The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Hierarchical Reinforcement Learning for Course Recommendation in MOQOCs

Jing Zhang,'?> Bowen Hao,"> Bo Chen,'? Cuiping Li,">* Hong Chen,'? Jimeng Sun’

Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China

2Information School, Renmin University of China

3Computational Science and Engineering at College of Computing, Georgia Institute of Technology
{zhang-jing, jeremyhao, bochen, licuiping, chong} @ruc.edu.cn, jsun@cc.gatech.edu

Abstract

The proliferation of massive open online courses (MOOCS)
demands an effective way of personalized course recommen-
dation. The recent attention-based recommendation models
can distinguish the effects of different historical courses when
recommending different target courses. However, when a user
has interests in many different courses, the attention mecha-
nism will perform poorly as the effects of the contributing
courses are diluted by diverse historical courses. To address
such a challenge, we propose a hierarchical reinforcement
learning algorithm to revise the user profiles and tune the
course recommendation model on the revised profiles.
Systematically, we evaluate the proposed model on a real
dataset consisting of 1,302 courses, 82,535 users and
458,454 user enrolled behaviors, which were collected from
XuetangX—one of the largest MOOC:s in China. Experimen-
tal results show that the proposed model significantly outper-
forms the state-of-the-art recommendation models (improv-
ing 5.02% to 18.95% in terms of HR@10).

Introduction

Nowadays, massive open online courses, or MOOCs, are
attracting widespread interest as an alternative education
model. Lots of MOOCs platforms such as Coursera, edX
and Udacity have been built and provide low cost opportuni-
ties for anyone to access a massive number of courses from
the worldwide top universities. The proliferation of hetero-
geneous courses in MOOC:s platforms demands an effective
way of personalized course recommendation for their users.

The problem can be simply formalized as given a set of
historical courses that were enrolled by a user before time ¢,
we aim at recommending the most relevant courses that will
be enrolled by the user at time ¢ + 1. We can view the his-
torical enrolled courses as a user’s profile, and the key factor
of recommendation is to accurately characterize and model
the user’s preference from her profile. Many state-of-the-art
algorithms have been proposed to model users’ preferences
in different ways. For example, when ignoring the order of
the historical courses, we can adopt the factored item sim-
ilarity model (FISM) (Kabbur, Ning, and Karypis 2013) to
represent each course as an embedding vector and average
the embeddings of all the historical courses to represent a

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

435

Attentior

coefficient

ts

pmbabu n

11.50 9.63 332 377 1.80 3.00 039
Data Operation Logic Contemporary Linear Big Data
Structure System Calculus Physics Algebra " Foundation Systems
N Vv X X Real target
cccccc
Histor
543 4.64 5.65 4.51 0.42
Data Operation Logic Contemporary | _f by 1o Linear | | Programming Financial
Structure System Calculus Physics Y 1" Algebra["| Foundation || |Management
X X X X Random arget

LLLLLLL
Historical courses

Figure 1: A motivating example of course recommendation.
The scores on top of the historical courses are the atten-
tion coefficients calculated by NAIS and the scores on top
of the target courses are the recommendation probabilities
predicted by NAIS (He et al. 2018). The goal of this paper is
to remove the courses with few contributions in a prediction
as much as possible.

user’s preference. To capture the order of the courses, we
can input a temporal sequence of the historical courses into
the gated recurrent unit (GRU) model (Hidasi et al. 2016)
and output the last embedding vector as the user preference.
However, the model fidelity is limited by the assumption that
all the historical courses play the same role at estimating the
similarity between the user profile and the target course. To
distinguish the effects of different courses, attention-based
models such as neural attentive item similarity (NAIS) (He
et al. 2018) and neural attentive session-based recommen-
dation (NASR) (Li et al. 2017) can be used to estimate an
attention coefficient for each historical course as its impor-
tance in recommending the target course.

Although existing attention-based models improve the
recommendation performance, it still poses unsolved chal-
lenges. Firstly, when a user enrolled diverse courses, the
effects of the courses that indeed reflect the user’s inter-
est in the target course will be diluted by many irrelevant
courses. For example, Figure 1 illustrates a recommenda-
tion result calculated by NAIS (He et al. 2018). The score
on top of each historical course represents the calculated at-
tention coefficient!. The real target course “Big Data Sys-
tems” is not successfully recommended in the top 10 ranked

!The sum of the attentions is normalized larger than 1 to lessen
the punishment of active users (Cf. (He et al. 2018) for details).

courses. Although the major contributing historical courses
like “Data Structure”, “Operation System” and “Program-
ming Foundation” are assigned relatively high attention co-
efficients, their effects are discounted by many other cate-
gories of courses such as psychology, physics and mathe-
matics after aggregating all the historical courses by their
attentions. Secondly, even if no historical courses can con-
tribute in predicting a random target course, each historical
course will still be rigidly assigned an attention coefficient,
which may cause the random target course ranked before the
real target one, as demonstrated by the random course “Fi-
nancial Management” in Figure 1. In summary, the historical
noisy courses that make small or even no contributions may
disturb the prediction results significantly, even if they are
assigned small attention coefficients.

