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Abstract

This study introduces FedAW, a novel federated learning al-
gorithm that uses a weighted aggregation mechanism sensi-
tive to the quality of client datasets, leading to better model
performance and faster convergence on diverse datasets, val-
idated using Colored MNIST.

Introduction
Research has demonstrated that conventional federated ap-
proaches like FedAvg (McMahan et al. 2017), which do not
specifically account for non-iid data distribution, can expe-
rience substantial performance drops or even convergence
issues under such conditions (Kairouz et al. 2019; Karim-
ireddy et al. 2019). This highlights the necessity for devel-
oping more robust federated learning algorithms that can ef-
fectively handle the intrinsic data variability across diverse
clients.

In this study, we introduce FedAw, an innovative feder-
ated optimization algorithm that tackles the inherent chal-
lenges of data heterogeneity from. Our approach is under-
pinned by a set of meticulously devised evaluation met-
rics aimed at assessing the quality of datasets held by in-
dividual clients. These metrics inform a weighted aggrega-
tion scheme, wherein clients possessing more representative
samples exert greater influence on the aggregation of the
global model.

Code is avaialble (https://github.com/Yitong999/FedAW)

Background
Federated learning’s privacy is challenged by data disparity,
impacting global model efficacy. Previous solutions like q-
FFL (Li et al. 2020) partially address this; however, FedAW
innovatively evaluates local data quality via biased mod-
els trained by Generalized Cross Entropy Loss (Nam et al.
2020), enhancing model fairness and effectiveness.

Dataset Setup
Colored MNIST, has 10 digits thus y ∈ [10], where[m] =
{0, 1, ...,m − 1}. We also have the sensitive attribute A
(which is digit color in our case) , For an image x, it contains
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Figure 1: Illustration of bias-aligned samples for Colored
MNIST

a digit y, and it has a unprivileged color ay ∈ A, which is
the major injected color of digit y, and it has privileged col-
ors A/ay

which is all the other colors. For example, y = 1,
it has unprivileged color which is a1 = yellow as shown
in Figure 1, and it has privileged colors a¬y which is a set
containing all other colors except yellow. For each digit y
class, we consider correct predictions as positive outcomes.
We use (x, y, a) to denote each training example.

In the training dataset, we denote ratio r =
|{X:(x,y,ay)}|

|X| .
In Federated Learning setting, 4 clients have r = 0.005, 2
clients have r = 0.01. 2 clients have r = 0.02, and 2 clients
have r = 0.05.

Approach
Inspired by an observation from Chang et al. (Chang and
Shokri 2023), we propose an adaptive reweighing algorithm
to prevent the performance degradation of a well-trained
global model by local models trained on biased datasets.
From Table 1, without reweighing on models in aggregation,
models with r = 0.005 will have a strong negative impact
on the global model. Initially, we train two separate local
models to unsupervisedly identify those trained on biased
datasets (Section 4.1). Subsequently, we focus on reassign-
ing weights during the model aggregation step in commu-
nication. To maximize the effectiveness of this weight reas-
signment, we schedule it after the local biased models are
adequately trained.

Identifying Well Trained Client’s Models

score← CE(xi, yi;ϕk)

CE(xi, yi, ϕt
k) + CE(xi, yi;ϕt

k)
(1)

This involved training a biased model, fB , and then fo-
cusing on samples that fB misclassified to train a debiased
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Algorithm 1: Adapted Weighted Aggregation in Federated
Learning
Input: T, Tw,K,D = {D1, D2, ..., DK}
Parameter: debiased models {ϕ1, ..., ϕK}, biased models
{ϕ′

1, ..., ϕ
′
K}, learning rate η

1: for t = 0, 1, ..., T − 1 do
2: scores← [1]
3: for k = 1, ...,K in parallel do
4: ϕt

k, score← LocalUpdate(θt)
5: scores← score
6: end for
7: θt+1 ←

∑K
k=1

scorek∑
scores

ϕt
k

8: end for
LocalUpdate(θt):

