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Abstract

Modern machine learning heavily relies on optimization,
and as deep learning models grow more complex and data-
hungry, the search for efficient learning becomes crucial.
Learned optimizers disrupt traditional handcrafted methods
such as SGD and Adam by learning the optimization strategy
itself, potentially speeding up training. However, the learned
optimizers’ dynamics are still not well understood. To remedy
this, our work explores their optimization trajectories from
the perspective of network architecture symmetries and pro-
posed parameter update distributions.

Introduction
We focus on the learning-to-optimize (L2O) method and the
particular architectural design introduced by Andrychowicz
et al. (2016). Concretely, the goal is to meta-learn an opti-
mizer M , implemented as a two-layer LSTM network with
parameters ϕ, to optimize a vector of optimizee neural net-
work parameters θ in order to minimize a loss function L(θ).
At each time step t, the optimizer has access to the gradient
∇L(θt) and produces an update gt to get θt+1. The phase of
learning the optimizer’s parameters ϕ is usually referred to
as meta-training and the subsequent evaluation with frozen
parameters ϕ is known as meta-testing.

Although learned optimizers have shown great potential,
major practical difficulties still persist. Furthermore, since
the field is in its nascent stages, many fundamental ques-
tions remain unanswered, and an extensive investigation into
their training dynamics is still lacking, which hinders well-
informed further progress.

To tackle this, we empirically analyze the impact of sym-
metries introduced by optimizee architectures and examine
the heavy-tailedness and variation of noise in the predicted
parameter updates.

Methods
Symmetry-induced constraints. As shown by Kunin
et al. (2021), numerous symmetries in neural network archi-
tectures impose stringent geometric constraints on gradients.
We primarily focus on rescale symmetry which arises from
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the Leaky ReLU activation function, and on scale symme-
try present in networks with batch normalization. For exam-
ple, the geometric constraint for the rescale symmetry is that
the gradients are everywhere perpendicular to the parameter
vector with an inverted sign of the outgoing weights.

Heavy-tailed distribution of gradient and update noise.
The work of Simsekli, Sagun, and Gurbuzbalaban (2019)
has demonstrated that the distribution of gradient noise in
SGD converges to a heavy-tailed α-stable random variable.
It is known that the density of this distribution decays with
a power law tail like |x|−α−1 where α ∈ (0, 2] is called the
tail-index: as α gets smaller, the distribution has a heavier
tail.

Update covariance. To investigate the noise (variation) in
the mini-batch updates for different optimizers, we study
their update covariance K = 1

N

∑N
i=0(gi − g)(gi − g)T

where gi is the parameter update on sample xi, g is the full-
batch update, and N is the number of training samples.

Experiments
We meta-train and meta-test on optimizee feed-forward neu-
ral networks with 1 hidden layer of 20 neurons with ei-
ther Leaky ReLU or batch normalization followed by ReLU.
Both optimizee models have the softmax function at the out-
put layer and are trained on the MNIST classification task
with the cross-entropy loss function and batch size of 128.
The optimizer’s parameters ϕ are trained to minimize the
sum of the optimizee’s unrolled losses over 20 mini-batches.

Deviations from the Geometric Constraints
To assess the importance of learned optimizers being free
from the geometric constraints that might bind classical op-
timizers, we track the progression of optimizers’ update de-
viations from these constraints.

As can be seen in Figure 1, the deviations of L2O from the
geometric constraints that come from the two symmetries
are much larger than those of SGD and Adam. But most
strikingly, the increase in this symmetry breaking is largest
for L2O at the beginning of optimization, whereas for Lion,
it increases more gradually and achieves higher values later.

To get a deeper insight into how L2O leverages the free-
dom of parameter updates, we meta-train with an addi-
tional regularization loss that penalizes the absolute size of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23657



0 50 100

A
b

s
o

lu
te

 d
e
v

ia
ti

o
n

Adam SGD Lion L2O

0 50 100

Iteration Iteration

0

20

40

60

0

20

40

Figure 1: Deviations from the geometric constraints. Left:
Rescale symmetry breaking (Leaky ReLU optimizee).
Right: Scale symmetry breaking (optimizee with ReLU and
batch normalization).

the L2O’s update deviations from the geometric constraints
on gradients. The performance for various regularization
strengths β is shown in Figure 2.

Interestingly, as regularization increases, the L2O’s speed
of optimization significantly drops. The same observation
for the effect of regularization can be made for most of the
optimizee architectures on which L2O was not meta-trained.

Distribution of Gradients and Parameter Updates
In this section, we 1) investigate how heavy-tail is the gradi-
ent and update noise by estimating the parameter α using the
estimator implementation from Simsekli, Sagun, and Gur-
buzbalaban (2019); and 2) monitor the progression of the
largest eigenvalue of the update covariance K. The results
are shown in Figure 3.

First, we see that the noise in the updates from L2O is gen-
erally less heavy-tailed and has higher variation than the up-
dates from baseline optimizers such as SGD and Adam. Sec-
ond, the distribution of L2O parameter updates is much less
heavy-tailed than that of the gradients. This shows that L2O
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Figure 2: Performance after symmetry breaking regulariza-
tion. Left: Rescale symmetry breaking regularized (Leaky
ReLU optimizee). Right: Scale symmetry breaking regular-
ized (optimizee with ReLU and batch normalization).
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Figure 3: Heavy-tailedness and update covariance. Left:
Gradient and update noise (Leaky ReLU optimizee). Right:
Update covariance (Leaky ReLU optimizee).

effectively attenuates the heavy-tail portion of deviations in
the gradient estimates on its input, taking a less jittery opti-
mization trajectory. More importantly, this noise filtering is
much more pronounced than for the baseline optimizers.

Conclusion
One of the most pronounced features of learned optimizers
is their rapid symmetry breaking at the beginning of the opti-
mization run. Remarkably, the good performance of L2O in
the initial phase of training correlates with this very well, as
also demonstrated by the symmetry breaking regularization
which severely hindered the optimizer.

Another aspect is the less heavy-tailed distribution of L2O
updates despite the gradients exhibiting very heavy-tailed
behavior. Together with the high variation of updates across
different samples, as shown by large maximum eigenval-
ues of update covariance, this points to one interesting ob-
servation: L2O appears to act as a stabilizing force in the
optimization process. While the inherent stochasticity and
heavy-tailed nature of gradients might lead to erratic updates
and slow convergence, the noise clipping of L2O seems to
mitigate these issues.
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