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Abstract

We present the CoachAI Badminton Environment, a rein-
forcement learning (RL) environment tailored for AI-driven
sports analytics. In contrast to traditional environments
using rule-based opponents or simplistic physics-based
randomness, our environment integrates authentic opponent
AIs and realistic randomness derived from real-world
matches data to bridge the performance gap encountered
in real-game deployments. This novel feature enables
RL agents to seamlessly adapt to genuine scenarios. The
CoachAI Badminton Environment empowers researchers to
validate strategies in intricate real-world settings, offering:
i) Realistic opponent simulation for RL training; ii) Visual-
izations for evaluation; and iii) Performance benchmarks for
assessing agent capabilities. By bridging the RL environment
with actual badminton games, our environment is able to
advance the discovery of winning strategies for players. Our
code is available at https://github.com/wywyWang/CoachAI-
Projects/tree/main/CoachAI%20Badminton%20Environment.

Introduction
The rising interest in sports analytics has triggered a surge
in research (Kao et al. 2022; Wang et al. 2022b), with a fo-
cus on leveraging reinforcement learning to enhance player
strategies (Won, Gopinath, and Hodgins 2021; Chen et al.
2023). Simulation environments with automatic opponents
are critical to swiftly evaluate the designed algorithms; how-
ever, previous efforts mainly centered on physics-based in-
teractions or simple rule-based opponents, e.g., Brockman
et al. (2016); Kurach et al. (2020). While some prior work at-
tempted to make opponents more realistic through imitation
learning (Won, Gopinath, and Hodgins 2021), no existing
environments are tailored to turn-based sports that provide
authentic opponents. Therefore, we introduce the CoachAI
Badminton Environment, an RL environment with simu-
lated opponents for badminton, a quintessential turn-based
sport. However, two challenges naturally arise in creating
an authentic badminton environment: 1) Opponent-Driven
Transition Dynamics: Opponents’ actions influence the de-
cisions of agents due to the alternating-return characteristics
in turn-based sports. It is important to address such behav-
iors in terms of transition dynamics. 2) Dynamic Strate-
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Figure 1: An overview of the CoachAI Badminton Environ-
ment.

gies and Randomness: Effective opponents should adapt
their behavior and randomness to prevent being easily seen
through, reflecting real-world scenarios for training agents.

To address these challenges, we integrate two cutting-
edge models: ShuttleNet (Wang et al. 2022a), a transformer-
based stroke forecasting model, and DyMF (Chang, Wang,
and Peng 2023), a graph-based framework for predicting
player movements. This integration reinforces the opponent
AI’s capability of generating a fine-grained range of actions,
encompassing shot types, landing positions, and moving po-
sitions. These models are trained on the extensive dataset
ShuttleSet (Wang et al. 2023), the largest publicly avail-
able collection of annotated badminton singles matches, al-
lowing us to capture realistic player strategies from high-
ranking players. To enhance the realism, we seamlessly inte-
grate the opponent AI into the only existing badminton envi-
ronment that simulates shuttlecock trajectories based on the
physical parameters of the shuttlecock and players (Huang
et al. 2023). To support comprehensive evaluations, we ex-
pand the simulation scope from focusing solely on rallies
to encompassing entire matches that follow real-world bad-
minton rules for singles matches (Badminton World Feder-
ation 2021). These efforts effectively transform our envi-
ronment into an accurate representation of real-world bad-
minton scenarios. Additionally, we emphasize strategy visu-
alization, shedding light on factors influencing point losses
and model disparities, thereby enhancing the understanding
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Figure 2: Users can choose specific opponents for RL.

of strategies. For a more detailed illustration, please refer to
our demonstration here1.

Environment Description
In Figure 1, we show the overview of our proposed environ-
ment. Our environment embraces real-world badminton sin-
gles match rules, modeling each game as a Markov Decision
Process (MDP) (Puterman 2014). This design establishes a
badminton environment with three core features:

Opponent AI as Transition Dynamics
Opponent AI serves as the transition dynamic in RL en-
vironments for turn-based sports, directly determining the
RL agent’s next state. To create realistic opponent AIs,
we integrate two advanced models: ShuttleNet and DyMF.
ShuttleNet predicts shot types and landing positions, while
DyMF predicts player movement positions. A limitation of
this design is that both models rely on historical strokes, re-
quiring at least two previous strokes. Therefore, we intro-
duce the Behavior Cloning (BC) model, which interacts with
the RL agent when historical strokes are insufficient (i.e.,
fewer than two strokes), facilitating interaction throughout
the rally. We integrate these models to enable effective inter-
action between the opponent AI and the RL agent, resulting
in applying trained agents to real-world scenarios.

MDP Modeling & API Integration
Our environment models each badminton game as an MDP,
with components depicted in Figure 1. Our environment’s
API inherits from the widely used OpenAI Gym API
(Brockman et al. 2016) to support out-of-the-box compat-
ibility. As shown in Figure 2, we provide example codes for
running a random agent against a specified opponent AI.

Evaluation & Visualization
To visualize a clear understanding of the agent’s perfor-
mance, our environment emphasizes two essential functions,
including2:
• Animated Simulation: Obtain a thorough game sce-

nario understanding with our interactive animation. It
vividly displays landing and movement position distri-
butions and provides replay functionality via the scroll
bar. Real-time updates of shot type probabilities are pre-
sented in a bar chart during matches.

1https://youtu.be/EsIXpBvcvzA
2For a detailed demonstration of how these functions operate in

the environment, please refer to our demo video.

• Error Statistics: Calculate proportions between two los-
ing action types: hitting the shuttlecock out of bounds
and hitting the net, presented as a pie chart. Furthermore,
we offer discrete court representations, segmenting it into
9 internal and 1 external regions, creating 10 distinct po-
sitional blocks. This discretization aids in identifying the
reasons behind point losses. We provide a table of the top
four states where losing actions are most likely, and dur-
ing rallies, our environment displays landing and moving
distribution for the most frequent states resulting in point
losses. Users can manually select a state to observe its
associated distribution.

Demonstration Overview
Two scenarios are shown to showcase the usage of CoachAI
Badminton Environment to enhance playing strategies:
RL Algorithms Benchmarks. We benchmark two widely
used RL algorithms, Advantage Actor-Critic (A2C) (Mnih
et al. 2016), and Proximal Policy Optimization (PPO)
(Schulman et al. 2017), by competing against two differ-
ent opponent AIs in 20 badminton sets, reporting average
score differences. Figure 3 shows that these algorithms,
when facing the same opponents, produce varying perfor-
mance. This result highlights the impact of algorithm selec-
tion on strategy evolution. RL-Driven Winning Strategy.
We showcase how our RL-trained agent, powered by our op-
ponent AI, identified strategic improvement in a badminton
match. Specifically, we observed that for a state prone to
point losses, as the PPO agent accumulated more training
steps, there was a shift in the moving distribution after tak-
ing serves from favoring the left court side to shifting to the
right, as illustrated in Figure 4. This adjustment led to a 60%
increase in the agent’s win rate against opponent A.

Figure 3: Average score difference for A2C and PPO.

Figure 4: The enhancement of win rate via improvement in
moving distribution.
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