
Pass-Efficient Algorithms for Graph Spectral Clustering (Student Abstract)

Boshen Yan*1,2, Guihong Wan*1,3, Haim Schweitzer4, Zoltan Maliga3,
Sara Khattab1, Kun-Hsing Yu2, Peter K. Sorger3, Yevgeniy R. Semenov1,3

1Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, MA, USA
2Department of Biomedical Informatics, Harvard Medical School, MA, USA

3Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, MA, USA
4Department of Computer Science, University of Texas at Dallas, Texas, USA

boshenyan@hms.harvard.edu, guihong wan@hsph.harvard.edu

Abstract

Graph spectral clustering is a fundamental technique in data
analysis, which utilizes eigenpairs of the Laplacian matrix
to partition graph vertices into clusters. However, classical
spectral clustering algorithms require eigendecomposition of
the Laplacian matrix, which has cubic time complexity. In
this work, we describe pass-efficient spectral clustering algo-
rithms that leverage recent advances in randomized eigende-
composition and the structure of the graph vertex-edge ma-
trix. Furthermore, we derive formulas for their efficient im-
plementation. The resulting algorithms have a linear time
complexity with respect to the number of vertices and edges
and pass over the graph constant times, making them suitable
for processing large graphs stored on slow memory. Experi-
ments validate the accuracy and efficiency of the algorithms.

Introduction
Let G=(V,W ) be an undirected graph, where V is the n-
vertex set, and W is the n×n weighted adjacency matrix.
Let wij be the non-negative weight between nodes i, j. An
edge exists between nodes i and j if wij>0. For an un-
weighted graph, wij=1 if there is an edge; wij=0 otherwise.

Let m be the number of edges. The edge e between
nodes i, j is represented as an n-dimensional vector: e =√
wij [0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0]T , where the ith lo-

cation is 1, the jth location is −1, and other locations are 0.
Let E = [e0, . . . , em−1] be the vertex-edge matrix of size
n×m obtained by taking the m edge vectors as its columns.
Let D be the degree matrix of the graph with the ith diago-
nal element: di =

∑n−1
j=0 wij . The graph Laplacian matrix is

defined as: L = D−W , which can be computed as follows:

L = EET =
m−1∑
t=0

ete
T
t . (1)

The normalized Laplacian matrix is: L = D− 1
2LD− 1

2 .
Let E = [ϵ0, . . . , ϵm−1] be the normalized vertex-edge
matrix with each n-dimensional edge ϵ vector normalized:
ϵ =

√
wij [0, . . . , 0,

√
di, 0, . . . , 0,−

√
dj , 0, . . . , 0]

T . The

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

normalized graph Laplacian matrix can be computed as:

L = EET =
m−1∑
t=0

ϵtϵ
T
t . (2)

The classical spectral clustering algorithms take the (nor-
malized) Laplacian matrix and the desired number of clus-
ters k as input. They mainly consist of two steps, as summa-
rized in Algorithm 1 (Von Luxburg 2007). We focus on the
normalized variant, since it is straightforward to apply the
proposed techniques to the unnormalized variant.

Spectral clustering has many applications in data analy-
sis and computer vision. However, the eigendecomposition
in Step 1 has cubic time complexity, making it computation-
ally expensive, especially for large graphs. Recent advances
in randomized eigendecomposition, e.g., Halko et al. (2011),
have enabled the efficient computation of the k largest eigen-
vectors (corresponding to the k largest eigenvalues).

In this work, we propose a T+1-pass algorithm and a one-
pass algorithm for normalized spectral clustering, leverag-
ing the structure and sparsity of the vertex-edge matrix and
utilizing randomized eigendecomposition. They run signif-
icantly faster than the classical normalized spectral cluster-
ing algorithm. Even with a small value of T , the T+1-pass
algorithm achieves the same level of accuracy as the clas-
sical spectral clustering algorithm. Additionally, we derive
formulas to further improve their runtime while maintaining
the same level of accuracy.

The Proposed Algorithms
Algorithm 2 presents the randomized T+1-pass algorithm
for spectral clustering. The randomized eigendecomposi-
tion, e.g., Halko et al. (2011), computates the k largest eigen-
pairs. However, for spectral clustering, we need the k small-
est eigenpairs of L. We addressed this by calculating the k
largest eigenpairs of a shifted Laplacian matrix: Ls=2I−L.

Algorithm 1: Classical spectral clustering algorithm.
Input: L or L, and k.
Output: k clusters of the graph vertices.
1. Compute the k smallest eigenvectors Un×k of L or L,

corresponding to the k smallest eigenvalues.
2. Run a k-means algorithm on (row-normalized) Un×k.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23690



Algorithm 2: Randomized T+1-pass algorithm.
Input: E=[ϵ0, . . . , ϵm−1], k, T≥1, and p=10 (default).
Output: k clusters of the graph vertices.
1. l = k + p; Ωn×l ← a random matrix; Q = orth(Ω).
2. For τ = 1 · · ·T do: // Q phase: T passes.

Yn×l = 2Q−
∑m−1

t=0 ϵtϵ
T
t Q; Qn×l = orth(Y ).

3. Wl×l = 2I−QT
∑m−1

t=0 ϵtϵ
T
t Q. //W phase: 1 pass.

4. Λ, U ← Eigendecomposition(W ), U=QU .
5. Un×k ← k eigenvectors from U corresponding to the k

largest eigenvalues in Λ.
6. Run a k-means algorithm on row-normalized Un×k.

