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Abstract

In this work, we consider applying machine learning to the
analysis and compression of audio signals in the context of
monitoring elephants in sub-Saharan Africa. Earth’s biodiver-
sity is increasingly under threat by sources of anthropogenic
change (e.g. resource extraction, land use change, and cli-
mate change) and surveying animal populations is critical
for developing conservation strategies. However, manually
monitoring tropical forests or deep oceans is intractable. For
species that communicate acoustically, researchers have ar-
gued for placing audio recorders in the habitats as a cost-
effective and non-invasive method, a strategy known as pas-
sive acoustic monitoring (PAM). In collaboration with con-
servation efforts, we construct a large labeled dataset of pas-
sive acoustic recordings of the African Forest Elephant via
crowdsourcing, compromising thousands of hours of record-
ings in the wild. Using state-of-the-art techniques in artificial
intelligence we improve upon previously proposed methods
for passive acoustic monitoring for classification and seg-
mentation. In real-time detection of elephant calls, network
bandwidth quickly becomes a bottleneck and efficient ways
to compress the data are needed. Most audio compression
schemes are aimed at human listeners and are unsuitable for
low-frequency elephant calls. To remedy this, we provide a
novel end-to-end differentiable method for compression of
audio signals that can be adapted to acoustic monitoring of
any species and dramatically improves over ndive coding
strategies.

Introduction

Poaching, illegal logging, and infrastructure expansions are
some of many current threats to biodiversity, and large mam-
mals are particularly susceptible. To effectively allocate con-
servation resources and develop conservation strategies, en-
dangered animal populations need to be accurately and eco-
nomically surveyed, but for species that roam large or inac-
cessible areas monitoring by humans becomes intractable. A
promising approach for species communicating via acous-
tic signals is passive acoustic monitoring (PAM), which in-
volves the use of autonomous recording devices scattered
throughout habitats that record animal vocalizations. Com-
pared to video monitoring, acoustic monitoring is not lim-
ited by line of sight, is typically considerably cheaper and
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Figure 1: The African forest elephant (Loxodonta cyclo-
tis) is the smallest of the three extant elephant species,
a keystone species in the rainforests of the Congo Basin,
and is entirely relied upon by many trees to disperse their
seeds (Campos-Arceiz and Blake 2011). Due to their highly-
valued ivory tusks, the elephant is a typical target for poach-
ers in central Africa and the population has fallen by more
than 60% in the last decade (Morelle 2016). Population
monitoring is critical for the elephant’s survival, and in this
work, we consider combining passive acoustic monitoring
and artificial intelligence towards this end.

requires less bandwidth for transferring the data. However,
extracting useful data from these soundscapes is non-trivial
and automatic approaches are necessary.

In this work, we consider PAM in the context of monitor-
ing the African forest elephant. To enable real-time acoustic
monitoring one needs to quickly and accurately detect ele-
phants and potential threats to them — a classical challenge of
classification and segmentation. Leveraging recent advances
in neural networks, we improve upon previous methods in
automating PAM. In real-time threat-detection and popula-
tion monitoring the bandwidth of the wireless networks be-
comes a bottleneck, and one additionally has to use efficient
data representations to only communicate the necessary in-
formation. In many lossy compression schemes, signal com-
ponents inaudible to humans such as low frequencies are
given low bit-rates, which in the context of low-frequency
elephant calls is a poor strategy. Using a differentiable proxy



for non-differentiable bit truncation, we are able to cast this
problem as an end-to-end differentiable setup, which can
be trained via stochastic gradient descent (SGD) to get im-
proved compression.

We focus on the African Forest Elephant both due to its bi-
ological importance and the loud calls by which it communi-
cates. This elephant is a keystone species in the rainforests of
the Congo Basin, the second largest expanse of rainforest on
earth and among the most speciose. Conserving viable popu-
lations of forest elephants protects local biodiversity, but the
expansiveness of the rainforest and the difficulty of monitor-
ing animals within it makes manual monitoring problematic.
Since elephants communicate over long distances via infra-
sonic signals referred to as rumbles (Hedwig, DeBellis, and
Wrege 2018) they are particularly suited to an acoustic ap-
proach. These characteristic vocalizations provide informa-
tion on occupancy, landscape use, population size, and the
effects of anthropogenic disturbances (Wrege et al. 2017).