To deal with the above issues, we propose to revise user
profiles by removing the noisy courses instead of assigning
an attention coefficient to each of them. The key challenge
is that we do not have explicit/supervised information about
which courses from the history are noises and should be re-
moved. We propose a hierarchal reinforcement learning al-
gorithm to solve it. Specifically, we formalize the revising
of a user profile to be a hierarchical sequential decision pro-
cess. A high-level task and a low-level task are performed
to remove the noisy courses, under the supervision of the
feedback from the environment that consists of the dataset
and a pre-trained basic recommendation model. Essentially,
the profile reviser and the basic recommendation model are
jointly trained together. Our contributions include:

e We propose a novel model for course recommendation in
MOOCs, which consists of a profile reviser and a basic
recommendation model. With joint training of the two
models, we can effectively remove the noisy courses in
user profiles.

e We propose a hierarchical reinforcement learning algo-
rithm to revise the user profiles, which enables the model
to remove the noise courses without explicit annotations.

e We collect a dataset, consisting of 1,302 courses, 82,535
users and 458,454 user enrolled behaviors, from Xue-
tangX, one of the largest MOOCsSs in China, to evalu-
ate the proposed model. Experimental results show that
the proposed model significantly outperforms the state-
of-the-art baselines (improving 5.02% to 18.95% in terms
of HR@10).

MOOC Data

We collect the dataset from XuetangX?, one of the largest
MOOC:s platforms in China. We unify the same courses of-
fered in different years such as “Data Structure(2017)” and
“Data Structure(2018)” into one course and only select the
users who enrolled at least three courses from October 1st,
2016 to March 31st, 2018. The resulting dataset consists
of 1,302 courses which belonging to 23 categories, 82,535
users and 458,454 user-course pairs. We also collect the du-
ration of each video in a course watched by a user. Before

“http://www.Xuetangx.com

436

10 20 30 40 50 8000
#Courses 6000

4000

200y ([1L L)
AN AT A AT
20 %.0 02 04 06 0.8 1.0

#Categories / #Courses

#Users

14000
h 12000
10000

0 5 10 15
#Categories

(a) #Courses or #Categories dis-(b) #Categories/#Courses distri-
tribution bution

uuuuu

30000 ¥ %003 0609

e Effort
3 20000
=)
5 10000
—_—

o |
00 02 04 06 08 10
Effort

(d) Effort distribution

T

cooooooo00

Recommendation Prob.

'%.0 0.10.20.30.40.50.60.70.80.9
#Categories / #Courses

(c) Average recommendation
probability

Figure 2: Data distributions.

training the model, we conduct a series of analyses to inves-
tigate why we need to revise the user profiles.

Figure 2a presents the distribution of the enrolled course
number of a user in the top and the distribution of the cat-
egory number of the enrolled courses in the bottom. Then
we calculate the ratio between the category number and the
course number as the category ratio of a profile to repre-
sent the attentiveness of a user. A bigger category ratio in-
dicates the user is more distractive, while a smaller category
ratio indicates the user is more attentive. Figure 2b shows
the distribution of the category ratio. From the three figures,
we can see that although a large number of users enrolled
a small number of courses and categories, the ratio between
them is relatively evenly distributed. We further average the
probabilities of recommending a real target course calcu-
lated by NAIS (He et al. 2018) for the user profiles of the
same category ratio and present the probability distribution
over category ratio in Figure 2c. We can see that the prob-
ability decreases with the increase of the category ratio. In
summary, all these analyses indicate that a large number of
users enrolled diverse courses, and the recommendation per-
formance based on these diverse profiles is impacted. Thus,
we have to study how to revise the user profiles. In addi-
tion, we calculate the ratio between the watch duration and
the total duration of a video as the watch ratio, and use the
maximal watch ratio of all the videos in a course to repre-
sent the effort taken by the user in the course. We present the
effort distribution of user enrolled courses in Figure 2d and
the filtered effort distribution (i.e., effort larger than 0.01) in
the embeded subfigure, which indicate that users take dis-
tinguished effort in different courses. The phenomenon can
guide the design of the agent policy later.

Background: Recommendation Models
Problem Formulation

Let U = {ui,---,upy|} be a set of users and C
{c1,-++ , ¢} be a set of courses in the MOOCs platform.
For each user u, given her profile, i.e., the historical enrolled
courses £ := (ef,--- e}) with e} € C, we are aiming
at recommending the courses u would enroll at next time
t, + 1. We deal with the relative time instead of the abso-
lute time the same as (Rendle, Freudenthaler, and Schmidt-
Thieme 2010).