Algorithm 3: Efficient Randomized T+1-pass algorithm.
Input: N=[v0, . . . , vn−1], k, T≥1, and p=10 (default).
Output: k clusters of the graph vertices.
1. l = k + p; Ωn×l ← a random matrix; Q = orth(Ω).

dn×1 ← a zero vector for storing vertex degrees.
2. For τ = 1 · · ·T do: // Q phase: T passes.

Y = Q.
For vi ∈ N do:

For (vj , wij) ∈ vi do: di = di + wij .
For (vj , wij) ∈ vi do:

if dj > 0:

Y [j, :] = Y [j, :]− d
− 1

2
j d

− 1
2

i wijQ[i, :];

Y [i, :] = Y [i, :]− d
− 1

2
j d

− 1
2

i wijQ[j, :].
Y = 2Q− Y ;Q = orth(Y ).

3. Wl×l ← a zero matrix. // W phase: 1 pass.
For vi ∈ N do:

For (vj , wij) ∈ vi do:

t = Q[i, :]T d
− 1

2
i w

1
2
ij −Q[j, :]T d

− 1
2

j w
1
2
ij .

W = W + ttT .
W = 2I−W .

4. Λ, U ← Eigendecomposition(W ), U = QU .
5. Un×k ← k columns from U corresponding to the k

largest eigenvalues in Λ.
6. Run a k-means algorithm on row-normalized Un×k.

One limitation of Algorithm 2 is that it assumes knowl-
edge of E , which may not hold true in real applications.
Also, E cannot be computed with a single pass over the
graph because calculating any edge vector ϵt∈E requires
knowing both di and dj for the nodes i, j that bound the
edge. In Algorithm 3, we propose to relax this assumption by
employing the vertex-neighbors representation of the graph:
N=[v0, . . . , vn−1], where vi=[(vj , wij), . . . , (vk, wik)] is a
list containing its neighbors and the corresponding weights.
The orth() denotes the orthonormalization of a given matrix.
Algorithm 3 Complexity. Time complexity: O(k2(m+n));
Memory complexity: O(kn): Number of passes: T+1.

The key difference of the one-pass variants from Algo-
rithms 2 and 3 is in the computation of W . By setting
T = 1 in the Q phase and modifying the W phase with
W = 2I−QTY (QT orth(Ω))−1 that does not require pass-
ing over the graph, we can have the one-pass variants.

102 103 104

10 5

10 3

10 1

Ap
pr

ox
. E

rr
or

102 103 104

1

2

3

N
Cu

t

102 103 104

Number of nodes

10 3

10 2

10 1

100

AR
I Classical

Alg. 2 Rand. T=20
Alg. 2 Rand. T=5
Rand. one-pass
Alg. 3 Eff. T=20
Alg. 3 Eff. T=5
Eff. one-pass

102 103 104 105

Number of nodes

10 1

101

Ti
m

e 
(s

)

Figure 1: Performance of the proposed algorithms. Alg. 2
and Alg. 3 produce the same clusters at any given T , but
Alg. 3 scales much better. Quality of clusters scales with T .

Experiments
We validated the algorithms by generating synthetic datasets
with known cluster assignments and comparing to the classi-
cal algorithm (Ng et al. 2001). All experiments were carried
out on a MacBook Air with 8 CPUs and 24 GB RAM.
Accuracy. We calculated the approximation error of an al-
gorithm as the Frobenius norm between the computed eigen-
vectors and the ground truth eigenvectors of L. Cluster-
ing quality was assessed using the normalized cut criterion
(NCut) (Von Luxburg 2007) and the adjusted Rand score
(ARI) (Hubert and Arabie 1985) with the ground truth clus-
ter labels. Figure 1 presents the experimental results.

As expected, Algorithm 2 and Algorithm 3 output identi-
cal results with any T . (Results are overlapped in Figure 1.)
When T≥20, the proposed Algorithm 3 produces clusters
concordant with the classical algorithm (Ng et al. 2001).
Runtime. The results are shown in the last plot of Figure
1. The proposed Algorithm 3 scales linearly with the size
of graphs and is more than 15X faster than the classical
algorithm in graphs with 104 nodes. It is also memory effi-
cient and runs on large graphs. When the number of nodes is
greater than 104, other algorithms failed to produce results.

Future Work
An important step in modern single-cell analysis workflows
is the identification of distinct cell types via clustering algo-
rithms. The most popular method is the Leiden algorithm,
which efficiently identifies cell clusters through modularity
maximization (Traag, Waltman, and Van Eck 2019). We ob-
served that Algorithm 3 achieves similar efficiency, identi-
fying cell clusters in a dataset of 200, 000 cells within five
minutes. Additionally, Algorithm 3 can sometimes identify
small but distinct clusters of cells that were overlooked by
the Leiden algorithm even when the same number of clusters
is obtained. These results demonstrate the potential utility of
spectral clustering as an alternative clustering algorithm in
single-cell data analysis. In the future, we will conduct more
detailed experiments on the application to single-cell data.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23691



References
Halko, N.; et al. 2011. Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Ma-
trix Decompositions. SIAM Review, 53(2): 217–288.
Hubert, L.; and Arabie, P. 1985. Comparing partitions. Jour-
nal of classification, 2: 193–218.
Ng, A.; et al. 2001. On spectral clustering: Analysis and
an algorithm. Advances in neural information processing
systems, 14.
Traag, V. A.; Waltman, L.; and Van Eck, N. J. 2019. From
Louvain to Leiden: guaranteeing well-connected communi-
ties. Scientific reports, 9(1): 5233.
Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and computing, 17: 395–416.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23692