The contributions of our work are to 1) construct a large
dataset of real-world elephant vocalizations from central
Africa via passive acoustic monitoring, 2) surpass previ-
ously proposed methods for automatic PAM in the context
of elephant vocalizations via state-of-the-art artificial intel-
ligence techniques, and 3) introduce a novel end-to-end dif-
ferentiable technique for audio-compression, that can bal-
ance the bit-rates between different frequency channels to
the unique characteristics of the monitored species.

The Dataset
Data collection

Established in 2000, the Elephant Listening Project (ELP)
uses acoustic methods to study the ecology and behavior of
forest elephants in order to improve evidence-based decision
making concerning their conservation. ELP has recorded
sounds from over 150 different locations, amassing more
than 700,000 hours of recordings. These varying environ-
ments provide the source material for generating training
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data for algorithm development. The dataset we consider
in this work was collected between 2007 and 2012 from
three sites in Gabon and one in the Central African Repub-
lic, which will be referred to as Cebl, Ceb4, Dzanga, and
Jobo. A map showing these locations is given in Figure 7
of the Appendix. At all locations, a single recording device
was placed in a tree 7-10 meters above the ground near for-
est clearings (25 to 50ha) where elephants congregate for
multiple purposes. The recording devices sample audio sig-
nals at a rate of 2000 (12-bit resolution) or 4000Hz (16-
bit) and can detect elephant calls up to approximately 0.8
km away. As is typical in bioacoustic applications the ani-
mals are detected infrequently, and different locations have
variable density, see Table 1. Additionally, multiple other
sources of sound are recorded, both man-made and natural.
For example, Ceb4 is close to a road and the recordings in-
clude signals associated with logging and gunshots.

Acoustic Characteristics of the Dataset

The primary mode of communication among elephants is
a low-frequency vocalization known as a rumble, typically
lasting between 2 and 8 seconds. These sounds have distinct
frequency characteristics, with a low fundamental frequency
(8 - 34Hz), often several higher harmonics, and slight fre-
quency modulation. A typical recording is shown in Figure
2. At large gatherings, multiple elephants often make simul-
taneous or overlapping calls (see for example Figure 2 where
two calls overlap). Other complications are the variability of
the dataset, for example, some recording sites are close to
logging concessions which are often visited by motorized
vehicles which become recorded. Natural sources of noise
include heavy wind, rainfall, insects chirping and thunder-
storms, see Figure 3 for further examples.

Labeling

The labeling of rumbles to be used in the training and
testing of detection algorithms was done by both experts
and trained volunteers at the Elephant Listening Project.
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Figure 2: A spectrogram of several elephant rumble vocalizations within a 60-second segment of sound. The rich harmonic
structure is typical of rumbles, however, since higher frequency elements attenuate rapidly with distance, recording these higher
frequency elements depends on source amplitude and distance. Thus, it is difficult to infer distance from harmonic structure

alone.
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Figure 3: Examples of the diversity of acoustic signals en-
countered in sound streams from Central African forest en-
vironments. A) an elephant call combining both tonal and
chaotic (broadband) sounds, often produced in agonistic sit-
uations. B) an elephant rumble with few harmonics (source
far from microphone and/or low amplitude). C) signals emit-
ted by a dwarf crocodile (Osteolaemus tetraspis), including
some harmonics similar to those of elephants. D) the buzzing
of insects E) a motorized vehicle F) sound of splashing of
water as elephants move through a stream.