The Basic Recommendation Model

The key factor of recommendation is to accurately character-
ize a user’s preference according to her profile £*. The gen-
eral idea is, we represent each historical course e} as a real-
valued low dimensional embedding vector p;', and aggre-
gate the embeddings of all the historical courses p?, ..., p}
to represent user u’s preference q,,. If we also represent a
target course c; as an embedding vector p,, the probability
of recommending course ¢; to user u, i.e.,P(y = 1|EY%, ¢;),
can be calculated as:

P(y =1|€",ci) = o(q, ;) M
where y = 1 indicates that c; is recommended to user u and
o is the sigmoid function to transform the input into a proba-
bility. Then the key issue is how to obtain the aggregated em-
bedding q,,. One straightforward way is to average the em-
beddings of all the historical courses, i.e. q,, = i Zi’;l py-
However, equally treating all the courses’ contributions may
impact the representation of a user’s real interest in a tar-
get course. Thus, as NAIS (He et al. 2018) does, we can
adopt the attention mechanism to estimate an attention coef-
ficient a7}, for each historical course e when recommending
c;. Specifically, we parameterize the attention coefficient a;
as a function with p}* and p;, as inputs and then aggregate the
embeddings according to their attentions:

ty

t=1
where f can be instantiated by a multi-layer perception on
the concatenation or the element-wise product of the two
embeddings p}' and p,.

We can also adopt NASR (Li et al. 2017)—an attentive
recurrent neural networks to capture the order of the histor-
ical courses. Specifically, at each time ¢, NASR outputs a
hidden vector hi' to represent a user’s preference until time
t based on both the course enrolled at time ¢ and all the pre-
vious courses before ¢. Then the same attention mechanism
is applied on the hidden vectors of all the timestamps.

The Proposed Model

In this section, we firstly give an overview of the proposed
model, then we introduce a hierarchal reinforcement learn-
ing algorithm to revise user profiles, and finally explain the
training process of the entire model.

437

Original profile

gu

Recommendation probability
Update high-

— cu
ety | —{Reward RJ+—

= [
5

High-level action Internal reward G

Revised profile Revised profile Target course

Basic Recommendation Model

Profile Reviser

Figure 3: The overall framework of the proposed model.

Overview

Although the basic recommendation models can estimate
an attention coefficient for each historical course, the ef-
fects of the contributing courses to the target one may be
diluted by the irrelevant ones when users enrolled many di-
verse courses. To deal with this issue, we propose a model to
revise the user profiles by removing the noisy courses from
the history, and recommend courses based on the revised
profiles. The key challenge is how to determine which his-
torical courses are the noises without direct supervision, i.e.,
identify the courses that disturb the recommendation perfor-
mance. Thus, we propose a hierarchical reinforcement learn-
ing algorithm to solve it. Specifically, we formalize the re-
vising process of a user profile to be a hierarchical sequential
decision process by an agent. Following a revising policy, a
high-level and a low-level task are performed to revise the
profile. After the whole profile of a user is revised, the agent
gets a delayed reward from the environment, based on which
it updates its policy. The environment can be viewed as the
dataset and a pre-trained basic recommendation model as in-
troduced in the previous section. After the policy is updated,
the basic recommendation model is re-trained based on the
profiles revised by the agent. Essentially, the profile reviser
and the recommendation model are jointly trained. Figure 3
illustrates the framework of the proposed model.

Profile Reviser

As mentioned before, the profile reviser aims to remove the
noisy courses with few contributions in a prediction. In-
spired by the theory of hierarchical abstract machines (Parr
and Russell 1998), we cast the task of profile reviser as
a hierarchical Markov Decision Process (MDP). Generally
speaking, we decompose the overall task MDP M into two
kinds of subtasks M" and M', where M" is the high-level
abstract task in the hierarchy and solving it solves the entire
MDP M, and M is the low-level primitive task in the hier-
archy. Each kind of task is defined as a 4-tuple MDP (S, A,
T, R), where S is a set of states, A is a set of actions, 7 is
a transition model mapping S x A x S into probabilities in
[0,1], and R is a reward function mapping S x A x S into
real-valued rewards. We formulate our task by a high-level
task and a low-level task. Specifically, given a sequence of
historical courses £ := (e}, - - - , ef,) of user u and the tar-
get course c;, the agent performs a high-level task of one
binary action to determine whether to revise the whole pro-
file £“ or not. If it decides to revise £, the agent performs

a low-level task of multiple actions to determine whether
to remove each historical course e} € £" or not. After the
low-level task is finished, the overall task is finished. If the
high-level task decides to make no revision, low-level task
will not be executed and the overall task is directly finished.

We formulate the profile reviser as two-level MDPs, be-
cause a part of the user profiles are discriminative and can
be already correctly predicted by the basic recommenda-
tion model. As presented in Figure 2b, about 30% users
are relatively attentive (i.e., #Categories/#Courses<0.4) and
the corresponding average probabilities of recommending
the real target courses are high (i.e., larger than 0.6). We
can simply keep those profiles as the original ones and only
revise the indiscriminative ones. Out of this consideration,
we design a high-level task to decide whether to revise the
whole profile of a user or not, and a low-level task to decide
which course in the profile should be removed.

