiple vertex features,
the effect being a stack of n×n filter matrices for each of the
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c vertex filter slices (one for each feature) F(c)
1 (the paren-

theses index the specific feature) for the SA1 level and d lots
of m × m vertex filter slices F(d)

1 for the SA2 level (in our
case with only single adjacency matrix for each graph rather
than multiple matrices for each edge feature as per (Such et
al. 2017)). The choice of features for the SA2 level in ex-
periments varied between a feature set identical to that of
the SA1 nodes and smaller feature sets for different runs.
There may be multiple (j) such filters bound up in a ten-
sor form: F ∈ Rn×n×c×j . The action of these operators on
an input feature vector V

(n×c)
in leads to in an output vec-

tor Vout ∈ Rn×j (and analogously for the SA2 case). The
feature tensor output for j filters for both the SA1 (with c
features) and SA2 (with d features) levels is then:

V(n×j)
1,out =

(
F(n×n×c×j)
1 V(n×c)

in

)
  

n×j

+b(n×j)
1 (6)

V(m×j)
2,out =

(
F(m×m×d×j)
2 V(m×d)

in

)
  

m×j

+b(m×j)
1 (7)

with biases bn×j (SA1) and bm×j (SA2). The final output
prediction vector is at the SA1 level and is given by V(n×1)

1,out ,
obtained by further contractions.

Hierarchical GCNN Variants To explore the effects
of different layer-configurations and information-sharing
across the SA1 and SA2 graphs, five variants (indicated by
V1, . . . ,V5) of Hierarchical GCNNs (shown in Figure (3))
were tested during the experiments. These are characterised
by different arrangements of operations (either graph convo-
lution layers shown by green nodes or zero-hop convolutions
shown by red nodes) and sequences of projection and em-
bedding operations (yellow nodes). All networks were ini-
tialised with two parallel graph channels. V1 architecture
only included an embedding E(n×m) (indicated by a yel-
low node) from SA2 to SA1 feature space. This connection
is a residual sum on each vertex vector, given by:

V
(n×1)
SA1 = E(n×m)V(m×1)

SA2 W + V(n×1)
SA1 ∈ Rn (8)

The best performance is found when no batch normalisa-
tion and no activation function is performed after the addi-
tion, which allows the smoothing of the direct path (He et al.
2016). The residual nature of the link means that information
from the higher hierarchical layers are only incorporated if
useful for the task, which is performed solely on the SA1
nodes.

V2 architecture was identical to V1 except for an addi-
tional graph convolution layer (indicated by a green node) at
the SA2 level. V3 architecture contained both a projection
from the SA1 level to SA2 level, an additional graph con-
volution layer with the first node with feature vector and a
projection P(m×n) from SA1 to SA2 feature space:

V
(m×1)
SA2 = P(m×n)V(n×1)

SA1 W + V(m×1)
SA2 ∈ Rm (9)

Variants V4 and V5 in Figure (3) incorporated additional
projections and embeddings at later stages in the sequence.

Figure 2: Schema of SA1 and SA2 level graphs with links
between them.
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Figure 3: Hierarchical GCNN variants: green = graph con-
volution; red = graph embedding; yellow = composition of
SA1 and SA2 features (via projection P or embedding E).

Adaptive learning Despite being useful starting points,
intrinsic GIS graphs may be sub-optimal for learning tasks.
Because unsupervised learning of full optimal graph struc-
ture from unstructured data is often intractable or complex
(Hamilton, Ying, and Leskovec 2017), a ‘half-way’ point be-
tween fully unsupervised graph learning and fixed adjacency
is provided by semi-supervised adaptive graph learning in
which input adjacency matrices are updated via a distance
learning metric drawn from features related to the intrinsic
GIS graph. Such methods have improved classification tasks
and have been used in spectral convolutional settings.

In experiments below, we experimented with using a
generic distance learning measure known within statistics
as the generalised Mahalanobis metric (Li et al. 2018;
Wang and Sun 2015; Perez, Ribeiro, and Perez 2016) nov-
elly applying it in a spatial-filtering context. We used an
L2-norm with adjustable weights in which the distance D
between two feature vectors xi,xj ∈ Rc in c-dimensional
features space is given as:

D(xi,xj) =
√

(xi − xj)TM(xi − xj) (10)

where M is positive semi-definite precision matrix of
weights of dimension c2. Here index i runs over the SA1 di-
mensions (n) and index j runs over the SA2 dimensions (m).
Only the embedding operator was subject to the distance
learning adaptation (the same set of feature categories en-
abled the difference vector between the SA1 feature set and
SA2 equivalent feature to be is calculated), being updated
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according to a Gaussian G(xi,xj) = exp(D(xi,xj)/2σ
2)

(assuming normalcy with σ = 1) using the Hadamard (ele-
mentwise) product such that the embedding filter becomes:
G ◦En×m = h3G ◦A3.

