
Well-Written Knowledge Graphs: Most Effective RDF Syntaxes for Triple
Linearization in End-to-End Extraction of Relations from Texts

(Student Abstract)
Célian Ringwald1, Fabien Gandon1, 2, Catherine Faron1, Franck Michel1, Hanna Abi Akl1, 2

1 Université Côte d’Azur, Inria, CNRS, I3S
2 Data ScienceTech Institute

celian.ringwald@inria.fr, fabien.gandon@inria.fr, faron@i3s.unice.fr,
fmichel@i3s.unice.fr, hanna.abi-akl@inria.fr

Abstract

Seq-to-seq generative models recently gained attention for
solving the relation extraction task. By approaching this prob-
lem as an end-to-end task, they surpassed encoder-based-only
models. Little research investigated the effects of the output
syntaxes on the training process of these models. Moreover,
a limited number of approaches were proposed for extracting
ready-to-load knowledge graphs following the RDF standard.
In this paper, we consider that a set of triples can be linearized
in many different ways, and we evaluate the combined effect
of the size of the language models and different RDF syntaxes
on the task of relation extraction from Wikipedia abstracts.

Introduction
The resolution of the relation extraction (RE) task - consist-
ing of retrieving relations from unstructured text - was dras-
tically improved recently by two main changes: (1) the con-
struction of massive corpora aligning texts and facts from
Knowledge graphs (KG) e.g. Wikipedia articles with the
KGs of Wikidata and DBpedia, and (2) the usage of pre-
trained language models (PLM) and more recently genera-
tive models. However, Wikidata and DBpedia still struggle
with coverage and quality issues. In this context, extracting
the missing information in these KGs from Wikipedia is an
interesting way to fill the gap. To our knowledge, no sys-
tem was proposed to perform a semantic relation extraction
where the extracted triples explicitly follow an RDF syntax.
Generative PLMs are very flexible, but the formulation of
the task is a really sensitive choice. In this article, we specif-
ically address the following research question: RQ – How
does the choice of syntax impact the generation of triples
using datatype properties?

Related Work
Before investing in generative PLMs, the research commu-
nity focused on systems built on top of encoder-only PLMs
(derived from BERT), where relations were decoded by
design in a discriminative manner. Since 2021, generative
PLMs have gained interest after demonstrating their abil-
ity to solve complex tasks in an end-to-end design. Mainly
based on the fine-tuning of BART or T5, the triples syntax is

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learned implicitly from the examples submitted during train-
ing (Ye et al. 2022).

The choice of syntax to represent the triples provided
to the model is part of the “linearization process”. Until
now, different methods have been investigated but they were
not rigorously compared. The two main solutions proposed
were to represent the relation as a list of triples (Wang
et al. 2022): ((s1, p1, o1), (s2, p1, o2), ...) or via a se-
quence of tags (Ke et al. 2021) where each element of
the triple is preceded by a special token e.g. H,R, T in
⟨H⟩s1⟨R⟩p1⟨T ⟩o1⟨H⟩s2⟨R⟩p1⟨T ⟩o2. To limit the number
of tokens, (Huguet Cabot and Navigli 2021) proposed a
triple linearization method where triples sharing the same
subject are grouped to avoid repetition.

As for the representation of triples, the W3C proposed
several RDF syntaxes: • RDF-XML which suffers the ver-
bosity of XML • N-Triples, an easy-to-parse line-based for-
mat • Turtle, a lighter and easier-to-read syntax; that allows
the use of qualified names for URIs to compact their writ-
ing and it integrates shortcuts to cram triples sharing the
same subjects or the same predicates1 • JSON-LD, relying
on JSON, the now popular Web format.

Experiments
Scope of the study: The scientific community has recently
pointed out the “hallucination” problem of PLMs. In prac-
tice, this issue may affect the generation of triples with literal
values as objects (e.g. attributes such as dates, measures, tex-
tual descriptions, etc.). Following the OWL semantics, these
triples are represented with datatype properties on which we
focused for the first step of our experiments. To evaluate the
impact of the triple syntax on the extraction of datatype re-
lations, we compared the results obtained with seven dif-
ferent syntaxes. The core idea is to find the best trade-off
between the expressiveness and the conciseness of the syn-
taxes on one hand, and the ease with which a selected PLM
can learn them on the other. The first two selected syntaxes
are the ones used in the literature: the list and the tagged
sequence. Four syntaxes are from the RDF standard: Tur-
tle, RDF-XML, N-Triples and JSON-LD. The last one is a
simplified Turtle syntax where every namespace, prefix, and
datatype is considered predefined and thus implied.