Note that for both the high-level and low-level task, given
a state and an action, it will transit to a determined state with
probability 1. We will introduce the details of how to design
the state, action and reward for the two-level tasks.
State. The high-level task takes an action according to the
state of the whole profile £" and the low-level task takes
a sequence of actions according to the state of each course
e} € £". We define different state features for the two tasks.

o Low-level task: When determining to remove a histori-
cal course el € £¥, we define the state features s} as the
cosine similarity between the embedding vectors of the
current historical course e} and the target course c;, the
element-wise product between them, and also the average
of the two previous features over all the reserved histor-
ical courses, where the embedding vector of a course p;
can be provided by a pre-trained basic recommendation
model. We also define the effort taken in a course as an
additional state feature, as the effort taken in a course is
significantly different (Cf. Figure 2d) and it may also in-
dicate the contribution of e} to ¢; besides the similarity-
based features. For simplicity and clarity, we ignore the
superscript v in all the notations about the state features.

o High-level task: When determining to revise a whole pro-
file £%, we define the state features s” as the average co-
sine similarity between the embedding vectors of each
historical course in £" and the target course and the av-
erage element-wise product between them. We also de-
fine an additional state feature as the probability P(y =
1|€™, ¢;) of recommending ¢; to user u by a basic recom-
mendation model. The probability reflects how credible
the course ¢; will be recommended based on the profile
&". The lower recommendation probability is, more effort
should be taken to revise £“. Note we train the profile re-
viser only based on the positive instances, i.e., a user pro-
file paired with a real target course, as negative instances
with random target courses can hardly guide the agent to
select the contributing courses to the target course. Thus
P(y = 0|EY, ¢;) for a negative instance is not calculated.

Action and Policy. We define the high-level action a" €
{0,1} as a binary value to represent whether to revise the
whole profile of a user or not, and define a low-level action

438

al € {0,1} as a binary value to represent whether to remove
the historical course ey or not. We perform a low-level action
al according to the policy function as follows:

1
Ht

(s}, a)

ReLU(W's! +b),
P(ajs;, ©")
a;o(WoHy) + (1 — ap)(1 — o(W5HY)),

3)

where W) € Rdixd>, W), € R%*1 and b' € R% are the
parameters to be learned with d! as the number of the state
features and d), as the dimension of the hidden layer. No-
tation Hi represents the embedding of the input state. We
denote © = {W! W, b'}. Sigmoid function o is used to
transform the input into a probability. The high-level action
is performed according to the similar policy function with
different parameters ©" = {W% W b"}.

Reward. The reward is a signal to indicate whether the per-
formed actions are reasonable or not. We assume that ev-
ery low-level action in the low-level task has a delayed re-
ward after the last action aiu is performed for the last course
e, € £¥. In another word, the immediate reward for a low-
level action is zero except the last low-level action. Thus, we
define the reward for each low-level action as:

Uy) logp(EY c) —logp(EY,¢;). ift =ty;
Ray,s1) = { () 0 () otherwise,
where p(£, ¢;) is an abbreviation of p(y = 1|/£¥, ¢;) and £*
is the revised profile, which is a subset of £*. For the special
case £¥ = @, i.e., all the historical courses are removed, we
randomly select a course from the original set £“. The re-
ward is defined as the difference between the log-likelihood
after and before the profile is revised. A positive difference
indicates a positive utility gained by the revised profile.

If the high-level task chooses the revising action, it calls
the low-level task and receives the same delayed reward
R(al,s!) after the last low-level action is performed. Oth-
erwise, it keeps the original profile and obtain a zero reward
as log p(€", ¢;) is not changed.

In addition, we define an internal reward G(al, sl) which
is used only inside the low-level task to speed up its
local learning and does not propagate to the high-level
task (Ghavamzadeh and Mahadevan 2003). Specifically, we
first calculate the average cosine similarity between each
historical course and the target course after and before the
profile is revised, and then use the difference between them
as the internal reward G (al,s!). The internal reward encour-
ages the agent to select the most relevant courses to the tar-
get course. Finally, we sum G(a!,s!) and R(al,sl) as the
reward for the low-level task.

Objective Function. We aim at finding the optimal param-
eters of the policy function defined in Eq. (3) to maximize
the expected reward, i.e.,

©" = argmaxg Z Po(1;0)R(7), 4)

Pre-train the basic recommendation model;

Pre-train the profiler reviser by running Algorithm 2 with the
basic recommendation model fixed;

Jointly train the two models together by running Algorithm 2;

Algorithm 1: The Overall Training Process

where © represents either ©" or ©', 7 is a sequence of the
sampled actions and the transited states, Po(7;©) denotes
the corresponding sampling probability and R(7) is the re-
ward for the sampled sequence 7. The sampled sequence
T canbe {s},al,sh, -, s}, al, sk, |, -} for the low-level

task and {s",a”} for the high-level task. Since there are
too many Fossible action-state trajectories for the entire se-
quences of the two tasks, we adopt the policy gradient the-
orem (Sutton et al. 2000) and the monto-carlo based policy
gradient method (Williams 1992) to sample M action-state
trajectories, based on which we calculate the gradient of the
parameters for the low-level policy function:

Mty
1
3> Ve logre (s, al) (R(ap" s7) + Glas7)),

m=1t=1
(&)
where the reward R(a}",s;") + G(a}",s}") for each action-
state pair in sequence 7(™) is assigned the same value and
equals to the terminal reward R(a}”,s}")+ G(aj”,s}"). The
gradient for the high-level policy function:

Ve =

M
1
- 1 m m m m
Ve m Z Ve logme(s™,a™)R(a;",si"), (6)

m=1

where the reward R(a™,s™) is assigned as R(aj",s}")

when a™ = 1, and 0 otherwise. We omit the superscript
and " in Eq. (2?) and (2?) for simplicity.

Model Training

The two models of the profile reviser and the basic recom-
mendation model are interleaved together, and we need to
train them jointly. The training process is shown in Algo-
rithm 1, where we firstly pre-train the basic recommenda-
tion model based on the original dataset, then we fix the pa-
rameters of the basic recommendation model and pre-train
the profile reviser to automatically revise the user profiles;
finally, we jointly train the models together. Same as the set-
tings of (Feng et al. 2018), to have a stable update, each pa-
rameter is updated by a linear combination of its old version
and the new old version, i.e., ©pewy = AOpew +(1—A)O 14,
where A < 1. The time complexity is O(L(N X &, x M)),
where L is the number of epochs, N is the number of in-
stances, t,, is the the average number of historical courses
and M is the Monto Carlo sampling time.

Experiments
Experimental Settings

Settings. The dataset is introduced in the section of MOOC
data. We select the enrolled behaviors from October 1st,
2016 to December 30th, 2017 as the training set, and those

439

Input: Training data {', &%, .-+, £V}, a pre-trained basic
recommendation model and a profile reviser
parameterized by ®° and ©° respectively

Initialize © = ©°, & = ¢° ;

for episode |=1 to L do

foreach £ := (e}, - ,ei,) and c; do

Sample a high-level action o™ with ©";

if a" = 0 then
| R(s".a")=0
else
Samlple a sequence of low-level actions
{al,db,--- ,ai“} with ©';

Compute R(a;, st)and G(ai, st);
Compute gradients by Eq. (??) and (2?);
end

end
Update © by the gradients;
Update @ in the basic recommendation model;

end

Algorithm 2: The Hierarchical Reinforcement Learning

from January 1st, 2018 to March 31st, 2018 as the test set.
Each instance in the training or the test set is a sequence of
historical enrolled courses paired with a target course. Dur-
ing the training process, for each sequence in the training
data, we hold out the last course as the target course, and the
rest are treated as the historical courses. For each positive
instance, we construct 4 negative instances by replacing the
target course with each of 4 randomly sampled courses. Dur-
ing the test process, we treat each enrolled course in the test
set as the target course, and the corresponding courses of the
same user in the training set as the historical courses. Each
positive instance in the test set is paired with 99 randomly
sampled negative instances (He et al. 2018).

Baseline Methods. The comparison methods include:

BPR (Rendle et al. 2009): optimizes a pairwise ranking
loss for the recommendation task in a Bayesian way.

MLP (He et al. 2017): applies a multi-layer perceptron
(MLP) on a pair of user and course embeddings to learn the
probability of recommending the course to the user.

FM (Rendle 2012): is a principled approach that can eas-
ily incorporate any heuristic features. But for fair compari-
son, we only use the embeddings of users and courses.

FISM (Kabbur, Ning, and Karypis 2013): is an item-
to-item collaborative filtering algorithm which conducts rec-
ommendation based on the average embedding of all the his-
torical courses and the embedding of the target course.

NAIS (He et al. 2018): is also an item-to-item collab-
orative filtering algorithm but distinguishes the weights of
different historical courses by an attention mechanism.

GRU (Hidasi et al. 2016): is a gated recurrent unit model
that receives a sequence of historical courses as input and
output the last hidden vector as the representation of a user’s
preference.

NASR (Li et al. 2017): is an improved GRU model that
estimates an attention coefficient for each historical course
based on the corresponding hidden vector output by GRU.

Table 1: Recommendation performance (%).

Methods HR@5 HR@10 NDCG@S NDCG@10
BPR 46.82 60.73 34.16 38.65
MLP 52.16 66.29 40.39 44.41
FM 46.01 61.07 35.28 40.15
“FISM 5273 65.64 4000 4498
GRU 52.07 68.63 38.92 46.30
“NAIS 5642 69.05 4373 4782
NASR 54.64 69.48 42.39 47.33
" HRL+NAIS 64.59 ~ 79.68 4574 5069
HRL+NASR 59.05 74.50 47.51 52.73

HRL+NAIS: is the proposed model that adopts NAIS as
the basic recommendation model and we jointly train it with
the hierarchical reinforcement learning (HRL) based profile
reviser.