Experiments and Results
Methods Our experiments were designed to test the per-
formance of the Hierarchical GCNN’s predictions of Labor
2PP by SA1 using Census features by comparison with a
standard GCNN, multi-layer perceptron network (MLP) and
the GLMs. Each experiment included both a standard super-
vised training problem with five-fold cross validation (80%
training, 20% test) and two semi-supervised tasks with (i)
20% training, 80% test and (ii) 10% training, 90% test. The
full graph structure remains available despite the small size
of the training set. The semi-supervised task is valuable as
it is often desirable to extract information in the case where
more training data is unavailable, such as observing overall
patterns from a limited number of survey results.

Centroid-to-centroid one-hop graphs for the SA1s and
SA2s were constructed by finding polygon neighbours in
open source QGIS software (Figure (2)). The resulting net-
work for the whole state is shown in Figure (1). The GLMs
chosen were: linear regression, ridge regression with cross-
validation (CV), LASSO, LASSO Lars CV and Random
Forest algorithms from Sci-Kit Learn. We also benchmarked
against a densely-connected neural MLP (in which each
SA1 as treated independently and not connected to any
other) and the standard non-hierarchical GCNN (acting only
on the SA1 graph). As the output is continuous, our primary
metrics for comparison were RMSE and R2 for both the
neural networks and GLMs.

A standard setting of two graph convolutional layers with
128 neurons for each except the last layer was used through-
out the tests, although Fig 4 explores the performance un-
der different settings for these hyperparameters. The ReLU
activation function and the ADAM optimiser were used. Ta-
ble (1) sets-out RMSE and R2 values (and standard devi-
ations) for each training/test split. One challenge when us-
ing GIS data challenge is the ‘modifiable areal unit prob-
lem’, namely whether zonal/aggregation or scale selection
systematically biases aggregate results reliant upon statis-
tics drawn from such aggregations (e.g. higher level geospa-
tial aggregations). The Hierarchical GCNN model mitigates
its potential impact by down-weighting the contribution of
higher-level aggregated features if they do not contribute to
model optimisation such that at worst the performance of the
model will not decrease.

Discussion
GLMs and MLP As evident in Table (1), the benchmark
GLMs performed significantly worse across all training/test
partitions of the datasets by comparison with the standard
GCNN and the Hierarchical GCNNs. The lower bounds
RMSE for standard linear regression and ridge regression
with CV were around 9.35% with a maximum R2 of 0.58.
In the 10/90% semi-supervised case, R2 and RMSE deterio-
rated. LASSO models performed worst, with RMSEs of just

Figure 4: RMSE of test set of standard GCNN vs Hierar-
chical GCNN (V2) for one or two graph convolution (GC)
layers and 64 or 128 neurons per layer

Figure 5: Absolute prediction error of Hierarchical GCNN
subtracted from the absolute prediction error of the standard
GCNN (difference clipped between 10 and -10). The geo-
graphic spread shows that the Hierarchical GCNN clearly
performs better (fewer brown areas in compared to blue),
and seem to work especially well in regional areas.

above 10% though interestingly they performed marginally
better on the 10/90% training/test split. The best performing
GLM was the Random Forest with a RMSE around 7.75%
and R2 of 0.71. The basic MLP model outperformed each
of the GLMs, achieving lower-bound RMSE of 6.58% and
R2 of 0.66.

Hierarchical GCNN The main results of the experiments
evident in Table (1) are: (i) the significant increase in per-
formance of GCNNs over GLMs and MLP and (ii) a fur-
ther improvement in performance over standard GCNNs
via the adoption of a Hierarchical GCNN model for the
semi-supervised tasks. The standard GCNN’s performance
(RMSE of 2.37% and R2 of 0.97) for the 80/20% train/test
split represents a decrease in RMSE of over 70% by com-
parison with the best performing Random Forest benchmark
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Table 1: Comparison of GCNN variants with traditional benchmarks, using RMSE and R2 as measures. The five variants of the
Hierarchical GCNN sequentially increase in complexity (standard deviations close to zero were rounded up to 0.01).