9: ϕk ← θt

10: for e = 1, 2, ..., Ef do
11: Draw a mini-batch B = {xyi

i }Bi=1 from Dk

12: score← CE(xyi

i ;ϕt
k) + CE(xyi

i ;ϕt′

k )

13: Rg(ϕ
t
k)← 1

B

∑B
i=1 GCE(xyi

i ;ϕk)
14: ϕt

k ← ϕt
k − η∇Rg(ϕ

t
k)

15: Rf (θ
t)← local debiased model training loss

16: ϕt
k ← ϕt

k − η∇Rf (ϕ
t
k)

17: end for
18: return θt, score

model, fD , as in LfF (Nam et al. 2020). From equation (1),
a bias-aligned sample has a smaller value in numerator and a
larger value in denominator, leading a lower score. For each
client, we sum up the score for every local batch of training
data. As bias-conflicting samples obtain high scores, a train-
ing dataset with more bias-conflicting samples will obtain
higher scores in the summation.

Weighing Well Trained Client’s Models in
Aggregation
Leveraging strategies from (Li et al. 2020), we enhanced the
global model’s fairness by preferentially weighting less bi-
ased local models. We assign more weights to clients with
higher scores in aggregation.There are two versions for as-
signing the weight:

v1 is more aggressive by linearly assigning the weight as
indicated in line 9; v1 is designed to exaggeratedly rely on
well trained local models while in aggregation. v2 is more
gentle by softmax the list of scores. It won’t lose too many
features (compared to v1) from not well trained local mod-
els. There could be other weight assigning strategies (i.e.
polynomial). Users have to decide weight assigning strate-
gies case by case.

Scheduling The Weight Assigning
We must ensure that the biased model is thoroughly trained
to exhibit bias before proceeding to step 2. If not, the bi-
ased model ϕ′ may not effectively reduce the loss for biased
samples. Consequently, Equation 1 may fail to assign lower

scores to clients trained with biased datasets. The schedul-
ing of this process is determined on a case-by-case basis.
For instance, in the case of CMNIST, local biased models
are considered well-trained after 2000 epochs.

Evaluations
DI(Y = y) =

Pr(outcome = +|Y = y,A = ay)

Pr(outcome = +|Y = y,A ̸= ay)
(2)

This section outlines the training dataset and federated
settings utilized. Clients were trained on the Colored MNIST
dataset, each with varying proportions of bias-conflicting
samples. Specifically, four clients were allocated 0.5% bias-
conflicting samples (the highest level of bias), two clients
had 1% bias-conflicting samples, another two clients had 2%
bias-conflicting samples, and the remaining two clients had
5% bias-conflicting samples (the lowest level of bias).

Dataset Method FedAvg FedAw v1 FedAw v2
CMNIST Vanilla 0.63 0.65 0.64

LF 0.80 0.86 0.83
BiasAdv 0.78 0.80 0.80

Table 1: Accuracy of image classification assessed on fair
test sets from the CMNIST. The top-performing results are
highlighted in bold.

Dataset Method FedAvg FedAw v1 FedAw v2
CMNIST Vanilla 2.1 1.6 1.7

LF 1.0 1.0 0.96
BiasAdv 1.1 1.0 1.6

Table 2: Disparate Impact of image classification assessed
on fair test sets from the CMNIST. The top-performing re-
sults are highlighted in bold.

Baselines Our baseline is FedAvg aggregation. Compari-
son on test sets Table 1 shows the comparisons in accuracy
with FedAwv1, FedAwv2, and FedAvg on three unsuper-
vised bias eliminating methods. Accuracy is evaluated on a
fair colored MNIST dataset where bias attributes (color) are
not related to labels.

Conclusion
This study introduces an innovative federated learning ag-
gregation technique termed FedAW, which recalibrates the
weight of individual client models based on the quality of
each local model’s training dataset. This strategy is designed
to counter the issue of biased feature heterogeneity across di-
verse clients. Empirical assessments conducted on the Col-
ored MNIST dataset illustrate that FedAW significantly ele-
vates the convergence rate and overall performance for non-
IID datasets. The study further corroborates the efficacy
of FedBN, particularly in environments where a substan-
tial proportion of clients present with highly biased training
datasets.
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