HRL+NASR: is also the proposed model but adopts
NASR as the basic recommendation model.

Evaluation Metrics. We evaluate all the methods in terms
of the widely used metrics Hit Ratio of top K items
(HR@ K) and Normalized Discounted Cumulative Gain of
top K items NDCG@K), where HR@ K is a recall-based
metric that measures the percentage of the ground truth in-
stances that are successfully recommended in top-K, and
NDCG@ K is a precision-based metrics that accounts for the
predicted position of the ground truth instance (Huang et al.
2018; He et al. 2018; Rendle, Freudenthaler, and Schmidt-
Thieme 2010). We set K as 5 and 10 and calculate all the
metrics for every 100 instances (1 positive plus 99 negatives)
and report the average score of all the users.
Implementaion Details. We implement the model by Ten-
sorflow and run the code on an Enterprise Linux Server with
40 Intel(R) Xeon(R) CPU cores (E5-2630 and 512G mem-
ory) and 1 NVIDIA TITAN V GPU core (12G memory).
For the profile reviser, sampling time M is set as 3, the
learning rate is set as 0.001/0.0005 at the pre-training and
joint-training stage respectively. In the policy function, the
dimensions of the hidden layer d}, and d} are both set as
8. For the basic recommender, the dimension of the course
embeddings is set to 16, the learning rate is 0.01 at both the
pre-training and joint-training stage, and the size of the mini-
batch is 256. The delayed coefficient A for the joint-training
is 0.0005. The code is online now?>.

Performance Analysis

Overall Prediction Performance. Table 1 shows the over-
all performance of all the comparison methods. The pro-
posed model performs clearly better than the comparison
baselines (improving 5.02% to 18.95% in HR@10). The
user-to-item based collaborative filtering methods such as
BPR, MLP and FM perform the worst among all the meth-
ods, because in our dataset, most of the users only enrolled a
few courses (i.e., less than 10 courses as shown in Figure 2a).
Thus the embeddings for many users can not be sufficiently
inferred from the sparse data. Among all the item-to-item

3https://github.com/jerryhao66/HRL

440

(-10.1,77.41)

RL+NAIS
BN HRL+NAIS

HR@5 HR@I0 NDCG@5 NDCG@10

(a) RL+NAIS

(b) Greedy+NAIS

Figure 4: Recommendation performance of model variants.

based collaborative filtering methods, FISM and GRU per-
form worse than the others, as they make equal treatments
on all the historical enrolled courses and thus the prefer-
ence representation ability is limited. NAIS and NASR dis-
tinguish the effects of different historical courses by assign-
ing them different attention coefficients. However, the use-
less courses will dilute the effects of the useful courses in
the history when users enrolled many diverse courses. The
proposed methods, HRL+NAIS and HRL+NASR perform
the best, as they forcely remove the noisy courses instead of
assigning soft attention coefficients, which distinguish the
useful and useless courses significantly.

For the proposed methods, processing 1 episode of profile
update requires 50-80 seconds and the recommender update
requires 20-30 seconds. The best recommendation perfor-
mance on test set is reached after about 20 episodes of rec-
ommender pre-training, 20 episodes of profile reviser pre-
training and 5 episodes of joint training through the data,
which totally requires 30-45 minutes of joint training.
Compared with One-level RL. We compare the proposed
HRL with an one-level RL algorithm, which only uses the
low-level task to directly decide to remove each course or
not. The comparison results in Figure 4a show that HRL out-
performs the one-level RL. We find that for HRL, the aver-
age #Categories/#Courses of the revised profiles is 0.73 and
that for the one-level RL is 0.75, which indicates that the
revised profiles by the proposed HRL are more consistent
(The larger the value is, the more diverse a profile is). This
is because HRL uses an additional high-level task to decide
to keep the consistent profiles and revise the diverse profiles.
To verify whether the high-level task takes effect or not, we
further check the difference between the kept profiles and
the revised profiles decided by the high-level task. The av-
erage #Categories/#Courses of the kept profiles is 0.57, and
that of the revised profiles is 0.69, which indicates that the
high-level task tends to keep more consistent profiles while
revise more diverse profiles.

Compared with Greedy Revision. We compare the pro-
posed HRL with a greedy revision algorithm, which firstly
decides to revise the whole profile &% if log P(y
1/€%,¢;) < p1, and further removes a eff € £ if its co-
sine similarity with c; is less than 5. In Figure 4b, we tune
w1 from -2.5 to 0 with interval 0.5, and tune po from -0.1
to 0.1 with interval 0.04, and obtain the best HR@10 as
77.44% when p1=-1 and p2=0.1, which is 2.27% less than
HRL4+NAIS. Note the best performance is obtained when

Table 2: Case studies of the profiles revised by HRL+NAIS and the attention coefficients learned by NAIS.

