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Abstract
Clustering on multi-view data has attracted much more atten-
tion in the past decades. Most previous studies assume that
each instance appears in all views, or there is at least one view
containing all instances. However, real world data often suf-
fers from missing some instances in each view, leading to the
research problem of partial multi-view clustering. To address
this issue, this paper proposes a simple yet effective Anchor-
based Partial Multi-view Clustering (APMC) method, which
utilizes anchors to reconstruct instance-to-instance relation-
ships for clustering. APMC is conceptually simple and easy
to implement in practice, besides it has clear intuitions and
non-trivial empirical guarantees. Specifically, APMC firstly
integrates intra- and inter- view similarities through anchors.
Then, spectral clustering is performed on the fused similari-
ties to obtain a unified clustering result. Compared with ex-
isting partial multi-view clustering methods, APMC has three
notable advantages: 1) it can capture more non-linear rela-
tions among instances with the help of kernel-based similari-
ties; 2) it has a much lower time complexity in virtue of a non-
iterative scheme; 3) it can inherently handle data with nega-
tive entries as well as be extended to more than two views.
Finally, we extensively evaluate the proposed method on five
benchmark datasets. Experimental results demonstrate the su-
periority of APMC over state-of-the-art approaches.

1 Introduction
Multi-view data has already been widely studied in the past
few years (Lahat, Adali, and Jutten 2015; Bai et al. 2016; Bai
et al. 2017). Various clustering models have been proposed
to solve the problem that grouping unlabeled data from di-
verse domains into a unified partition (Kumar and Daume
2011; Kumar, Rai, and Daume 2011; Zhang et al. 2018a;
Zhang et al. 2018b). However, real-world data often suffers
from incompleteness, which makes traditional multi-view
clustering methods inevitably degenerate or even fail.

Incompleteness in multi-view data can be roughly divided
into two cases. One is at feature level, in which certain fea-
tures are missing from particular data points (Williams and
Carin 2005; Williams et al. 2007; Dick, Haider, and Schef-
fer 2008). The other case is at instance level, where some
instances are not available (Yuan et al. 2012; Shao, Shi,
and Yu 2013). Specifically, the ratio of missing instances
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may be approximately 90% in industrial data (Little and
Rubin 2014). Besides, each view may suffer from missing
some instances (Xiang et al. 2013; Xu, Tao, and Xu 2015;
Yang et al. 2018b). This situation typically refers to partial
multi-view data, which is common in practical applications
(Cai et al. 2018; Zheng et al. 2018).

Previous complete multi-view methods such as Multi-
NMF (Liu et al. 2013) cannot work well in this scenario,
thus partial multi-view clustering has attracted increasing at-
tention recently. Many efforts have been made to solve this
problem. Representative works mainly resort to matrix fac-
torization to exploit latent spaces for clustering. PVC (Li,
Jiang, and Zhou 2014) is a pioneering work using nonnega-
tive matrix factorization (NMF) and L1-norm sparse regular-
izer to learn common and private latent spaces. IMG (Zhao,
Liu, and Fu 2016) integrates PVC and manifold learning
to adaptively capture the global structure of all instances.
Meanwhile, MIC (Shao, He, and Yu 2015) extends Multi-
NMF (Liu et al. 2013) via weighted NMF with L2,1 regular-
ization. DAIMC (Hu and Chen 2018) carries forward MIC
through semi-NMF and L2,1-norm regularized regression.
However, they have several drawbacks to some extent.

• Few non-linear relations among instances. Almost all of
these partial multi-view clustering approaches inherit the
limitations of matrix factorization, i.e., involving in linear
operations. Therefore, they usually capture various linear
correlations among instances, neglecting the potential and
valuable non-linear relations.

• Relatively high time cost. There are seldom closed-form
solutions for these multi-variable optimization problems.
Hence, iterative algorithms are utilized for the optimal re-
sults. Most existing works have a quadratic or even cubic
time complexity due to matrix eigen decomposition and
inverse operation in updating variables. This will harm-
fully restrict their efficiency in large-scale datasets.

