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Abstract
To achieve the ambitious goals of artificial intelligence, re-
inforcement learning must include planning with a model of
the world that is abstract in state and time. Deep learning has
made progress with state abstraction, but temporal abstrac-
tion has rarely been used, despite extensively developed the-
ory based on the options framework. One reason for this is
that the space of possible options is immense, and the meth-
ods previously proposed for option discovery do not take
into account how the option models will be used in plan-
ning. Options are typically discovered by posing subsidiary
tasks, such as reaching a bottleneck state or maximizing the
cumulative sum of a sensory signal other than reward. Each
subtask is solved to produce an option, and then a model of
the option is learned and made available to the planning pro-
cess. In most previous work, the subtasks ignore the reward
on the original problem, whereas we propose subtasks that
use the original reward plus a bonus based on a feature of the
state at the time the option terminates. We show that option
models obtained from such reward-respecting subtasks are
much more likely to be useful in planning than eigenoptions,
shortest path options based on bottleneck states, or reward-
respecting options generated by the option-critic. Reward re-
specting subtasks strongly constrain the space of options and
thereby also provide a partial solution to the problem of op-
tion discovery. Finally, we show how values, policies, op-
tions, and models can all be learned online and off-policy
using standard algorithms and general value functions.
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