Methods Revised profile or the learned attentions The target course
HRL+NAIS Crisis Negotiation, Social Civilization, Web Technology, C++ Program Web Development
NAIS Crisis Negotiation(29.61), Social Civilization(29.09), Web Technology(28.32), C++ Program(28.12) | Web Development
HROANAS |~~~] Modem Biology, Medical Mystery, Biomedical Tmaging, R Program [~ Biology
NAIS Modern Biology(37.79), Medical Mystery(37.96), Biomedical Imaging(37.62), R Program(37.84) Biology
HRL+NAIS |~~~ ~ 7~ ~ Web Technology, Art Classics, National Unity Theory, Philosophy ~ ~ =~~~ [~ Life Aesthetics -
NAIS Web Technology(38.32), Art Classics(35.87), National Unity Theory(40.63), Philosophy(43.69) Life Aesthetics

the number of the remaining courses is almost the same as
those by HRL+NAIS.

Compared with Attentions Coefficients. We present
several cases of the revised profiles by the proposed
HRL+NAIS and show three cases and the corresponding
learned attention coefficients by NAIS in Table 2. The cases
present that HRL+NAIS can definitely remove the noisy
courses in the profile that are totally irrelevant to the tar-
get course. In contrary, although NAIS assigns high atten-
tions to the contributing historical courses, the attentions of
some other irrelevant courses are not significantly different,
or even higher than the relevant ones, thus the effects of the
real contributing courses are discounted after aggregating all
the historical courses by their attentions. As a result, the per-
formance of the recommendation model based on the dis-
criminative revised profiles is improved.

Related Work

Collaborative filtering (CF) is widely used to do recom-
mendation. User-to-item based CF, such as matrix factor-
ization (Koren, Bell, and Volinsky 2009), bayesian person-
alized ranking (BPR) (Rendle et al. 2009) and factoriza-
tion machine (FM) (Rendle 2012) performs recommenda-
tion based on both the user and item embeddings. These
shallow models are further extended to deep neural network
models (He et al. 2017; Guo et al. 2017; Zhang, Du, and
Wang 2016). The user-to-item CF suffers from the spar-
sity of users’ profiles. On the contrary, the item-to-item CF
does not need to estimate user embeddings, and is heav-
ily adopted in industrial applications (Davidson et al. 2010;
Smith and Linden 2017). Early item-to-item based CF uses
heuristic metrics such as Pearson coefficient or cosine simi-
larity to estimate item similarities (Sarwar et al. 2001), fol-
lowed by a machine learning method which calculates the
item similarity as the dot product of item embeddings (Kab-
bur, Ning, and Karypis 2013). Sequential based models such
as RNN (Tan, Xu, and Liu 2016) and GRU (Hidasi et al.
2016) are proposed to capture the temporal factor. Then
the attention-based models such as NAIS (He et al. 2018)
and NASR (Li et al. 2017) are further proposed to dis-
tinguish the effects of different items. Several researches
are conducted on MOOCs platforms, such as learning be-
havior analysis (Anderson et al. 2014; Qiu et al. 2016;
Qi et al. 2018) and course recommendation (Jing and Tang
2017). They focus on extracting features from multi-mode
data sources besides the enrolled behaviors of users, thus it
is unfair to compare with their methods.

Recently, some researchers attempt to adopt the reinforce-

441

ment learning algorithm to solve many kinds of problems,
such as relation classification (Feng et al. 2018), text clas-
sification (Zhang, Huang, and Zhao 2018), information ex-
traction (Narasimhan, Yala, and Barzilay 2016), question an-
swering (Wang et al. 2018b) and treatment recommenda-
tion (Wang et al. 2018a). Inspired by these successful at-
tempts, we propose a hierarchal reinforcement learning al-
gorithm to conduct course recommendation. Hierarchical re-
inforcement learning aims at decomposing complex tasks
into multiple small tasks to reduce the complexity of de-
cision making (Barto and Mahadevan 2003), where differ-
ent HRLs such as option-based HRL that formulates the ab-
stract knowledge and action as options (Sutton, Precup, and
Singh 1999) and the hierarchical abstract machines (HAMs)
that decomposes high-level activities into low-level activi-
ties (Sutton, Precup, and Singh 1999) are proposed. We for-
malize our problem by the theory of HAM:s.

Conclusion

We present the first attempt to solve the problem of course
recommendation in MOOC:s platform by a hierarchical rein-
forcement learning model. The model jointly trains a profile
reviser and a basic recommendation model, which enables
the recommendation model being trained on user profiles
revised by the profile reviser. With the designed two-level
tasks, the agent in the hierarchical reinforcement learning
model can effectively remove the noisy courses and reserve
the real contributing courses to the target course.

We will try the proposed model in other domains. For ex-
ample, people usually watch diverse movies, read diverse
books and purchase diverse products. In those scenarios, we
can imagine the need for selecting the most contributing his-
torical items from users’ diverse profiles, which poses the
same challenges with the recommendations in MOOC:s. In
the future, we will also explore how to connect the courses
in MOOC:s to the external entities or knowledge such as the
academic papers and researchers (Tang et al. 2008) to enable
more accurate course recommendation in MOOCs.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Program of
China (No.2018YFB1004401) and NSFC under the grant
No. 61532021, 61772537, 61772536, 61702522, the Re-
search Funds of Renmin University of China (15XNLQO06)
and the Research Funds of Online Education (2017ZD205).