• Limited generalization ability. Some previous studies
such as MIC cannot directly work in the situation where
negative entries exist in features. Besides, most of the
above methods such as PVC and IMG cannot be gener-
alized to data with more than two views. The former is
caused by the usage of NMF which is only applicable to
nonnegative data. The latter is resulted from the specific
design for two-view scenarios in their models.
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To address these issues, this paper proposes an Anchor-
based Partial Multi-view Clustering (APMC) approach,
which utilizes anchors to reconstruct instance-to-instance re-
lationships for clustering. We summarize two characteristics
in partial multi-view data as follows.

1) The common instances appearing in all views can help
bridge the instances with non-overlapping partial views.

2) The instances with missing views cannot be removed
since they still provide necessary information for clustering.

Then, our proposed APMC method makes full use of the
two characteristics and integrates intra- and inter- view sim-
ilarities through anchors. More specifically, we regard the
common instances as anchors to bridge all the inter-view in-
stances. This can solve the dilemma that instances sharing
no common views cannot be directly used for computing
cross-view similarities. After obtaining the fused similari-
ties by anchors, spectral clustering is performed to obtain a
unified clustering result. APMC potentially provides a sim-
ple yet effective partial multi-view clustering solution which
is non-iterative. Experimental results well validate that our
proposed APMC method performs remarkably and gener-
ally better than state-of-the-art approaches.

Compared with existing partial multi-view clustering ap-
proaches, our proposed APMC method is conceptually sim-
ple and easy to implement in practice, besides it has clear
intuitions and non-trivial empirical guarantees. The major
contributions of our paper are four-fold.

• We develop Gaussian kernel function based instance-to-
anchor similarities, which helps bridge all the inter-view
instances and capture more non-linear relations.

• We fuse intra- and inter- view similarities in one step.
Without iterative steps and complicated matrix opera-
tions, APMC has a relatively low time complexity.

• We propose a strategy to directly extend APMC for more
than two partial views. Meanwhile, our method can inher-
ently handle data with negative entries.

• Experimental results on five benchmark datasets demon-
strate the superiority of APMC over state-of-the-art par-
tial multi-view clustering methods.

2 Related Work
Our paper is most related to partial multi-view clustering.
Here follows a brief review of related methods.

The pioneering work PVC was proposed in (Li, Jiang,
and Zhou 2014), which utilized the information of shared in-
stances to learn a common latent representation. Meanwhile,
it explored private latent spaces for unaligned instances via
NMF. IMG (Zhao, Liu, and Fu 2016) extended PVC by
adding a graph Laplacian term to learn the global structure
over all instances across all views. GPMVC (Rai et al. 2016)
also extended PVC to be a k partial-view algorithm with a
view specific graph Laplacian regularization. In (Yin, Wu,
and Wang 2015; Yin, Wu, and Wang 2017), unified latent
representations and projection matrices were learned for in-
complete multi-view data. L2,1 regularization was used in
MIC (Shao, He, and Yu 2015) together with a weighted
NMF framework. After that, (Shao et al. 2016) designed an

online version OMVC to deal with large-scale cases, which
utilized a dynamic weight setting and a faster projected
gradient descent algorithm. In (Zhao et al. 2016), a partial
multi-modal sparse coding framework was proposed to ex-
ploit the similarity structure within the same modality and
between different modalities. (Qian et al. 2016) developed
a double constrained framework called DCNMF by incor-
porating the cluster similarity and manifold preserving con-
straints. (Gao, Peng, and Jian 2016) gave an IVC algorithm
for clustering with more than two incomplete views, which
was based on spectral graph theory and kernel alignment
principle. Recently, (Xu et al. 2018) sought a latent space
and then performed data reconstruction for partial multi-
view subspace representation. (Yang et al. 2018b) leveraged
the intrinsic and extrinsic information together to yield an in-
ductive learner SLIM for semi-supervised scenarios. It can
also be readily adopted to either classification or clustering
tasks. In (Yang et al. 2018a), partial multi-view clustering
problem was mathematically formulated as sparse low-rank
representation and jointly measuring inter- and inter- view
relations. (Hu and Chen 2018) proposed a DAIMC algo-
rithm based on weighted semi-NMF. It combined the advan-
tages of PVC and MIC while being able to handle data with
negative entries. Moreover, it declared to be capable of more
than two views.