Model 80% Training Data 20% Training Data 10% Training Data
RMSE R2 RMSE R2 RMSE R2

Linear Regression 9.35 (0.07) 0.58 (0.01) 9.55 (0.12) 0.56 (0.01) 10.07 (0.82) 0.51 (0.08)
Ridge Regression 9.34 (0.07) 0.58 (0.01) 9.53 (0.11) 0.57 (0.01) 9.86 (0.48) 0.53 (0.05)
LASSO 10.13 (0.06) 0.51 (0.01) 10.16 (0.06) 0.51 (0.01) 9.02 (0.08) 0.61 (0.01)
LASSO Lars 11.72 (0.13) 0.34 (0.02) 12.28 (0.23) 0.28 (0.03) 11.95 (0.11) 0.32 (0.01)
Random Forest 7.75 (0.09) 0.71 (0.01) 8.55 (0.07) 0.65 (0.01) 9.02 (0.08) 0.61 (0.01)
MLP 6.58 (0.06) 0.66 (0.01) 7.56 (0.07) 0.55 (0.01) 8.19 (0.14) 0.44 (0.01)
Graph-CNN 2.37 (0.13) 0.97 (0.01) 3.20 (0.09) 0.94 (0.01) 3.94 (0.15) 0.91 (0.01)
Hierarchical GCNN (V1) 2.24 (0.12) 0.97 (0.01) 3.01 (0.10) 0.95 (0.01) 3.79 (0.16) 0.92 (0.01)
Hierarchical GCNN (V2) 2.20 (0.12) 0.97 (0.01) 2.81 (0.10) 0.96 (0.01) 3.45 (0.13) 0.94 (0.01)
Hierarchical GCNN (V3) 2.27 (0.18) 0.97 (0.01) 2.85 (0.10) 0.95 (0.01) 3.52 (0.16) 0.92 (0.01)
Hierarchical GCNN (V4) 2.59 (0.17) 0.96 (0.01) 2.91 (0.12) 0.95 (0.01) 3.44 (0.14) 0.94 (0.01)
Hierarchical GCNN (V5) 2.69 (0.20) 0.96 (0.01) 2.93 (0.12) 0.95 (0.01) 3.39 (0.12) 0.94 (0.01)

and of over 75% by comparison with benchmark linear re-
gression RMSE - representing a nearly three-fold improve-
ment in RMSE and nearly two-fold improvement in R2 over
the best GLM. For the semi-supervised cases, the standard
GCNN also significantly outperformed all GLMs on both
RMSE and R2.

Table (1) also demonstrates the improvement to the stan-
dard GCNN architecture achieved via the novel introduc-
tion of a hierarchical approach to GCNNs. The Hierarchical
GCNN improved RMSE over the standard GCNN over both
the supervised and semi-supervised tasks. The simple vari-
ant V2 was able to decrease the RMSE to 2.20% with 80% of
the data in the training set and reduce RMSE to 2.81% with
20% of the data in the training set. For both semi-supervised
tasks, all variants outperformed the standard CNN on both
RMSE and R2 measures.

Figure (4) compares the performance over training epochs
of the GCNN and Hierarchical GCNN for different neu-
ron/layer number parametrisations. We can see that even
with 80% of the data in the training set, the standard GCNN
has a tendency to overfit with 64 neurons per layer. The test
performance decreases as the number of epochs continues
from 1000 to 5000. By comparison, we see that Hierarchi-
cal GCNN achieves good performance with fewer epochs, is
more stable and also has less performance variation between
different number of layers and number of neurons.

By comparing the different variants of the Hierarchical
GCNN, it can be seen that the specific structure of the Hier-
archical GCNN impacts the performance depending on the
nature of the task. Table (1) shows that a simple projec-
tion operation with one graph convolution at the SA2 level
works well in most cases and lead to the best performance
when training on 80% of the data. Variations of additional
complexity tend to increase training difficulty or increase
overfitting in these circumstances. However for the small-
est training/test partition 10/90%, increasing the number of
operations at the SA2 level, including utilising an additional
embedding operator led to the best performance. Variants V4
and V5 perform their embedding from SA1 to SA2 near the
end of the network instead of the start, which allows the em-

bedded features to have undergone transformation and con-
volutions within the SA1 branch.

In this case, the best performing Hierarchical GCNN V5
registered an RMSE of 3.39% and R2 of 0.94, an decline in
RMSE of 0.55% and improvement in R2 of 0.03 over the
standard GCNN. Having one graph convolution at the SA2
level seemed to always be beneficial compared to directly
performing the projection operator filters. This suggests that
the Hierarchical GCNN increases the receptive field of the
SA1 nodes, with the residual link allowing only the useful
information to be incorporated.

In all test/training partitions, the GCNNs outperformed
even the best-performing GLM model. This is especially no-
table when comparing the 10/90% train/test split, in which
both the standard GCNN (with RMSE of 3.94% and R2 of
0.91) and Hierarchical GCNN (V5) (RMSE of 3.39% and
R2 of 0.94) trained on 10% of the data outperformed GLMs
that were trained on 80% of the data. Hierarchical GCNNs
thus can outperform standard GLMs and a standard GCNN
approach. Given the hierarchical and often sparse nature of
socio-economic GIS training sets, the ability to utilise hier-
archical graph structure to improve overall performance is
potentially quite useful for researchers.

