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Abstract

Graph anomaly detection has received remarkable research
interests, and various techniques have been employed for
enhancing detection performance. However, existing mod-
els tend to learn dataset-specific spurious correlations based
on statistical associations. A well-trained model might suf-
fer from performance degradation when applied to newly ob-
served nodes with different environments. To handle this situ-
ation, we propose CounterFactual Graph Anomaly Detection
model, CFGAD. In this model, we design a gradient-based
separator to disentangle node features into class features and
environment features. Then, we present a weight-varying dif-
fusion model to combine class features and environment fea-
tures from different nodes to generate counterfactual samples.
These counterfactual samples will be adopted to enhance
model robustness. Comprehensive experiments demonstrate
the effectiveness of our CFGAD.

Introduction
Anomalous nodes within graphs are considered as data ob-
jects that significantly deviate from the majority in terms
of structures and/or properties. Detecting anomalous nodes
is a crucial task in a great many industrial applications, as
a few anomalies may cause tremendous loss. Correspond-
ingly, significant progress has been achieved by leveraging
various techniques on graph anomaly detection (GAD) (Ma
et al. 2021; Xiao et al. 2023b).

Despite the encouraging results made by existing models,
they still struggle in poor generalization beyond training data
distribution. The decline in performance can be attributed
to distribution shift and shortcut learning, which means that
deep learning models tend to learn dataset-specific spurious
correlations based on statistical associations. Problems with
these characteristics arise when the test data has a differ-
ent distribution from the training data. Consequently, even
a well-trained model might suffer from performance degra-
dation when applied to newly observed nodes with different
environments. Existing work (Yang et al. 2021) has shown
that learning causal relations can efficiently alleviate this is-
sue in the field of natural language processing.
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In this paper, we try to learning causal relations in the
field of graph learning and propose a CounterFactual Graph
Anomaly Detection model, CFGAD. In this model, we first
design a gradient-based selector to disentangle node features
of the graph into the class feature and environment feature.
Second, we present a weight-varying diffusion model to gen-
erate counterfactual samples based on disentangled features.
Thus CFGAD provides a direct way for generating counter-
factual samples based on decomposed features in the task of
GAD. Extensive experiments conducted on two real-world
datasets show that our model achieves state-of-the-art re-
sults.

Methodology
Problem Definition. Given a graph G = (V, E ,X), V do-
nates the node set, E represents the edge set, and X refers
to the set of node features. The task of GAD aims to learn
a function f to measure the anomaly score si = f(vi) for
each node vi in V . Herein, the anomaly score si indicates the
abnormality degree of node vi, i.e., the higher the anomaly
scores, the more likely the nodes are anomalous.
Framework. Our model comprises two main modules. The
first module focuses on performing feature separation un-
der a constraint condition, with the goal of separating node
features into class features C and environment features E.
The second module is responsible for generating counter-
factual samples. It combines the class feature from one node
with the environment feature from another node to create
a counterfactual sample. This counterfactual sample is then
utilized to enhance the model’s generalization capability and
improve the detection performance
Gradient-based Feature Separation. Inspired by (Chen
et al. 2020; Pope et al. 2019), we design a gradient-based
feature separator to decompose node features X into class
features C and environment features E. We aim for C to
inherit most of the informative characteristics of the nodes.
Meanwhile, We expect E can capture local structure near
nodes. To measure the importance of features in the node,
we transform the node feature X into a learnable model
parameter F and adopt the gradients of F to evaluate the
feature importance. Here, F is initialized with the original
feature data. The contribution of the k-th feature in F to the
anomaly detection at layer l as:
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Where y is the predicted probability of ground truth, F is the
feature representation in hidden layer, and N is the number
of samples. Based on this gradient score α, the feature se-
lector uses top-K sampling to adaptively select class-specific
features, denoted as C, while treating the remaining features
as environment features, denoted as E.
Counterfactual Sample Generation. Due to the superior-
ity of diffusion models (Xiao et al. 2023a), we present a
weight-varying diffusion model to combine the class fea-
tures from one node, ca, and the environment feature from
another node, eb, to generate counterfactual samples. To this
end, we resize the environment feature eb as the prior, which
is fed into the reverse diffusion process to generate a clean
embedding through gradual denoising, i.e., xT → xt →
x̂t−1 → xt−1 → x0. During this process, we regard the
class feature ca as the condition, which is exerted into the
generative process with varying weights. Specifically, the
prior is computed as:
xT = m⊙ eb + (1−m)⊙

(
g
(
eb
)
β + x̂T (1− β)

)
, (2)

where m is a binary sequence, g(·) is the bicubic interpo-
lation function and β is the weight parameter to adjust the
importance of two terms. We impose the condition on the
reverse diffusion iteration. According to the Markov chain,
the conditional reverse diffusion aims to predict x̂t−1 based
on x̂t and ca. After adding the condition ca, every step of the
reverse process becomes:

xt−1 = m⊙
(
(1− h(t− 1))x̂t−1 + h(t− 1)ca

)
+(1−m)⊙ x̂t−1.

(3)

We use the real observed values ca to replace the gener-
ated data at each time step to avoid data deviation problem.
m ⊙ (·) and (1 − m) ⊙ x̂t−1 refer to the generated values
of condition data and environment data respectively. h(·) is
a monotonic function for adjusting the weights of the condi-
tions. This generative process iteratively refines the distribu-
tion until reaching a clean sample x0, donated as Xcf .
Anomaly Detection Model. Having generated counterfac-
tual feature Xcf and original feature X , we first compute
the corresponding node representations:

zi = AGG(MLP(X +Xcf )), (4)
where AGG is a aggregation function that aggregate the
neighbor information to form the node representation zi.
Further, we detect anomalies based on these representations:

si = fθ (vi) = Softmax(uT · (W · zi + b)), (5)
where u and W are learnable wight vector and weight ma-
trix, respectively. b is bias term, and fθ (·) is a binary classi-
fier that maps the node representations into probability val-
ues through Softmax. si is the probability value of node vi
being anomalous. Because of generated counterfactual sam-
ples, the model can learn a more robust causal representa-
tion of the nodes on the graph during training, allowing us
to better distinguish abnormal and normal nodes, improving
the performance of anomaly detection.

YelpChi Amazon
Method macro-F1 AUC macro-F1 AUC

GCN 0.5171 0.5689 0.6054 0.8667
GAT 0.5164 0.7403 0.6426 0.8499

GraphConsis 0.6577 0.7853 0.7894 0.9516
CARE-GNN 0.6433 0.7925 0.8988 0.9491

CFGAD 0.6832 0.8129 0.9054 0.9629

Table 1: Overall performance on two datasets.

Experiments
Datasets & Baselines. We conduct experiments on two
datasets, YelpChi is a review network collected from
yelp.com and Amazon includes product reviews under the
Musical Instruments category. Both of the datasets are at-
tributed multi-relation graph. We compare our model with
the following baselines: GCN, GAT, CARE-GNN (Dou
et al. 2020).
Performance Comparison. The overall comparison results
are reported in Table 1. We can observe that CFGAD out-
performs all baselines. This result confirms the effectiveness
of the gradient-based selector in disentangling node features
and learning fine-grained class and environment features.
Additionally, the diffusion model can generate high-quality
counterfactual samples by leveraging the disentangled fea-
tures and improve model’s generalization and robustness.
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