3 The Proposed Framework
3.1 Notation and Problem Definition
Except in some specified cases, italic letters but not in bold
(k,K, · · ·) represent scalars. Bold lowercase letters (x, · · ·)
denote vectors, while bold uppercase letters (X, · · ·) are ma-
trices. I is an identity matrix with an appropriate size and 1
is an all-one vector with a compatible length.

For the ease of discussion and without loss of generality,
we first take two-view case for illustration. For partial multi-
view data, we follow (Li, Jiang, and Zhou 2014) to sepa-
rate original data as

{
X(1,2),X(1),X(2)

}
, where X(1,2) ∈

Rnc×(d1+d2), X(1) ∈ Rn1×d1 and X(2) ∈ Rn2×d2 denote
the instances present in both views, only view-1 and only
view-2, respectively. The feature dimensions of view-1 and
view-2 instances are d1 and d2, respectively. The number of
common instances in two views is nc. The number of in-
stances only in view-1 is n1; and n2 has a similar meaning.
The total number of instances is N = nc + n1 + n2.

Partial multi-view clustering aims to group all the above-
mentioned instances into K clusters, where K is assumed to
be predefined by users.

3.2 Motivation and Framework
As stated in §1, partial multi-view data has the following
two main characteristics. 1) On one hand, the common in-
stances appearing in all views can help bridge the instances
with non-overlapping partial views. 2) On the other hand,
the instances with missing views cannot be removed since
they still provide necessary information for clustering.

In light of this analysis, we wish to make full use of the
two characteristics and integrate intra- and inter- view sim-
ilarities for clustering. Fortunately, anchor-based strategies
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Figure 1: Anchor-based similarity reconstruction in our Anchor-based Partial Multi-view Clustering (APMC) method.

(Sa et al. 2010; Liu et al. 2011) provide us an inspiring per-
spective. We can select the common instances as anchors to
bridge all the inter-view instances (§3.3). This can solve the
dilemma that instances sharing no common views cannot be
directly used for computing cross-view similarities. Then,
after obtaining the fused similarities by anchors, spectral
clustering is performed to obtain a unified clustering result
(§3.4). The detailed descriptions of our proposed Anchor-
based Partial Multi-view Clustering (APMC) method are in
the following two subsections.

3.3 Anchor-based Similarity Reconstruction
Anchor-based similarity reconstruction is consist of two
main steps, i.e., the generation of anchor sets and the con-
struction of anchor-based similarity matrix. Figure 1 illus-
trates these key modules.

Generation of anchor sets. It is very challenging to di-
rectly estimate the instance-to-instance similarities in par-
tial multi-view data, as some instances appear in one single
view thus pairwise information may be unavailable. Inspired
by the idea of anchor graph, we determine l pairs of anchor
points by selecting the common instances that appear in both
views1, i.e., l = nc. As illustrated in the middle figure in Fig-
ure 1, the instances in the common area of view-1 and view-
2 are selected as anchors, which can bridge the instances
appearing in non-overlapping partial views.

Construction of anchor-based similarity matrix. After
selecting anchor points, we build a bipartite graph to gener-
ate instance-to-anchor similarities, which is called truncated
similarities in some works. Then, we construct a unified sim-
ilarity matrix by fusing intra- and inter- view similarities.