*Cuiping Li is the corresponding author.

References

Anderson, A.; Huttenlocher, D.; Kleinberg, J.; and
Leskovec, J. 2014. Engaging with massive online courses.
In WWW’14, 687-698.

Barto, A. G., and Mahadevan, S. 2003. Recent advances in
hierarchical reinforcement learning. Discrete event dynamic
systems 13(1-2):41-77.

Davidson, J.; Liebald, B.; Liu, J.; Nandy, P.; Van Vleet, T.;
Gargi, U.; Gupta, S.; He, Y.; Lambert, M.; Livingston, B.;
etal. 2010. The youtube video recommendation system. In
Recommender Systems’10, 293-296.

Feng, J.; Huang, M.; Zhao, L.; Yang, Y.; and Zhu, X. 2018.
Reinforcement learning for relation classification from noisy
data. In AAAI’1S, 5779-6786.

Ghavamzadeh, M., and Mahadevan, S. 2003. Hierarchical
policy gradient algorithms. Computer Science Department
Faculty Publication Series 173.

Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. Deepfm:
a factorization-machine based neural network for ctr predic-
tion. In IJCAI'17, 1725-1731.

He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S.
2017. Neural collaborative filtering. In WWW’17, 173—-182.

He, X.; He, Z.; Song, J.; Liu, Z.; Jiang, Y.-G.; and Chua,
T.-S. 2018. Nais: Neural attentive item similarity model
for recommendation. IEEE Transactions on Knowledge and
Data Engineering.

Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D.
2016. Session-based recommendations with recurrent neural
networks. In ICLR’16.

Huang, J.; Zhao, W. X.; Dou, H.; Wen, J.-R.; and Chang,
E. Y. 2018. Improving sequential recommendation with
knowledge-enhanced memory networks. In SIGIR’18, 505—
514.

Jing, X., and Tang, J. 2017. Guess you like: course recom-
mendation in moocs. In WI’17, 783-789.

Kabbur, S.; Ning, X.; and Karypis, G. 2013. Fism: factored
item similarity models for top-n recommender systems. In
SIGKDD’13, 659-667.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix fac-
torization techniques for recommender systems. Computer
(8):30-37.

Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; and Ma, J.
2017. Neural attentive session-based recommendation. In
CIKM’17,1419-1428.

Narasimhan, K.; Yala, A.; and Barzilay, R. 2016. Improving
information extraction by acquiring external evidence with
reinforcement learning. In EMNLP’16.

Parr, R., and Russell, S. J. 1998. Reinforcement learning
with hierarchies of machines. In NIPS’98, 1043-1049.

Q1i, Y.; Wu, Q.; Wang, H.; and Sun, M. 2018. Bandit learning
with implicit feedback. In NIPS’18.

Qiu, J.; Tang, J.; Liu, T. X.; Gong, J.; Zhang, C.; Zhang,
Q.; and Xue, Y. 2016. Modeling and predicting learning
behavior in moocs. In WSDM’16, 93—-102.

442

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In UAI’09, 452-461.

Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized markov chains for next-
basket recommendation. In WWW’10, 811-820.

Rendle, S. 2012. Factorization machines with libfm. ACM
Transactions on Intelligent Systems and Technology 3(3):57.

Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In WWW’01, 285-295.

Smith, B., and Linden, G. 2017. Two decades of recom-
mender systems at amazon. com. [EEE Internet Computing
21(3):12-18.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In NIPS’ 00, 1057-1063.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in re-
inforcement learning. Artificial Intelligence 112(1-2):181—
211.

Tan, Y. K.; Xu, X.; and Liu, Y. 2016. Improved recur-
rent neural networks for session-based recommendations. In
Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, 17-22.

Tang, J.; Zhang, J.; Yao, L.; Li, J.; Zhang, L.; and Su, Z.
2008. Arnetminer: extraction and mining of academic social
networks. In SIGKDD’08, 990-998.

Wang, L.; Zhang, W.; He, X.; and Zha, H. 2018a. Super-
vised reinforcement learning with recurrent neural network
for dynamic treatment recommendation. In SIGKDD 18,
2447-2456.

Wang, Z.; Liu, J.; Xiao, X.; Lyu, Y.; and Wu, T. 2018b.
Joint training of candidate extraction and answer selection
for reading comprehension. In ACL’18, 1715-1724.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8(3-4):229-256.

Zhang, W.; Du, T.; and Wang, J. 2016. Deep learning over
multi-field categorical data. In ECIR’16, 45-57.

Zhang, T.; Huang, M.; and Zhao, L. 2018. Learning struc-

tured representation for text classification via reinforcement
learning. In AAAI’18, 6053-6060.