The volunteers were recruited by a combination of work-
study positions and information spread via word-of-mouth
and were asked to identify individual elephant calls and
their temporal extent in the recording. Positive labeling was
based on a set of criteria developed by experts with more
than ten years of experience with forest elephant vocaliza-
tions and experience with potentially confusing environmen-
tal sounds. Volunteers followed a detailed training program
that concluded with them labeling rumbles in two 24 hour
long test sound files. The labels generated by the volun-
teers for the test files were compared to those of an ex-
pert. If the results were within 5% of each other, the vol-
unteer was considered trained; if not, he/she repeated the
process on other sound files until the 5% or less difference
was achieved. The occasional further review of volunteer
labeling efforts by the experts maintained reasonable con-
sistency among all labelers (reliability > 98%). Statistics
about the dataset and the labeling can be seen in Table 1.
To facilitate online crowdsourcing, we have created an on-
line labeling application for labeling. The website contains
a tutorial where participants can first learn about the char-
acteristics and variations of elephant calls and other sounds
that might occur in recordings. The tutorial is publicly avail-
able at www.udiscover.it/applications/elp/tutorial.php. Once
trained, participants can then label elephant calls in audio
segments by using the application’s annotation tool, see Fig-
ure 8 in the Appendix. By giving the same spectrum to mul-
tiple participants one can gauge the accuracy of individual
users and can encourage truthful responses. These issues
will be addressed further in future work.
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Dates Labelled  Num. Apx. %
Location Collected hours calls Calls
Cebl 09/04 - 11/06 1870 52810 0.784 %
Ceb4 08/06 - 11/03 1280 23038 0.500 %
Jobo 09/05 - 11/06 1437 28609 0.553 %
Dzan 11/04 - 12/02 312 63792 218 %

Table 1: The statistics of the datasets by location. The
Apx. percentage of calls refer to what portion of the audio
recordings contained elephant calls. The dates are given in
YY/MM format.

Classification and Segmentation

The simplest and most straightforward problem for pas-
sive acoustic monitoring is that of detection. Given a short
audio-clip we want to classify it as containing a signal pro-
duced by the species of interest (in this case an elephant
rumble) or not. This setting has been considered by many
previous authors (Mac Aodha et al. 2018; Nichols 2016;
Bittle and Duncan 2013), and is a crucial stepping stone to-
ward using PAM for population surveying and monitoring.
A similar setting we consider is one of segmentation where
we want to classify each discrete time step as belonging to
an elephant call or not.

Data Processing

Given a specific location where a recording device is placed,
say ”Cebl” in Table 1, we extract all unique elephant rum-
bles recorded. The calls will in some cases overlap and if so
we consider them as two or more unique calls. To facilitate a
homogeneous dataset, we extract signals of the fixed length
25.5 sec and remove the handful of calls that are longer than
this. We then extract empty regions of the same length, that
does not overlap with any elephant calls, uniformly at ran-
dom, we extract as many empty regions as there are elephant
calls. The combined dataset of calls and empty frames is
then split uniformly and randomly into a testing and training
set, where additional augmentation might be performed on
the training set. Given these fixed sized windows of audio
recording, we transform them into the frequency domain via
FFT. Using the signals down-sampled to 1000 Hz, we use a
window size of 512 and hop-length of 384 we use FFT to
transform the audio signal into the frequency domain. All
frequency bands above 100Hz are removed, as the set of
recorded elephant calls rarely have significant signals above
such frequency because of signal attenuation. This gives us
a 64 time-steps by 47 frequency bands tensor, and we specif-
ically choose time-steps to have the shape be a power of two
which can be beneficial for training on GPUs. One has to be
slightly careful when normalizing the dataset as the signals
are very sparse, we have found that subtracting the mean of
all frames containing no calls and then dividing the signal
by the median call intensity works well.

Neural Network Architectures and Training

Audio-clips are approximately time-invariant, i.e., an ele-
phant call will sound the same no matter if it starts after 1s or



Location | SVM RF ADA-grad DNN ((Mac Aodha et al. 2018)) Densenet + rnd crop
Cebl 7722 76.73 77.01 91.11 93.40
Ceb4 70.21 69.82 71.50 90.15 93.68
Jobo 76.92 7649 76.86 91.67 94.30
Dzan 7221  69.79 70.86 75.86 77.51
Avg. 74.14 7321 74.06 87.20 89.72

Table 2: The classification accuracy on the test-set for different algorithms at different locations.