• Intra-view similarity. Denote the set of all instances in the
v-th view as {x(v)

i }nc+nv
i=1 , the anchor points set in the v-

th view as {u(v)
i }li=1. The similarity between the instance

x
(v)
i and anchor point u(v)

i is defined as

Z
(v)
ij =

⎧⎨⎩ exp(−D2(x
(v)
i ,u

(v)
j )/σ2)∑

j∈⟨i⟩v exp(−D2(x
(v)
i ,u

(v)
j )/σ2)

, ∀j ∈ ⟨i⟩v

0 , otherwise,
(1)

1We can also utilize other ways such as k-means.

where ⟨i⟩v is an index set of m (≪ l) nearest anchors
of x(v)

i according to a distance function D(x,u) such as
l2 distance. The truncated similarity is defined based on a
kernel function Kσ(·), which is usually a Gaussian kernel
Kσ(x,u) = exp(−D2(x,u)/σ2). The parameter σ can
be set to 1 without loss of generality. Note that the matrix
Z(v) ∈ R(nc+nv)×l is highly sparse. Each row contains
only m nonzero entries summing to 1.

• Inter-view similarity. We can derive the truncated simi-
larity matrix Z =

[
Z̃; Z̃(1); Z̃(2)

]
∈ RN×l among all

instances and anchors, where Z̃(v) ∈ Rnv×l (v = 1, 2)
is consist of the last nv rows of Z(v) ∈ R(nc+nv)×l.
Z̃ ∈ Rnc×l indicates the similarities between the com-
mon instances and anchors, which could be computed in
either view. To leverage the information from both views,
we define each element of Z̃ as Z̃ij = 1

2 (Z
(1)
ij + Z

(2)
ij ).

In Figure 1, matrices W(1) and W(2) help realize this
inter-view fusion. W(1)

i· = 1
2 if the i-th instance appears

in both views, W(1)
i· = 1 if the i-th instance only appears

in view-1, and W
(1)
i· = 0 if the i-th instance only appears

in view-2. In a similar way, W(2) can be computed.

In (Liu, He, and Chang 2010; Liu et al. 2011), anchor
graph is a powerful low-rank approximation of the neigh-
borhood graph. To this end, the similarity matrix S ∈ RN×N

among all instances in partial two-view data can be ap-
proximated by anchor graph in a low-rank manner as S =
ZΛ−1ZT , where Λ = diag(ZT1) ∈ Rl×l is a diagonal ma-
trix. The function diag (·) returns a diagonal matrix with the
elements of input vector on the main diagonal.

Note that S has the following critical properties.
1) Sij ≥ 0,∀i,∀j since Z is nonnegative. The nonnega-

tive similarity matrix is sufficient to make the resulting graph
Laplacian matrix positive semi-definite.

2) Sparse Z leads to a sparse and low-rank S, which has
much less spurious connections among dissimilar instances
and tends to exhibit high quality (Zhu 2006).

3) S is a doubly stochastic matrix, i.e., it has unit row and
column sums. Thus, the resulting graph Laplacian matrix is
L = I− S (Liu, He, and Chang 2010).
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3.4 Spectral Clustering on Fused Similarities
After obtaining the fused similarity matrix S, we can con-
duct spectral clustering. We firstly minimize the problem (2)
via eigen decomposition on L to derive the corresponding
K smallest eigen vectors2, then perform k-means clustering
to calculate the discrete cluster indicators.

min
FTF=I

tr(FTLF), (2)

where tr(·) is the matrix trace operator, F ∈ RN×K and
K is the number of clusters. L = D− S is called Laplacian
matrix in graph theory, and D ∈ RN×N is defined as a di-
agonal matrix with Dii =

∑N
j=1 Sij .

Remark 1: The computational complexity of eigen decom-
position on the Laplacian matrix L ∈ RN×N is O

(
N3

)
,

which is not suitable for large-scale data.
Fortunately, S is nonnegative and doubly stochastic as

mentioned in §3.3, i.e.,

diag(S1) = diag(ZΛ−1ZT1)

= diag(ZΛ−1Λ1)

= diag(Z1)

= diag(1)

= I.

