
Several Stories about High-Multiplicity EFx Allocation (Student Abstract)

Nikita Morozov1, Artur Ignatiev2, Yuriy Dementiev2

1Constructor University, 28759 Bremen, Germany
2HSE University, St. Petersburg 190121, Russia

nmorozov@jacobs-university.de, aaignatiev@hse.ru, ydementyev@hse.ru

Abstract

Fair division is a topic that has significant social and industrial
value. In this work, we study allocations that simultaneously
satisfy definitions of fairness and efficiency: EFx and PO.
First, we prove that the problem of finding such allocations
is NP-hard for two agents. Then, we propose a concept for
an ILP-based solving algorithm, the running time of which
depends on the number of EFx allocations. We generate in-
put data and analyze algorithm’s running time based on the
results obtained.

Introduction and Related Work
Fair and efficient allocation of resources is a very important
issue in Economics and Computer Science. First mentioned
in the mid-20th century, it arises in a variety of practical ap-
plications, such as dividing rewards among groups, allocat-
ing students to courses, and assigning tasks within a team.

One of the most popular notion of fairness is envy-
freeness (EF), which requires that every agent prefers their
own bundle of goods to that of any other. However in the
case of indivisible goods, EF allocations may not exist. This
motivated the study of its relaxations. One of the actual
and relevant relaxations of EF proposed by (Caragiannis
et al. 2016) is called envy-free up to any item (EFx). Each
agent’s bundle should be worth at least as much as any other
agent’s bundle minus any single item for the allocation to be
EFx. The existence of EFx allocations is considered as the
biggest open question in fair division. We refer to overview
paper (Amanatidis et al. 2023) for a detailed overview of fair
division of indivisible goods.

The standard notion of efficiency is Pareto optimality
(PO). An allocation is said to be PO if no other one makes
an agent better off without making someone else worse off.

An important question in fair division is whether the no-
tions of fairness can be achieved in conjunction with the ef-
ficiency notions PO. In general, EFx + PO allocations are
not guaranteed to exist (Plaut and Roughgarden 2020). In
this paper we focus on the algorithmic complexity of find-
ing EFx + PO (EFx and at the same time PO allocation).

Setting. There is a set N of n agents and a set M of
m goods that cannot be divided or shared. Each agent

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

i ∈ N is equipped with an additive valuation function
vi : 2

M → N≥0, which assigns a non-negative integer and
vi(S) =

∑
g∈S vi(g) for any subset of items S ⊆ M . A

fair allocation instance is denoted by I = (N,M, v) where
v = (v1, ..., vn) is the vector of valuation functions and can
be represented by a table with a row per agent and a column
per good, such that cell (i, g) contains the value vi(g). An
allocation is a tuple of subsets of M : A = (A1, . . . , An),
such that each agent i ∈ N receives the bundle, Ai ⊆
M,Ai ∩ Aj = ∅ for every pair of agents i, j ∈ N , and⋃

i∈[n] Ai = M .

Definition 1. An allocation A is envy-free up to any item
(EFx) if it satisfies:

∀i, j ∈ N : ui(Ai) + min
z∈Aj

ui(z) ≥ ui(Aj).

Definition 2. An allocation A is pareto-optimal (PO) if
there is no other allocation B such that:{

∀ i ∈ N : ui(Bi) ≥ ui(Ai),

∃ j ∈ N : uj(Bj) > uj(Aj).

Item type is a vector of length n, where the i-th coordinate
is the value of the good’s utility for the i-th agent. We will
use k to denote the number of item types. In other words,
there are exactly k unique goods. The introduction of item
types immediately entails the typification of allocations. We
do not distinguish allocations that differ from each other by
permutation items of the same type. That is, by the number
of allocations we mean the number of different (up to per-
mutation of items of the same type) allocations.

Hardness
On the one hand, the EFx + PO problem is NP-hard for 3-
valued instances (Garg and Murhekar 2021), so it rules out
the existence of an algorithm solving EFx + PO in FPT
time (f(k′) · |I|O(1) for parameter k′ and some function f )
with the parameter number of values (unless P = NP). On
the other hand, we show that EFx + PO problem is NP-hard
for two agents.
Theorem 1 (in Appendix). The problem of existence of an
EFx + PO allocation is NP-hard.

In (Bredereck et al. 2020) authors show (theoretical)
fixed-parameter tractability results for finding envy-free and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23587



pareto-optimal allocation with parameter n agents and k
types. We are concentrating on a more practical algorithm
for EFx + PO problem possible with an additional parame-
ter and explanation of its efficiency.

Integer Linear Programming
For simplicity of presentation, we will formulate an ILP for
two agents. General case can be found in the appendix (our
approach is similar to (Bredereck et al. 2021)).