3s. This approximate symmetry suggests the use of convolu-
tions over the time dimension would be successful, we have
however found it beneficial to additionally perform convo-
lutions over the frequency dimension. This corresponds to
an approximate pitch-invariance, meaning that elephant calls
from different elephants sound similar except for a uniform
pitch change. Given this two-way convolution, we adopt the
state-of-the-art network architecture Densenet (Huang et al.
2017), which is a standard convolutional network with skip
connections between all layers. For training this architecture
we use best practices from neural network training (LeCun
et al. 2012), we consider SGD with momentum and weight
decay, iteratively lowering the learning rate as performance
plateaus and using cross-entropy as the loss. We further in-
troduce data augmentation by adapting the technique of ran-
domized cropping, which is typically used on image classifi-
cation, to sound classification. The 64 time-steps are padded
by 8 on both sides, and we feed a random 64 step long
subsequence. Exact parameters are given in table 5 in the
Appendix. For our segmentation setting we train a standard
long short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997), additionally, we use the same LSTM
network with an initial one-dimensional convolutional layer
on the frequency dimension. This convolution layers uses 25
filters and thus outputs a feature vector of length 25 for each
time step, which is then fed into the LSTM network. For
training this architecture we use the ADAM optimizer and
cross-entropy as the loss.

Results

We compare our approach to previously proposed methods
in bioacoustic monitoring, both modern and classical. From
the latter category, we consider the method of Dufour et al.,
where rich features based upon the MFCC coefficients are
extracted and then fed into an SVM (Hearst et al. 1998). The
MFCC coefficients are similar to the FFT, where the signal
is decomposed into frequency parts, however, the filters and
masks used are much more sophisticated. Given these coef-
ficients for each time step, the features for the entire audio
clip are the mean, variance and derivative of the coefficients
for each time step across the entire audio clip. Additionally,
we consider feeding these features into a Random Forest
classifier (Liaw, Wiener, and others 2002) and an ADAGrad
classifier, essentially emulating the approach of Ross and
Allen although with slightly different features. The second
type of baselines we consider are convolutional neural net-
works, where we use the architecture (and training parame-
ters/schedule) of Mac Aodha et al. proposed for classifying
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Figure 4: We here illustrated the precision-recall curve of
the various classifiers we consider here. All algorithms
based upon the MFCC features perform relatively poorly,
whereas the classic neural networks and Densenet specifi-
cally achieve much higher scores.

the vocalizations of bats. The architecture is classical, mean-
ing no skip-connections are used and dropout is not used
(Srivastava et al. 2014) for regularization, see Mac Aodha et
al. for details. Results can be viewed in Table 2 where we see
that our methods consistently outperform baselines across
every location. A more nuanced picture over the precision
and recall is given in Figure 4. For the segmentation setting,
we compare our convolution-LSTM hybrid network’s per-
formance to that of only an LSTM network and show how
the hybrid methods perform much better in terms of accu-
racy, see Table 3.

Location | LSTM  conv-LSTM
Cebl 70.50  95.24
Ceb4 70.43  90.54
Jobo 6749 92.12
Dzan 70.54  88.95
Avg. 69.74  91.71

Table 3: The classification accuracy on the test-set for the
segmentation task, given for different algorithms at different
locations.



Compression
Background

The ultimate aim of passive acoustic monitoring is to pro-
vide accurate real-time detections of elephant vocalizations
and threats. It is infeasible to perform neural network com-
putations on the recording devices, and hence the devices
need to send their data over the wireless networks of sub-
Saharan Africa. Unfortunately, wireless infrastructure is
largely relatively poor or absent in this area of the world
(Aker and Mbiti 2010), available bandwidth is small and
data-transfer is expensive. To make real-time passive acous-
tic monitoring cost efficient, one has to transfer only the
most relevant information across the wireless network.

