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Abstract

According to WWF, 1.1 billion people lack access to water,
and 2.7 billion experience water scarcity at least one month
a year. By 2025, two-thirds of the world’s population may be
facing water shortages. This highlights the urgency of manag-
ing water usage efficiently, especially in water-intensive sec-
tors like food. This paper proposes a recommendation engine,
powered by knowledge graphs, aiming to facilitate sustain-
able and healthy food consumption. The engine recommends
ingredient substitutes in user recipes that improve nutritional
value and reduce environmental impact, particularly water
footprint. The system architecture includes source identifi-
cation, information extraction, schema alignment, knowledge
graph construction, and user interface development. The re-
search offers a promising tool for promoting healthier eating
habits and contributing to water conservation efforts.

Introduction
Water scarcity is a prevailing issue that poses significant
environmental concerns (Rijsberman 2006). This essential
life-giving resource is critical not just for humans but also
for the planet at large. Consequently, comprehending and
regulating its consumption has become a crucial responsibil-
ity in the contemporary context. A key initiative in this realm
involves the development of the metric known as the wa-
ter footprint which measures and raises consciousness about
water usage (Hoekstra et al. 2009).

The global food sector is a significant contributor to cli-
mate change (Vermeulen, Campbell, and Ingram 2012), bio-
diversity loss and land-use change (Foley et al. 2005), and
rampant exhaustion of freshwater resources (Wada et al.
2010). A comprehensive study (Mekonnen and Gerbens-
Leenes 2020) indicates that the food industry is one of the
most water-intensive sectors. To effectively manage water
usage, numerous studies have been directed to establish di-
etary guidelines that advocate a more sustainable approach
to food consumption with minimal environmental impacts
(Springmann et al. 2018; Mekonnen and Fulton 2018). How-
ever, despite the clear importance of healthy eating, many
struggle with it due to busy lifestyles or lack of meal plan-
ning motivation (van Pinxteren, Geleijnse, and Kamsteeg
2011). Health-aware food recommender systems use both
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content-based approaches, derived from user and item at-
tributes (Harvey, Ludwig, and Elsweiler 2013), and collab-
orative filtering, which bases predictions on historical com-
munity preferences (Ge et al. 2015). In (Liu et al. 2019),
authors explore knowledge graphs as a solution for recom-
mendation systems. Moreover, in recipe recommendations,
these graphs view recipes as feature aggregates, enhancing
prediction accuracy (da Silva 2021).

Leveraging these advancements, this paper proposes the
development of a recommendation engine powered by
knowledge graphs. It aims to help users navigate their diet
planning efforts more sustainably by proposing substitutes
for food ingredients in user’s recipes that offer improved nu-
tritional value and reduce the environmental impact regard-
ing sustainability and water footprint. This concept stems
from the ability of the knowledge graphs to offer context-
aware recommendations, reveal hidden or implicit rela-
tionships, and facilitate informed decision-making; thereby
serving as an effective tool for users to eat healthily and sus-
tainably.

System Architecture
As seen in Figure 1, the system architecture comprises five
sequential steps: Source Identification, Information Extrac-
tion, Schema Alignment, Knowledge Graph Construction,
and User Interface Development.
Source Identification. Our research employs the FoodKG
resource (Haussmann et al. 2019), a comprehensive database
spanning over a million recipes, ingredients, and nutri-
ents, encompassing approximately 67 million data points.
We interpret and process information from three primary
sources to lay the foundation for FoodKG: the Recipe1M
dataset(Marın et al. 2021), the USDA1 database which
catalogs the nutritional content of each ingredient, and
FOODON which is an extensive food ontology system for
ingredient organization(Dooley et al. 2018). Additionally,
we incorporate complementary data on water footprints
from academic journals and papers publicly available as
PDF documents.
Information Extraction. Our approach involves the appli-
cation of the Knowledge Graph Toolkit (KGTK) (Ilievski
et al. 2021). We transform the information from the

1https://www.usda.gov/topics/food-and-nutrition
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Figure 1: System Architecture consisting of five steps: Source Identification, Information Extraction, Schema Alignment,
Knowledge Graph Construction, and User Interface Development.

FoodKG, initially in the trig format, into nt triples
format and, subsequently, to the KGTK format. Using
Kypher (Chalupsky et al. 2021) we successfully extract
granular nutrient and FOODON data from the broader
dataset. Afterward, we use the Semantic Scholar Open Re-
search Corpus (S2ORC) PDF parser (Lo et al. 2020) to ex-
tract information from academic articles.
Schema Alignment. We align ingredient data from three
sources: nutritional content, the FOODON system, and wa-
ter footprint information. First, we analyze ingredient names
to extract main descriptors. This step simplifies complex
names like ’vanilla-flavored soy yogurt’ to ’soy yogurt’.
Next, we turn graph relations into English sentences to
compute sentence embeddings using Sentence Transform-
ers. These embeddings serve as features for the model de-
veloped in the ”Knowledge Graph Construction” phase.
Knowledge Graph Construction. We unify data from var-
ious sources using a common ingredient identifier. Address-
ing the challenge of missing entities in our knowledge base,
we employ a neural network architecture: four dense lay-
ers followed by an output layer with a continuous ReLu ac-
tivation function. Given an ingredient’s embedding and its
relation type, we predict the nutritional and water footprint
value. It’s optimized using the Adam optimizer and MSE
loss. Our graph comprises of 20,778 nodes and 13 types of
relationships, responding within an average latency of 1s.
User Interface Development. We design a user-centric in-
terface via the Django framework. Users input their recipe
ingredients, and via the Knowledge Graph we recommend
alternatives with a lower water footprint, thus being more
sustainable. We host this application on the AWS2 platform.

2https://aws.amazon.com/

Demonstration
The demonstration video showcases the efficacy of our rec-
ommendation engine in promoting sustainable eating by
emphasizing the water footprint. Upon entering recipe in-
gredients like butter cream, whipped cream, and chocolate
fudge cookie, the system first discerns the ’parent ingredi-
ent’ through the food ontology hierarchy. It then chooses
’candidate ingredients’ from a similar tier, excluding those
with a larger water footprint. Subsequently, ingredients are
ranked, prioritizing those with the least water consumption.
For instance, when users aim to reduce fat, the engine sug-
gests alternatives. After opting for a recommended ingre-
dient, the system visualizes the water footprint difference
alongside any coincidental nutritional changes. In this exam-
ple, the total water footprint significantly diminishes from
20,135m³/ton to 5,215m³/ton. While the primary focus is on
water conservation, it’s noteworthy that the fat content also
decreases from 30.32g to 11.84g, underscoring the holistic
benefits of our system.

Conclusion
In this work, we introduced a recommendation tool centered
on the concept of water footprint, utilizing a knowledge
graph pipeline to advocate for sustainable eating habits. Our
tool prioritizes ingredient substitutions that not only enhance
nutritional value but also significantly reduce the water foot-
print of recipes. The aim is to directly influence individual
food choices in favor of sustainability and water conserva-
tion. Looking ahead, our future endeavors will involve con-
ducting user studies, expanding our ingredient database with
a focus on water footprint data, and refining the recommen-
dation algorithm.
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