To understand the reason for the better performance of
the Hierarchical GCNN, the maps in Fig. (5) visualise the
difference in RMSE in the standard GCNN vs the Hierar-
chical GCNN (averaged over the 10 repetitions of the semi-
supervised task with 10% of the data in the training set).
The Hierarchical GCNN outperforms the standard GCNN
in many of the regional areas where the graph structure dif-
fers substantially from the more geometrically regular city
regions.

This suggests that when data is sparse, the standard
GCNN network may not be able to learn a filter that ap-
plies equally to all neighbour types. However, the relation-
ship between the different levels of the geographical hier-
archy is more consistent and so it is able to provide resid-
ual information where the links from the neighbours them-
selves are insufficient. The ability of the Hierarchical GCNN
to capture such ‘neighbourhood effects’ is therefore an im-
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Table 2: RMSE of experiments using distance learning to
adapt the weight of the projection edges. Bold indicates im-
proved performance compared to the same variant in Table
(1). Utility of these results was uncertain as standard devia-
tions (suppressed) were in the order of 0.1%.

Variants 80% 20% 10%
V1 2.22 3.02 3.81
V2 2.15 2.81 3.43
V3 2.20 2.86 3.52
V4 2.50 2.92 3.45
V5 2.64 2.95 3.39

portant feature of its performance, providing an additional
means by which information can be transmitted throughout
the graph network between nodes not connected within their
own graph level.

Table 3: RMSE of experiments including SA3 regions as an
additional third hierarchy in the network. Bold indicates im-
proved performance compared to the same variant in Table
(1). Rows labelled ‘(with GC)’ include a graph convolution
at the SA3 level

Variants 80% 20% 10%
V2 with SA3 2.52 2.97 3.60
V2 with SA3 (with GC) 2.29 2.77 3.37
V5 with SA3 2.66 2.90 3.28
V5 with SA3 (with GC) 2.66 2.90 3.35

The distance learning results for the Hierarchical GCNN
variants were mixed and are presented in Table (2). All vari-
ants with distance learning achieved lower five-fold RMSEs
than the equivalent variants without distance learning for the
supervised case. However, the variance in these results was
similar in magnitude to any benefits gained, so the overall
utility is uncertain. The addition of distance learning for the
semi-supervised cases seemed to have little effect or slightly
lower performance due to increased risk of overfitting.

Table (3) tests a further extension of the hierarchical ap-
plication of our network, adding a third level (of SA3s) on
top of the SA1s and SA2s. Doing so can produce further
improvements, especially in the semi-supervised case as it
further widens the receptive field of possible graph convo-
lutions. Most models variants saw an improvement with the
addition of the SA3 layer, including V5 on the 10%/90%
dataset with an RMSE of 3.28%, making it the best per-
forming of the sparsely-trained models. This again suggests
the beneficial impact of incorporating auxiliary hierarchical
graphs in the case of limited training data or sparse data sets.

Although it wasn’t explored here, a key benefit of includ-
ing networks at different aggregations is that it allows the use
of data sources which are aggregated at different statistical
levels (e.g. data sources from the tax office reported at the
SA3 level). The projection and embedding operations de-
scribed are general enough to allow the use of distinct node

features at each hierarchical level.

Conclusion and future work
The results of the experiments detailed in this paper demon-
strate the utility of applying Hierarchical GCNN methods
to GIS social-sciences problems, such as estimation of ag-
gregate characteristics of populations within geographic lo-
calities, and the improved performance of Hierarchical GC-
NNs over standard GCNNs, particularly in cases of mini-
mal training data. As demonstrated via their high RMSE
and comparatively low R2 values, standard GLM methods
and MLP networks were not especially predictive of 2PP by
SA1 on such GIS Census data.

The inclusion of both standard and Hierarchical GCNNs
clearly has an effect, both in the fully supervised context (in
which the majority of the data is used in the training set)
and even moreso in semi-supervised contexts, precisely due
to their capacity to leverage geographical connections. For
Hierarchical GCNNs, the capacity to leverage multi-level
geographic connections via higher-level graph convolutions
while transmitting information between different graph lev-
els appears to have played a role in its superior performance.

In this paper, we have demonstrated the utility of GCNN
methods for GIS in a social science context and the im-
proved performance over standard GCNNs of novel Hierar-
chical GCNN methods described above. Hierarchical GC-
NNs, which incorporate projections and embeddings be-
tween different multi-level graphs, allow incorporation of
multi-level socio-economic GIS data in a way that enriches
the predictive insights from Census and other GIS datasets
due in part to the Hierarchical GCNN’s capacity for incor-
poration of neighbourhood features.

The significant performance improvement of Hierarchi-
cal GCNNs over GLMs offers considerable potential for en-
hancing modelling of voter behaviour along with the design
and implementation of policy decisions across government
industry, which often rely upon standard econometric tech-
niques such as generalised equilibrium analysis to ascertain
the impact of policy interventions on metrics, such as social
welfare or GDP.
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