A natural strategy for reducing the data-transfers across
the wireless network is to compress the acoustic data. Most
lossy compression codecs crucially rely on the specifics of
the human auditory system to remove data that are irrele-
vant to the experience of a human listener. For example,
it is well known that the sensitivity of the human auditory
system varies with frequency (Painter and Spanias 2000),
and hence many lossy compression algorithms remove low-
frequency components or simply use a low bit-rate for them.
In the context of elephant monitoring, this is a poor strategy
since the elephants communicate by low-frequency rumbles.
It is clear that we need to develop compression strategies
uniquely suited for the elephant calls and for the neural net-
works that will analyze them. As neural networks are well
known to be resistant to minor random perturbations (Mi-
cikevicius et al. 2017) lossy compression is a promising av-
enue. Additionally, as passive acoustic monitoring has ap-
plications to many species, from small birds (Bardeli et al.
2010) to marine mammals (Bittle and Duncan 2013), data-
driven approaches such as ours avoids the laborious process
of manually crafting audio codecs and can easily be adapted
to new species. It does not require any hand-crafted features
or any specific information regarding the structure of ani-
mal vocalization (save for an approximate frequency range,
information that is easily obtainable for most species), and
one would “only” need training data to adapt our framework
to other species.

End-to-end differentiable compression codecs

As opposed to typical audio compression applications, the
listener in our setup is not a human, additionally, the fre-
quency spectrum is vastly different. To study this phe-
nomenon in isolation and achieve a simple setup we only
consider compression in terms of the different frequency
bands. Other aspects of lossy compression, for example,
lossless compression on top of lossy strategies, can be
added to all methods we consider. We assume that the one-
dimensional X that describes the sound waves has been
transformed via FFT as a pre-processing step into X, and
consider the problem of assigning bit-rates to the different
frequency bands. Simple operations such as FFT and bit-
truncation can easily be implemented on the rudimentary
hardware of the recording devices. We propose a method
that jointly optimizes for low bit-rates of the frequency chan-
nels and high classification accuracy.
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Our algorithmic setup is illustrated in Figure 5. We want
to assign different bit-rates to different frequency-channels,
which we achieve by simply truncating the bit representation
of elements of the channels, which lowers the precision. Our
key insight is to exchange a non-differentiable bit-truncation
by a differentiable proxy — we simply model truncation as
additive Gaussian noise, a common model of quantization
error (Gray and Neuhoff 1998). We let the components of the
vector \ denote the bit-rates of various frequency channels,
and let 5 be a matrix with dimensions ¢ x f with indepen-
dent standard Gaussian entries, where there are ¢ time-steps
and f frequency bands. The truncation error is the propor-
tional to by the matrix exp(—\) ® 3, where the entries (i, 5)
are equal to exp(—A\;)3;;. This ensures that the additive er-

rors in the original elephant spectrogram X, which models
bit-truncation, are independent but that each frequency band
has its own error scale. The input to the neural networks is
thus X + exp(—\) ® f3, and we simultaneously optimize
the network parameters w for large classification accuracy
and the total bit-rate which is simply expressed as >, A;,
balancing these two objectives with the hyper-parameter p.
The loss can be written as

E

{L (y, DNN,, ( exp(—A\)
(X.y)~D
) W
Here the dataset D contains tuples (X, y) of data X and
labels y, L(y, §) denotes the loss function used to measure
goodness of fit between ground-truth label y and estimated
label y. The function DNN,, gives the output of the trained
neural network with network parameters w. We again use the
cross-entropy for the loss function. This function can be op-
timized via SGD, where we exchange the expectation EJ - ]
by sample averages.

Experiments

We compare different compression strategies by how well
they transmit the important information as measured by how
well a classifier can be trained to classify compressed ele-
phant spectrograms given a fixed bit-rate. For all compres-
sion strategies, we will use the Densenet model of earlier
sections. The original Fourier signal has elements put into
one of the 232 bins represented as 32 bit signed integers, low-
ering the bit-rate simply corresponds to removing the least
significant bits with the sign bit is removed last. This has
the effect of quantizing the signal and removing small vari-
ations in signal strength while keeping the large variations
(see Figure 6). We enforce that no less than 5 bits are used
for each frequency band as the dynamic range of the au-
dio signal has the effect of completely erasing the signal for
smaller bit-rates. For assigning bit-rates via optimizing (1)
we use the same Densenet architecture as for evaluating the
compression quality, and train it with the same parameters
as in earlier sections and with ;1 = 10~7. To ensure spe-
cific total bit-rates we assign bit-rates to various frequency
bands proportional to the values of the components of \. We
compare our method against the method of assigning bit-
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Figure 5: The main idea behind our end-to-end compression scheme is to introduce a continuous bit-rate vector A and i.i.d.
noise that serves as a proxy for the quantization error. By optimizing A one can adjust the quantization level for different
frequency bands, which can be optimized jointly with a neural-network classifier to find compression strategies that result in
signals that are useful for classification. At deployment, the bit-rates of individual frequency channels are used for compression
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Figure 6: We here illustrate an example of quantization of a
signal with elephant calls with extremely low bit-rate. Back-
ground signal almost disappears with quantization while the
elephant call loses much of its nuances.