(3)

Therefore, S is automatically normalized making the degree
matrix D = diag(S1) be an identity matrix I.
Remark 2: With the resulting Laplacian matrix L = I− S,
Eq.(2) is equivalent to Eq.(4).

max
FTF=I

tr(FTSF) (4)

Note that S = ZΛ−1ZT = ZΛ−1/2Λ−1/2ZT = AAT ,
where A = ZΛ−1/2. The Singular Value Decomposition
(SVD) of A can be formulated as A = PΣQT , where Σ ∈
RN×l, P ∈ RN×N , and Q ∈ Rl×l are the singular value
matrix, left singular vector matrix, and right singular vector
matrix, respectively. It is obvious that

S = AAT

=
(
PΣQT

)(
PΣQT

)T

= PΣQTQΣTPT

= P
(
ΣΣT

)
PT .

(5)

Recall that Σ ∈ RN×l is the singular value matrix of A,
then ΣΣT returns an N -by-N diagonal matrix storing all
the eigen values of S = AAT . The column vectors of P are
the eigen vectors of S. This has been proved in Fast Spectral
Clustering (Wang, Nie, and Yu 2017). To reduce the compu-
tational complexity, we can perform SVD on A to derive the
desired F rather than eigen decomposition on S.

Alternatively, we can skillfully follow (Liu et al. 2011)
to perform eigen decomposition on a small l × l matrix

2Some previous works ignore the smallest eigen value 0 of
Laplacian matrix, since the corresponding eigen vector is 1 which
is useless for the following k-means clustering.

Algorithm 1: APMC

Input: Partial multi-view data
{
X(1,2),X(1),X(2)

}
;

the number of clusters K; the number of nearest
anchors m;

Output: The cluster indicators;
1 Build anchor graphs and compute Z;
2 Derive the fused similarity matrix by S = ZΛ−1ZT ;
3 Obtain the cluster indicators by spectral clustering.

R = Λ−1/2ZTZΛ−1/2 = ATA, resulting in K (< l)
eigen vector-value pairs {(bi, θi)}Ki=1 where 1 > θ1 ≥
· · · ≥ θK > 0. We denote Θ ∈ RK×K as a diagonal ma-
trix storing the K eigen values on the main diagonal, and
B = [b1, · · · ,bK ] ∈ Rl×K as a column-orthonormal ma-
trix containing the K eigen vectors. The desired solution of
F ∈ RN×K is derived as F = ZΛ−1/2BΘ−1/2.

3.5 Computational Complexity Analysis
The whole procedure of APMC is summarized in Algorithm
1. We now analyze the computational cost of our proposed
method, which is non-iterative with two main steps. The cor-
responding time costs are summarized as follows.

In the first stage of anchor-based similarity reconstruc-
tion, the time cost is O (Nl

∑
v dv) to generate truncated

similarity matrix Z, where l is the total number of anchors
and dv is the feature dimension of the v-th view.

In the second stage of spectral clustering on fused simi-
larities, the time complexity is O

(
N3

)
, which involves the

eigen decomposition on L ∈ RN×N . Benefit from the prop-
erties of similarity matrix S, the time complexity becomes
O
(
min{Nl2, N2l}

)
by performing SVD on A ∈ RN×l,

which can be reduced to O
(
NK2

)
(Holmes, Gray, and Is-

bell 2007) if we only need the K largest singular values. Al-
ternatively, the time complexity can be O

(
l3
)

if we follow
(Liu et al. 2011) to eigen decompose R ∈ Rl×l to obtain F.
Finally, we need O

(
tNK2

)
to conduct k-means clustering

for t iterations on F ∈ RN×K .

4 Extension for Multiple Views
Our proposed APMC method can not only deal with par-
tial two-view clustering, but also be easily extended to more
than two partial views. We propose a “divide-and-conquer”
strategy for multiple partial views. The whole procedure is
in Figure 2 taking three views as an example, which verifies
that APMC in §3 can be straightforwardly extended to the
scenarios of more than two views.