1https://www.w3.org/TR/turtle/#predicate-lists

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23631



Syntax size
(MB)

min.
token
length

max.
token
length

avg.
token
length

JSON-LD 1 104 134 617 317
XML 1 089 177 444 280
NTriples 1 004 98 580 226
Turtle 810 66 285 153
Tags 642 21 351 86
List 623 16 316 67
Turtle light 597 21 171 58

Table 1: Datasets description

Dataset: We built a dataset based on the English chapter
of DBpedia, focusing on the triples whose subjects are in-
stances of dbo:Person, the class having the largest num-
ber of datatype properties, especially on the following ones:
rdfs:label, dbo:birthDate, dbo:deathDate,
dbo:birthYear, dbo:deathYear. Then we applied
two filtering steps on the resulting dataset: a selection of
the only triples respecting both of the aforementioned con-
straints, expressed as a SHACL shape and a lookup pro-
cess keeping only the triples where the datatypes values are
clearly mentioned in the Wikipedia abstracts.

Methodology: We fine-tuned several generative models
on the selected syntaxes. The first run of this experiment
uses two versions of BART (base and large) configured in
a conditional generation mode. We trained these models via
cross-validation by choosing during each epoch: a training
random subset of our dataset of 10 000 examples; validated
and tested via two other random subsets of 3 000 examples.
The training was conducted on a single GPU Tesla V100-
SXM2-32GB, with an early stop mode: after 5 training steps
without loss improvement, the training is stopped. All the
material extending the forked REBEL GitHub repository is
publicly available2.

Results and discussions: The results of the experiments
are compiled in a Weights and Bias dashboard3, a digest is
provided in Figure 1. The left graph presents the micro-F1
reached after the first epoch and reveals a significant differ-
ence in terms of performance between the syntaxes on the
BART-base model. Nonetheless, with BART-large, this per-
formance gap is narrowed. On the right graph of Figure 1,
we can see that the BART-large takes longer for an epoch
but needs less of them to get good results. We can also read
the number of epochs needed to reach a micro-F1 greater
than 0.9. The number of epochs needed to reach the state of
saturation is lower for BART-large. Three syntaxes caught
our attention: Turtle requires the same number of epochs
for BART-base and BART-large; the List syntax needs more
training epochs to be learned by BART-large than by BART-
base; conversely, the JSON-LD and the XML were easier to
learn by BART-large. These results reveal a clear winner:

2https://github.com/datalogism/SyntaxBart
3https://wandb.ai/celian-ringwald/SyntaxBART?workspace=

user-celian-ringwald

Figure 1: Synthesis of the main results of our experiment.

the simplified Turtle syntax that outperformed all the other
syntaxes in every aspect, and a clear loser: the N-Triples
syntax that took two or three times longer in terms of train-
ing epochs for reaching the micro-F1 saturation compared
to other syntaxes.

Conclusions
Our experiment has shown the significant impact of the RDF
syntax chosen on the extraction of datatype properties from
texts. In this context, the simplified Turtle syntax proposed
is a promising Knowledge Graph linearization solution: fast
to learn and economical regarding token length. Moreover,
the original Turtle syntax shows its stability on both models
(base and large) and could be an interesting option consid-
ering its expressiveness and conciseness. In the future, we
will extend this experiment with a more robust approach in-
corporating k-fold cross-validation and other measures more
adequate to assess the generated triples.

References
Huguet Cabot, P.-L.; and Navigli, R. 2021. REBEL: Re-
lation Extraction By End-to-end Language generation. In
Findings of the Association for Computational Linguistics:
EMNLP 2021, 2370–2381. ACL.
Ke, P.; Ji, H.; Ran, Y.; Cui, X.; Wang, L.; Song, L.; Zhu,
X.; and Huang, M. 2021. JointGT: Graph-Text Joint Rep-
resentation Learning for Text Generation from Knowledge
Graphs. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, 2526–2538. Online: Asso-
ciation for Computational Linguistics.
Wang, C.; Liu, X.; Chen, Z.; Hong, H.; Tang, J.; and Song,
D. 2022. DeepStruct: Pretraining of Language Models for
Structure Prediction. In Findings of the Association for
Computational Linguistics: ACL 2022, 803–823. Dublin,
Ireland: Association for Computational Linguistics.
Ye, H.; Zhang, N.; Chen, H.; and Chen, H. 2022. Genera-
tive Knowledge Graph Construction: A Review. In Proc. of
the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, 1–17. ACL.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23632