rates proportional to the sensitivity of human hearing, using
the well-known model of how human auditory sensitivity
vary with frequency of (Painter and Spanias 2000). The pro-
portional allocation excludes the 5 bits needed for the dy-
namic range of the signal. The results for various locations
and bit-rates are given in Table 4, where we can clearly see
that our proposed method achieves superior performance for
the same bit-rates. For very small and very large bit-rates
the difference becomes smaller. Implementing our method
leads to data compression of a factor roughly 116 com-
pared to niively storing the 1000Hz signal in 32-bit floating
point numbers while achieving little performance degrada-
tion. These savings are significant for the often poor wireless
networks of sub-Saharan Africa.
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Method / Bit-rate | Cebl Ceb4 Jobo Dzan
Ours / 47 84.57 8398 86.31 7843
Human / 47 83.62 8131 8576 69.44
Ours / 141 92.81 9221 93.19 77.96
Human / 141 86.61 9190 90.32 73.51
Ours /235 93.05 93.11 93.84 77.46
Human / 235 90.25 92.34 91.64 76.93

Table 4: The classification accuracy on the test-set for the
given bit-rates at various locations.

Related Work
Bioacoustics

The field of bioacoustics has for a long time been inter-
ested in automatic approaches towards detecting and clas-
sifying animal vocalizations with the ultimate goal to accu-
rately survey population size and behavior (McDonald and
Fox 1999). As sound waves attenuate less in water, passive
acoustic monitoring can cover vast underwater areas. Much
effort has been in terms of large marine animals with charac-
teristic vocalizations — predominately various whale species
(Humpback, right (Thode et al. 2017), Baleen (Baumgartner
and Mussoline 2011), Blue and Fin (girovié, Hildebrand,
and Wiggins 2007)) and dolphins (Erbs, Elwen, and Grid-
ley 2017). Acoustic signals are the primary mode of com-
munication for many marine species and for large gath-
erings vocalizations typically overlap which together with
long reverberation times becomes challenging. Techniques
used to overcome these issues include blind source separa-
tion (Zhang and White 2017), pitch-tracking via dynamic
programming (Baumgartner and Mussoline 2011) and ker-
nel methods (Thode et al. 2017).



On land, efforts towards bioacoustics have primarily fo-
cused on various bird species, owing to the characteris-
tic songs many of them use for mating and communica-
tion. As bird species typically have unique songs, PAM
makes it possible to accurately survey populations of en-
dangered species, whereas using direct visual observations
becomes problematic for species that are small and/or oc-
cupy canopies (Bardeli et al. 2010). Popular strategies in-
clude SVMs based upon MFCC (Dufour et al. 2014), seg-
mentation via deep learning (Koops, Van Balen, and Wier-
ing 2015) and dictionary learning (Salamon et al. 2017).
Beyond birds, insects (Ganchev and Potamitis 2007), bats
(Mac Aodha et al. 2018) and monkeys (Turesson et al. 2016)
have all been considered. Elephants have been studied from
a similar perspective to ours by Pleiss, Wrege, and Gomes.
For many of these species, especially many birds, the vocal-
izations occupy a relatively small frequency band making
models less sensitive to noise and intra-population variabil-
ity in vocalizations, hence making them unsuitable for ele-
phant monitoring.