EFx restrictions for two agents can be simplified as fol-
lows:

0 ≤ xi ≤ mi, 0 ≤ i ≤ k. (1)
k∑

i=1

aixi + min
j: mj−xj ̸=0

aj ≥
k∑

i=1

ai(mi − xi). (2)

k∑
i=1

bi(mi − xi) + min
j: xj ̸=0

bj ≥
k∑

i=1

bixi. (3)

Here xi is the variable meaning number of goods of type i
that the first agent has, ai, bi—the utility of the object of
type i for the first and the second agents, mi—the number
of goods of type i.

The minimum condition can be replaced with a number
of if-statements and binary variables, which is shown in the
appendix along with PO condition.

Our algorithm consists of three parts: we find an EFx al-
location, check it for PO and then repeat it if the allocation is
not EFx + PO. A few words have to be said about the last
step. It is important to search only for the allocations that
were not analyzed yet. In order to do so initial ILP instance
must be replenished with restrictions.

At the end we have an ILP with at most p = (2s+1)kn+
4kn2 variables where s is the number of EFx allocations.
We have to solve it not more than s times, so the overall
runtime is O∗(p2.5p+o(p)) (Lenstra 1983).

Number of EFx allocations
Our key goal is to evaluate the number of the EFx alloca-
tions as it appears in the runtime estimation of ILP (runtime
of a similar ILP for finding EF and PO allocation can be
found in (Bredereck et al. 2021)). We implemented the brute
force method to count the number of such allocations.

We work on a problem with 2 agents to reduce the com-
putational costs. It also allowed us to find the upper bound
on the number of EFx allocations. The proof that the num-
ber of allocations does not exceed (⌈m+k

k ⌉)k is provided in
the appendix. An example of an instance where the number
of EFx allocations is Ω( mk

2kkk ) can also be found there.

Generating inputs. We decided to implement our own in-
put generator. It takes n, m, k and maximal weight as param-
eters and returns an instance. An instance is chosen from the
uniform distribution over all the instances with k types and
bounded by maximal weight value weights.

After these theoretical results we decided to run our al-
gorithm on the smaller instances. It was made to show that

Figure 1: EFx allocation number, max weight=10, k = 4.

even though the upper bound is high the estimated number
of allocations is significantly lower. The results are shown
on the Fig.1. Even the 0.99 quantile is much lower than the
upper bound. Because of that we expect our algorithm to
work even faster than the estimated runtime. Experiments
with various metrics (such as the percentage of EFx alloca-
tions that are PO) can be found in supplemental material.

Results and Discussions. We see that the number of EFx
allocations is not so large in practice. But is it possible to
prove some probabilistic upper bound on the number of EFx
allocations? Also indirectly the complexity of such algo-
rithms is affected by the percentage of EFx allocations that
are PO. Is it possible to prove some lower bound on this
percentage?

Acknowledgments
Artur Ignatiev and Yuriy Dementiev: This work was done
under support of the grant №075-15-2022-289 for creation
and development of Euler International Mathematical Insti-
tute. This work was supported by HSE University (Basic Re-
search Program).

References
Amanatidis, G.; Aziz, H.; Birmpas, G.; Filos-Ratsikas, A.;
Li, B.; Moulin, H.; Voudouris, A. A.; and Wu, X. 2023.
Fair division of indivisible goods: Recent progress and open
questions. Artificial Intelligence, 322: 103965.
Bredereck, R.; Figiel, A.; Kaczmarczyk, A.; Knop, D.; and
Niedermeier, R. 2021. High-Multiplicity Fair Allocation
Made More Practical. In Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS ’21, 260–268. Richland, SC: Inter-
national Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450383073.
Bredereck, R.; Kaczmarczyk, A.; Knop, D.; and Nieder-
meier, R. 2020. High-Multiplicity Fair Allocation Using
Parametric Integer Linear Programming. arXiv:2005.04907.
Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2016. The Unreasonable Fairness
of Maximum Nash Welfare. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23588



305–322. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450339360.
Garg, J.; and Murhekar, A. 2021. Computing Fair and Ef-
ficient Allocations with Few Utility Values. In Algorith-
mic Game Theory: 14th International Symposium, SAGT
2021, Aarhus, Denmark, September 21–24, 2021, Proceed-
ings, 345–359. Berlin, Heidelberg: Springer-Verlag. ISBN
978-3-030-85946-6.
Lenstra, H. W. 1983. Integer Programming with a Fixed
Number of Variables. Math. Oper. Res., 8(4): 538–548.
Plaut, B.; and Roughgarden, T. 2020. Almost Envy-Freeness
with General Valuations. SIAM J. Discret. Math., 34(2):
1039–1068.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23589


