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Abstract

Communication overhead remains a significant challenge in
federated learning due to frequent global model updates.
Essentially, the update of the global model can be viewed
as knowledge transfer. We aim to transfer more knowledge
through a compact model while reducing communication
overhead. In our study, we introduce a federated learning
framework where clients pre-train large models locally and
the server initializes a compact model to communicate. This
compact model should be light in size but still have enough
knowledge to refine the global model effectively. We facili-
tate the knowledge transfer from local to global models based
on pre-training outcomes. Our experiments show that our ap-
proach significantly reduce communication overhead without
sacrificing accuracy.

Introduction
Communication efficiency is crucial for federated learning
systems (Pei et al. 2022). The use of complex deep learn-
ing models intensifies communication challenges, stem-
ming from the model’s granularity or incremental data from
clients. Large size models increase the volume of parameters
to be exchanged, exacerbating communication overhead,
and consuming more time and energy for synchronization.
This is particularly problematic in bandwidth-constrained
or real-time environments and can lead to inefficient power
consumption in edge devices (Jiang et al. 2022). Optimizing
model sizes without compromising learning capacity is thus
essential for scalable federated learning.

Strategies like neural network pruning (Abdi et al. 2023),
knowledge distillation (Guo et al. 2023), and parameter
compression (Said, Pourreza, and Le 2022) aim to re-
duce communication overhead. Pruning eliminates redun-
dant model parameters but often requires fine-tuning due to
data heterogeneity, increasing computational and communi-
cation costs. Knowledge distillation allows smaller models
to mimic larger ones but can compromise client data privacy
in a federated setting. Parameter compression, while reduc-
ing model size, can degrade accuracy if applied aggressively.

To address the limitations of these methods, we propose
a new framework, illustrated in Figure 1, to optimize the
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knowledge transfer in federated learning without increas-
ing communication overhead. Our approach uses a compact
global model for server-client communication, updated via
prediction loss and probability from local models. The com-
pact global model is an efficient and performance-retentive
version of the original model, designed to minimize com-
munication overhead. Our method is distinct from neural
network pruning as it preserves the global model architec-
ture, preventing the loss of crucial nodes or weights. Unlike
conventional knowledge distillation techniques that central-
ize teacher model parameters, our method empowers local
teacher models to directly update student models on indi-
vidual clients. This decentralized approach significantly re-
duces communication overhead, leading to a more efficient
and scalable knowledge distillation process. Furthermore,
our framework stands apart from parameter compression
techniques as it does not compromise key information by
reducing the size of weight representations. In essence, our
framework achieves efficient knowledge transfer through the
alignment of predictive probability distributions, enhancing
communication efficiency and safeguarding data privacy.

Methodology
In a federated learning system, each of the N participat-
ing clients possesses a local model θn and a corresponding
dataset Dn. Before communication commences, clients train
their local models using their own data and perform pre-
training to refine the model parameters, as shown in Step 1
of Figure 1. To reduce communication overhead, the server
initializes a compact model Θ with random parameters, en-
suring conciseness compared to the local models θn while
maintaining the same architecture. The compact model Θ
acts as a communication intermediary between the server
and the clients. Once the initialization of Θ is completed,
the server distributes it to all participating clients, initiating
communication upon the completion of θn training.

Step 2 outlines the single-round knowledge transfer pro-
cess, iterated until the global model Θ converges. During
each round, compact models Θn on clients absorb knowl-
edge from local models θn and are aggregated into an up-
dated global compact model Θ on the server for the next
communication round. We update Θn by computing two
losses: (1) the prediction loss of Θn on client n accord-
ing to label information, and (2) the KL divergence be-
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Figure 1: Overview of our framework. The process begins
with Step 1, followed by iterative repetitions of Step 2 until
convergence is achieved.

tween the softmax outputs of Θn and θn. This KL loss com-
putes the logarithmic probability divergence, capturing dif-
ferences between models as:

Θε
n = Θε−1

n − λ1F1(Θε−1
n )− λ2F2(Θε−1

n , θn) (1)

where F1 calculates the loss value of prediction from la-
bel information and F2 calculates the difference in proba-
bility distribution of the prediction results between θn and
Θn in ϵ epoch. After updating, each client uploads the up-
dated model Θn to server. The server then aggregates the
compact models Θn to Θ with the optimization objective
after receiving all Θn:

min
θ∈Rd

F (Θ) =
N∑

n=1

Dn

D
Fn(Θn) (2)

This minimizes the weighted overall loss across clients
based on their relative dataset sizes Dn/D. Our approach
efficiently extracts knowledge from local models into a com-
pact global model, reducing communication costs while pre-
serving personalized client data characteristics.

Experiment
We evaluated our framework on FMNIST and CIFAR10
using CNN and VGG9 models, with a compact same-
architecture server model. After local training, the server
model communicates and updates parameters. We compared
against FedAvg, PrunFL (Jiang et al. 2022), and FEDGEN
(Jiang et al. 2023) on accuracy, communication overhead,
and training time. The a parameter of Dirichlet distribution
was used to realize different levels of non-IID.

Our method outperforms baselines in terms of both ac-
curacy and efficiency across various datasets, as shown in
Table 1. Notably, our approach achieves high efficiency,
characterized by minimal communication overheads and of-
ten reduced training times compared to benchmark meth-
ods. This enhanced efficiency stems from our compact
server model, which significantly reduces communication
costs. Furthermore, our framework strategically extrapolates
salient features without incurring additional communication

FMNIST -α=0.2
Accuracy (%) Overhead (Mb) Time (s)

Ours 89.21 9.01E+01 7.24E+02
FedAVG 83.45 1.00E+02 1.65E+03
PrunFL 87.45 9.55E+01 1.35E+03
FEDGEN 88.54 1.12E+02 9.06E+02

CIFAR10 - α=0.2
Accuracy (%) Overhead (Mb) Time (s)

Ours 72.16 4.01E+04 7.51E+03
FedAVG 61.25 7.70E+04 2.17E+04
PrunFL 68.78 6.54E+04 8.91E+03
FEDGEN 71.75 6.45E+04 7.91E+04

Table 1: Performance comparison on two data sets.

by aligning predictive probabilities between global and local
models. Overall, our paradigm demonstrates promising po-
tential for federated learning, particularly in scenarios where
communication efficiency and model accuracy are conflict-
ing priorities.

Conclusion
Our approach leverages the advantages of both large client-
side models and compact server-side models, harmonizing
their performance through prediction probability distribu-
tion alignment. This innovative strategy presents a solu-
tion to communication overheads and data privacy concerns.
However, its efficacy is contingent on robust client-side data.
Future work will explore refining the alignment process and
ensuring adaptability to real IoT environment.
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