4.1 Divide
Figure 2 considers all possible cases in partial three-view
data, which contains three types of instances, i.e., missing
no view, missing one view, and missing two views. Similar
to the problem definition in §3.1, we still assume the partial
three-view data contains N instances. nc is the number of
instances present in all three views. n12 denotes the number
of instances shared by view-1 and view-2; n13 and n23 have
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Figure 2: Anchor-based similarity reconstruction for partial three-view data.

similar meanings. nv(v = 1, 2, 3) stands for the number of
instances only existing in the v-th view.

We first divide this partial three-view case into three two-
view subcases. To adjust each subcase so that we can directly
conduct two-view anchor-based similarity construction, we
rearrange the instances according to their types. Seen from
the third column in Figure 2, each subcase can be repre-
sented by an equivalent partial two-view form together with
a group of common missing instances. Taking the first sub-
case as an example, there are nc + n12 instances shown in
both views, n23 + n2 only appear in view-2 while n13 + n1

only appear in view-1. Besides, n3 instances misses in this
subcase. Similarly, we can analyze the other subcases.

4.2 Conquer
After dividing the partial three-view case, we then construct
a similarity matrix for each subcase. The anchor-based sim-
ilarity reconstruction method described in §3.3 can be par-
allelly applied here. For each partial two-view subcase, we
select the common instances present in both views as an-
chors. Next, we compute a truncated similarity matrix and
the corresponding similarity matrix for each subcase.

To further fuse the above similarity matrices in three par-
tial two-view subcases, we rearrange them into aligned sim-
ilarity matrices whose rows and columns follow the orig-
inal order of instances. To alleviate the impact of missing
instances in each subcase, we obtain the final similarity ma-
trix S ∈ RN×N by a weighted combining scheme as Figure
2 shows. The light purple ones indicate that they are average
of three aligned similarities, deep purple blocks are average
of two aligned similarities, while dark purple stands for the
only available aligned similarity.

Following §3.4, performing spectral clustering on the ob-
tained total similarity matrix is unhindered as a final step to
acquire a unified clustering result.

5 Experiments
In this section, we compare our proposed APMC approach
with several state-of-the-art methods on a synthetic dataset
and four real-world datasets.

5.1 Datasets
Synthetic Dataset (Guo and Zhu 2018) is composed of
two views. For each view, we randomly select 200 data
points from a two-component Gaussian mixture model as in-
stances. There are two clusters (i.e., cluster 1 and 2). Specifi-
cally, the cluster means are µ(1)

1 = [1, 1] and µ
(1)
2 = [4, 2] in

view-1, µ(2)
1 = [1, 3] and µ

(2)
2 = [3, 1] in view-2. The corre-

sponding covariances are

Σ
(1)
1 =

[
0.3 0
0 0.4

]
, Σ

(1)
2 =

[
0.2 0.15
0.15 0.35

]
;

Σ
(2)
1 =

[
0.25 −0.05
−0.05 0.2

]
, Σ

(2)
2 =

[
0.4 0.1
0.1 0.3

]
.

Real-world datasets are described as follows.
• USPS-MNIST Dataset merges two famous handwritten

datasets: USPS (Hull 1994) and MNIST (LeCun et al.
1998). USPS includes 9, 298 digit images with the size
of 16 × 16 in ten classes, while MNIST contains 70, 000
digit images with the size of 28 × 28. The same digits in
two datasets can be regarded as described in two differ-
ent views. We follow (Guo and Zhu 2018) and randomly
select 50 images per digit class from each dataset. Conse-
quently, each view comprises 500 instances.

• Oxford Flowers Dataset (Flowers) (Nilsback and Zis-
serman 2006) is composed of 17 flower classes, each has
80 images described by color, shape and textures. Follow-
ing (Shao, He, and Yu 2015), we adopt the χ2 distance
matrices of color and shape features as two views.
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Figure 3: Clustering results of different methods on the synthetic dataset and three real-world datasets under different PDRs.

Table 1: Clustering results (ACC%±STD / NMI%±STD) of different methods on the 3Sources dataset. ‘-’ represents the
corresponding result is not available since the method cannot work on three-view scenarios.

