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Abstract
We present a demonstrable framework for robots to learn
novel visual concepts and visual tasks via in-situ linguistic
interactions with human users. Previous approaches in com-
puter vision have either used large pre-trained visual mod-
els to infer novel objects zero-shot, or added novel concepts
along with their attributes and representations to a concept
hierarchy. We extend the approaches that focus on learn-
ing visual concept hierarchies and take this ability one step
further to demonstrate novel task solving on robots along
with the learned visual concepts. To enable a visual con-
cept learner to solve robotics tasks one-shot, we developed
two distinct techniques. Firstly, we propose a novel approach,
Hi-Viscont(HIerarchical VISual CONcept learner for Task),
which augments information of a novel concept, that is being
taught, to its parent nodes within a concept hierarchy. This
information propagation allows all concepts in a hierarchy
to update as novel concepts are taught in a continual learn-
ing setting. Secondly, we represent a visual task as a scene
graph with language annotations. The scene graph allows us
to create novel permutations of a demonstrated task zero-shot
in-situ. Combining the two techniques, we present a demon-
stration on a real robot that learns visual task and concepts
in one-shot from in-situ interactions with human users, and
generalize to perform a novel visual task of the same type in
zero-shot. As shown by the studies in the main conference pa-
per, our system achieves a success rate of 50% on solving the
whole task correctly with generalization where the baseline
performs at 17% without any ability to generalize to novel
tasks and concepts. We will demonstrate our working interac-
tive learning pipeline at AAAI 2024 in person with our robot
and other required hardware.

Introduction
Robots in a household will encounter novel objects and tasks
all the time. For example, a robot might need to use a novel
vegetable peeler to peel potatoes even though it has never
seen, let alone used such a peeler before. Our work fo-
cuses on teaching robots novel concepts and tasks one-shot
via human-robot interactions, which include demonstrations
and linguistic explanations. We then want the robot to gen-
eralize to a similar but unseen visual task. A robotic system
that can learn generalizable tasks and concepts from few nat-
ural interactions with a human-user would represent a large
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leap for robotics applications in everyday settings. In this
work we aim to take a step in the direction of generalizable
interactive learning as demonstrated Fig. 1.

Previously, large image and language models have been
extended to robotics to manipulate novel objects, and cre-
ate visual scenes (Shridhar, Manuelli, and Fox 2021; Brohan
et al. 2023). These methods recognize novel objects by using
their underlying large language and visual models to extract
task-relevant knowledge. However, they are not capable of
learning to create a novel visual scene from an in-situ inter-
action with a human user. There is also significant work in
few-shot learning of visual concepts in computer vision (Mei
et al. 2022; Snell, Swersky, and Zemel 2017; Vinyals et al.
2017; Sung et al. 2018; Wang, Ye, and Gupta 2018; Tian
et al. 2020), albeit without extensions to robotics domains.
These approaches focus on learning novel concepts for im-
age classification, but ignore the fact that the novel concepts
also bring new information to update our understanding of
concepts already known to the robot. The reverse path of
knowledge propagation, that is, from novel concepts to pre-
viously known concepts is equivalently important in per-
forming tasks in the real-life scenarios, especially when the
agent has little knowledge of the world and needs to contin-
ually add information to known concepts.

In this work, we propose a novel framework, Hi-Viscont,
that enables robots to learn visual tasks and visual concepts
from natural interactions with a human user. We learn the
task type and concepts from users one-shot, and then gener-
alize to tasks within the task type zero-shot. We do this by
connecting our insights on one-shot visual concept learning
and the use of scene graphs. The robot learns the structure
of a visual task by converting linguistic interactions with
a human user into a contextualized scene graph with lan-
guage annotations. Moreover, Hi-Viscont updates parental
concepts of the novel concept being taught. Such updates al-
low us to generalize the use of the novel concepts in to solve
novel tasks.

Demonstration Overview
We will show that our pipeline’s capability of learning novel
visual tasks and novel visual concepts from in-situ interac-
tions with human users in the demonstration. The domain
of the demonstration is a house construction domain with
building blocks from children’s toys. In our demonstration,
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… I build 
the roof of 
the house 
with the 
yellow curve 
block 
because of 
its sheltering 
property.