Machine-learning for Audio

Machine learning for audio-signals has primarily focused
on human speech due to applications such as virtual assis-
tants, automatic transcription, and translation. For a long
time, mainstream research was primarily propelled by us-
ing the EM-algorithms for training Hidden-Markov-Models
(Hinton et al. 2012). Features for audio input could often be
encoded via MFCC (Sahidullah and Saha 2012), and rich
distributions could be represented via Gaussian-Mixture-
Models (Juang, Levinson, and Sondhi 1986). While using
neural networks for acoustic applications was conceived
more than 25 years ago (Bourlard and Morgan 2012), it
was in only 2009 that deep learning approaches were shown
to be competitive with more traditional “hand-crafted” ma-
chine learning approaches (Mohamed, Dahl, and Hinton
2009). Deep learning has now gained mainstream traction
and it has become the dominant paradigm. State-of-the-art
speech recognition often relies on recurrent neural networks
(Graves and Jaitly 2014) (Sak, Senior, and Beaufays 2014),
where convolutional layers can automatically extract fea-
tures (Sainath et al. 2015). Beyond speech recognition, deep
learning for acoustic sensing in smartphones has been inves-
tigated (Lane, Georgiev, and Qendro 2015).

Compression

Compression for acoustic signals has been studied for a long
time due to applications such as storing music on handheld
devices and sending human conversations across networks,
and many audio compression methods rely on essentially
handcrafted features, for example, wavelets (Jagadeesh and
Kumar 2014). Most methods for lossy compression of au-
dio has the goal of ensuring signals are audible to humans,
and hence most models are based upon the models of hu-
man hearing, so-called psychoacoustic models. A salient
feature of human hearing is that its sensitivity varies with
frequency (Painter and Spanias 2000), a common strategy
is to transform the audio-signal with the modified discrete
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cosine transform (MDCT) and address frequency bands in-
dividually. Another phenomenon of human hearing is called
simultaneous masking where signal A can make signal B
(which is of a different frequency and intensity) inaudible
(Jagadeesh and Kumar 2014).

While traditional compression schemes have typically re-
lied on handcrafted features, the advent of deep learning
has spurred interest in data-driven approaches to compres-
sion. Previous research has primarily focused on images and
video, proposing various continuous and differentiable prox-
ies for entropy and quantization, see for example (Ballé, La-
parra, and Simoncelli 2016) and (Agustsson et al. 2017).
The only work on audio compression known to the authors
is on human speech (Kankanahalli 2017) which has is dif-
ferent in terms of frequency distribution, complexity, and
dataset cleanliness; the proposed architecture relies on soft-
max quantization.

Future Work and Conclusions

Managers of protected areas designed for the forest ele-
phants are interested in better conservation tools but need
to see definitive proof of their efficacy. If useful information
about elephant populations and human encroachments can
reach managers within a reasonable timeframe, the poten-
tial to expand acoustic monitoring across the Congo Basin
becomes a reality. Collaboration with managers is thus in-
strumental in developing a rapid work-flow for the current
acoustic monitoring project in northern Congo, which cov-
ers 1500 square km of rainforest and generates seven ter-
abytes of sound data quarterly. We hope that these proof-of-
concept demonstrations of how various Al techniques can
inspire future work on PAM, with the ultimate goal of real-
world implementation.

In this work, we have introduced a dataset of elephant
calls recorded in the wild aimed at promoting interest and
progress in automatic methods for passive acoustic mon-
itoring and discussed our methods for labeling it. Using
modern neural network architecture, state-of-the-art training
regimes and data-augmentation techniques we have shown
how to improve upon previously proposed method for pas-
sive acoustic monitoring. Additionally, we have addressed
how wireless network infrastructure is often lacking in sub-
Saharan Africa data transfer quickly becomes a bottleneck
for real-time systems. To circumvent this issue, we have in-
troduced a novel scheme for jointly optimizing bit-rates and
prediction accuracy, which beats a baseline based upon mod-
els of human hearing.
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Parameter Value

init. learning rate | 0.1

SGD momentum | 0.9

batch size 64
initialization kaiming
weight decay 0.0001

loss function cross-entropy

Table 5: Hyper-parameters used for training.
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Figure 7: The sites from which the elephant recordings were
collected, as seen via Google Earth. All areas were close to
forest clearings, additionally, one is close to a river while
CEB1 and CEB4 are within logging concessions. Note that
this paper did not use sounds from all sites in this map.
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