BBC-Guardian BBC-Reuters Guardian-Reuters 3Sources (All views)
MultiNMF 42.59±1.72 / 37.70±1.44 27.00±1.03 / 13.36±0.71 40.61±3.76 / 32.34±2.59 66.67±2.52 / 52.96±3.59

PVC 61.38±9.28 / 60.64±5.14 61.05±5.03 / 49.75±2.75 59.65±5.30 / 56.96±2.55 -
MIC 70.95±4.89 / 55.19±2.69 42.97±2.74 / 29.93±2.60 66.54±3.19 / 57.04±3.01 74.64±6.08 / 58.68±6.75
IMG 54.73±1.05 / 44.97±1.24 44.77±2.85 / 34.42±2.35 54.36±0.65 / 48.96±1.38 -

DAIMC 56.63±7.25 / 50.20±6.06 53.25±5.45 / 41.17±3.98 55.42±5.11 / 49.32±4.02 57.98±8.00 / 46.84±5.64
SC[C] 41.51±0.30 / 23.66±0.16 36.89±0.42 / 20.23±0.41 35.68±0.48 / 16.97±0.53 45.37±0.80 / 24.54±0.59
SC[A] 53.48±0.95 / 33.02±0.27 48.29±1.16 / 30.82±0.99 50.86±0.63 / 32.92±0.36 44.78±0.38 / 27.83±0.61
Ours 78.28±1.57 / 63.86±0.61 75.27±1.42 / 65.93±0.68 74.37±1.49 / 66.20±0.59 80.31±1.47 / 68.12±0.65

• Multiple Features Handwritten Dataset (Digit) (Jain,
Duin, and Mao 2000) has six feature sets of ten classes
of digits and each class holds 200 instances, summing up
to 2, 000 instances. Following (Kumar and Daume 2011)
and (Yin, Wu, and Wang 2015), we set view-1 as 76
Fourier coefficients of the character shapes, and view-2
as 216 profile correlations.

• 3Sources Dataset (Greene and Cunningham 2009) is col-
lected from three online news sources: BBC, Reuters, and
The Guardian. In total, there are 948 news articles cover-
ing 416 distinct news stories of six topic classes from the
period February to April 2009. Among these distinct sto-
ries, 169 are reported in all three sources, 194 are in two
sources, and 53 appear in a single news source.

5.2 Comparison Methods
• MultiNMF (Liu et al. 2013) learns a common latent space

based on joint NMF.

• PVC (Li, Jiang, and Zhou 2014) seeks a common latent

space for the aligned instances and a private latent space
for the unaligned instances.

• MIC (Shao, He, and Yu 2015) extends MultiNMF via
weighted NMF with L2,1 regularization.

• IMG (Zhao, Liu, and Fu 2016) integrates PVC and man-
ifold learning to adaptively capture global structures.

• DAIMC (Hu and Chen 2018) applies weighted semi-
NMF with the help of L2,1-norm regularizer.

We also adopt two simple baselines that perform spectral
clustering on different similarity matrices.

• SC[C]. After preprocessing, we concatenate each in-
stance’s features from different views into a single feature
vector. Then, we obtain an instance-to-instance similarity
matrix and perform spectral clustering.

• SC[A]. After preprocessing, we first compute an instance-
to-instance similarity matrix for each view. Then, we fuse
these similarity matrices by equal-weighted average and
perform spectral clustering.
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(a) ACC (b) NMI

Figure 4: Influence of the number of nearest anchors m on
the Digit dataset with different PDR settings.

5.3 Settings
3Sources is naturally a partial multi-view dataset, while the
other datasets are complete. To simplify the partial multi-
view case, we follow (Shao, He, and Yu 2015) to delete the
same number of instances for all views in the four complete
datasets. We set Partial Data Ratio (PDR) from 10% to 90%
with 20% as interval. 0% means all views are complete. The
missing instances are distributed evenly in all views, and
each instance is available in at least one view.