(a)

This is the green curve 
block. It is green and has 
the property of sheltering.

(b)

Build the 
house with the 
green roof.

(c)

Figure 1: This figure demonstrates how Hi-Viscont learns from users interactively. (a) First the user demonstrates a structure,
say a “house,” with its sub-components such as its “roof” and the concepts used to make the “roof” such as a “yellow curve
block”. (b) The user then teaches a novel concept such as a “green curve block” and describes its properties. (c) The user can
now ask the robot to create a new structure (“house with green roof”) zero-shot with the taught component without explicitly
asking for the object of interest.

human users will interact with the robot in three phases, in-
cluding a task teaching phase, a concept teaching phase, and
a request phase, sequentially as described below.
Task Teaching Phase - In the task teaching phase, the users
teach the robot a visual task by demonstrating the scene
with its constituent structures one by one. The users also de-
scribe the structures and the objects used to build the struc-
ture with natural language. For example, a user might build
a house, with floors, pillars and a roof. While building the
roof, the user might say “This a roof which I build with the
curved blue tile because of it’s sheltering capability.” The
users demonstrate each of the structures with their chosen
language commands one after another to build a house. We
record all descriptions in audio and convert them into text
using audio to text tools.
Concept Teaching Phase - In this phase, the users teach a
novel concept of their choice to both systems by showing the
object to the camera, and describing the concept’s properties
such as the color of the object and the functional characteris-
tics of the object, in natural language. The description to the
novel object concept will be converted to neuro-symbolic
programs which are given to both models for updates as de-
scribed in the Methods section.
Request Phase - In the request phase, the users provide a
request in natural language for a novel scene that they did
not demonstrate in the task teaching phase. They are asked
to use the object taught in the concept teaching phase in the
request. The task requested still needs to be a house which is
the same task type as they demonstrated previously. Albeit
it is a house that both models have not seen previously.

After the three interactive phases, the robot will then com-
plete the requested visual task based on the request of the
human users in real time. The process of the demonstration
is similar to the procedure of our human subject study, in
which our system achieved a success rate of 50%. The full
video of demonstration with explanation can be found in the
associated webpage 1. More details of the study can be found
in the anonymized full paper in the supplementary materi-
als. Additionally, we can understand the corner cases of the

1https://sites.google.com/view/ivtl

robot learning process better by demonstrating our system at
the conference, which introduce users from a more compli-
cated demographics than our human subject study.

Setup
We integrate our visual task learning and concept learning
model with a Franka Emika Resarch 3 arm(FR3). To set this
demonstration up we use a Franka Emika Research 3 arm
(FR3), two calibrated realsense D435 depth cameras, and
a mono-colored table to allow for background subtraction.
The authors will carry all the required hardware mentioned
above to the conference location to demonstrate learning on
the real robot at the AAAI 2024 venue.

Methods
Our pipeline has two major components: Hi-Viscont, a hier-
archical visual concept learner, and a scene graph with lin-
guistic annotation.

Hi-Viscont. Hi-Viscont is a visual concept learner that
learns a novel visual concept one-shot, and actively updates
all related known concepts when a novel concept is intro-
duced. We adopted multiple modules from FALCON(Mei
et al. 2022), a meta-learning framework for one-shot concept
learning, including the visual feature extractor, the neuro-
symbolic program executor, the box embedding space, and
the novel concept learner. To improve FALCON’s generaliz-
ability, we introduce an additional module in Hi-Viscont to
update the related concepts when a novel concept is intro-
duced. The additional module enables the robot leverage its
knowledge and generalize to an unseen visual task in zero-
shot.

Scene Graph. To learn a visual task from a single in-
situ interaction with human user, we first convert the user’s
demonstration (Fig. 1.a) into an initial scene graph. Each
node of the initial scene graph corresponds to an object that
the user placed, and it contains the bounding box informa-
tion of the object and the user’s linguistic description of the
object. Based on the initial scene graph and the user’s lin-
guistic request for the desired variant of the visual scene, we
infer a goal scene graph using a BERT based classifier.
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