Since MultiNMF cannot directly deal with partial multi-
view data, we first fill the missing instances with average
feature values in each view. MultiNMF and MIC cannot
work over the synthetic, USPS-MNIST and Digit datasets
due to a few negative entries. Thus, we rescale the input data
into the range of [0, 1], then conduct normalization before
we run all these clustering methods.

As for evaluation, we adopt two metrics Accuracy (ACC)
and Normalized Mutual Information (NMI) to give a com-
prehensive analysis. Each experiment is repeated 20 times
for average performance and standard deviation. All results
are produced by released codes, some of which may be in-
consistent with published information due to different pa-
rameter ranges and preprocessing.

5.4 Results and Analysis
Figure 3 and Table 1 report the results of ACC and NMI val-
ues on one synthetic and four real-world datasets with differ-
ent PDR settings, respectively. From these data and curves,
the following observations and discussion are made.

• The trends of ACC and NMI with varied PDR are sim-
ilar for the following groups of methods, {MultiNMF,
MIC, DAIMC}, {PVC, IMG}, and {SC[C], SC[A]}, re-
spectively. This can be explained by the mechanisms of
their models. MIC extends MultiNMF by introducing
weighted NMF and L2,1-norm. DAIMC carries forward
MIC through semi-NMF and L2,1-norm regularized re-
gression. IMG integrates PVC by adding manifold learn-
ing. SC[C] and SC[A] conduct spectral clustering on two
different poor estimations of similarities.

• As PDR increases, the performance of all algorithms
drops. The improvement of APMC over SC[C], SC[A],
PVC, IMG becomes larger. When the dataset is complete,
all methods exhibit a relatively high performance. This

is an evidence that partial multi-view clustering is more
challenging than complete multi-view clustering.

• APMC dramatically outperforms two simple baselines
SC[C] and SC[A], which further indicates the effective-
ness of our method. It is the anchor-based similarity ma-
trix reconstruction, rather than simple spectral clustering,
that contributes to the performance improvement.

• Over 3Sources dataset, our proposed APMC method per-
forms consistently higher than other competitors in three
two-view cases and one three-view case. When the num-
ber of views increases from two to three, APMC yields
even better results, which demonstrates its capability to
extend to more than two views.
The superiority of APMC is analyzed as follow. The near-

est anchors serve as a set of bases to represent all instances,
and the instance-to-anchor similarities computed by kernel
function are just like latent representations. This is intrinsi-
cally similar to conventional matrix factorization based com-
petitors that learn latent representations for all instances. The
difference is that APMC captures more non-linear relations
while previous works involve in linear correlations.

As for parameter study, our proposed APMC method has
only one parameter m to be fine-tuned. We set PDR from
0% to 90% as aforementioned, and explore the clustering
performance of APMC by ranging m within {2, 4, · · · , 14}.
Due to the limit of space, we only report the results on
Digit dataset and similar trends can be observed over other
datasets. As shown in Figure 4, APMC is not obviously sen-
sitive to m in a relatively wide range.

6 Conclusion and Future Work
In this paper, we propose a simple yet effective approach
dubbed APMC for partial multi-view clustering. Specifi-
cally, APMC utilizes anchors to firstly construct instance-
to-anchor similarity matrices. Then, it integrates intra- and
inter- view relations into fused similarities and finally per-
forms spectral clustering to obtain a unified clustering re-
sult. Our proposed APMC method can solve the main draw-
backs of existing matrix factorization based methods for par-
tial multi-view clustering. Experimental results well validate
its superiority over state-of-the-arts.

As for future work, it will be interesting to utilize adaptive
graphs (Zhao, Liu, and Fu 2016; Zhang et al. 2018c) to fuse
view-specific truncated similarities. We also plan to adjust
our model to better handle outliers and noise in partial multi-
view data. For example, we can adopt correntropy induced
metric (He, Zheng, and Hu 2011; Guo et al. 2016) and self-
paced learning (Liang et al. 2016; Fan et al. 2017).
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