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Abstract

Topological and node noise filtration are typically considered
separately. Graph Neural Networks (GNN) are commonly
used for node noise filtration, as they offer high efficiency
and low exploitation costs. This paper explores the solution of
joint node and topological noise filtration through the use of
graph neural networks. Since treating a 3D mesh as a graph is
challenging, an indicator function grid representation is em-
ployed as input for GNNs to perform the joint filtering. The
resulting machine learning model is inspired by point cloud to
mesh reconstruction algorithms and demonstrates low com-
putational requirements during inference, producing success-
ful results for smooth, watertight 3D models.

Introduction
The problem of mesh denoising occurs in various fields
whenever there is a need to reconstruct a digital copy of a
real-world object. Due to imperfections in the instruments
and scanners used to capture information about the object’s
geometry, the resulting 3D models often contain a significant
amount of noise, which hinders their accuracy as represen-
tations of the original object.

3d-mesh denoising task was studied from various per-
spectives regarding the type of 3d-models: CAD (Zhang
et al. 2015; He and Schaefer 2013) and nonCAD (Zheng
et al. 2011) models, or time efficiency (Sun et al. 2007).
However, these methods only work with one type of noise
that commonly occurs in practice. This type of noise affects
the positions of mesh nodes but does not compromise the in-
tegrity of the mesh. Another type is called topological noise,
which occurs as the absence of nodes and faces. This task
is also called a hole filling (Sarkar, Varanasi, and Stricker
2018) and borders with mesh reconstruction tasks.

This work focuses on a solution that deals with the dual
problem of node and topological noise removal. The sug-
gested method converts 3d-mesh into a signed distance field
as indicator function grid (Peng et al. 2021). Then, it updates
the values in grid nodes via GNN to obtain a better version of
a mesh after applying marching cubes’ algorithm (Lorensen
and Cline 1987).
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Related Work
The initial attempts to address the issue of node noise fil-
tering involved deterministic algorithms (Zheng et al. 2011;
Zhang et al. 2015; He and Schaefer 2013). However, their
usability was limited because these methods could not en-
compass the full range of mesh geometries. Later, data-
driven methods (Wang, Liu, and Tong 2016) demonstrated
improved filtration quality and versatility. Recent studies
show that deep learning models based on GNNs (Shen et al.
2022; Zhang et al. 2022) perform the best in this case.

In the field of topological noise filtration, deterministic
approaches also have limitations when it comes to the pres-
ence of structure regularity (Pauly et al. 2008). Machine
learning approaches can solve the narrow problem of hole
filling or mesh reconstruction (Sarkar, Varanasi, and Stricker
2018). These tasks can be theoretically considered as mesh
noise filtering in general. Drawing a distinct border between
the task of topological noise filtration and mesh reconstruc-
tion is challenging.

Method
The proposed method is inspired by (Peng et al. 2021),
the method leverages its reconstruction abilities for denois-
ing task and consists of three transformations as: a(X) =
pout(µθ(pin(X))). The first stage pin is conversion of a
mesh to indicator function grid of size 1283. The second step
µθ comprises three GNNs and one MLP layer to modify the
values in nodes of the grid, θ is a learnable parameters’ set.
The last part consist of pout - marching cubes algorithm to
reconstruct the denoised mesh out of the resulting grid. The
pipeline is depicted on Figure 1.

Model is trained on NVIDIA V100 GPU, the PyTorch
framework is used for implementation, along with the Adam
optimizer. Learning rate is set to 0.001, batch size is 1 and
dropout probability is 0.1. Inference tests conducted on a
computer with 16 GB of RAM, Intel Core(TM) i7-11370H
CPU and without GPU. The demo and code are available on
Hugging Face1.

Experiments & Results
In the experiments, topological noise is generated by equally
probable removal of a given percent of vertices. The metrics

1https://huggingface.co/spaces/MVV/3dTopDenoising
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Figure 1: The model pipeline, where A is the grid adjacency matrix, and S is the grid nodes’ features matrix.

method/metric VCD NMCD AAD AVD
2GATv2 11,06 16,6319 7,2706 6,958
GeoBiGNN 0,16 0,5264 0,9239 1,206
CascadedReg 0,15 1,0154 1,2366 1,268
GuidedMesh 0,17 1,9120 1,2297 1,141
BilaterNorm 0,11 1,3201 1,2878 1,165
Fast&Effective 0,35 3,6027 2,5981 2,104

Table 1: Comparison of filtering nodal noise models
on the Synthetic dataset from paper (Wang, Liu, and
Tong 2016). VCD – vertices CD (×10−4), NMCD –
normals’ mean cosine distance(×10−2), AAD – abso-
lute area difference(×10−2), AVD – absolute volume
difference(×10−3)

were estimated using normalized data, so each mesh was ad-
justed to fit into unit-cube on the positive octant. To train the
solution proposed in this paper, the MSE metric is used as:

MSE =
1

|Gx|
∑

vx∈Gx

(vx − vy)
2,

where Gx and Gy are resulting and ground truth indicator
function grids, vx and vy are corresponding values in grids’
nodes.

Table 1 presented the comparison of the proposed model
with other approaches in the node noise filtering task. For
additional verification, the Chamfer distance metric between
meshes’ nodes is used, it can be written as follows:

CD(X,Y ) =
∑
x∈X

min
y∈Y

∥x− y∥22 +
∑
y∈Y

min
x∈X

∥x− y∥22,

where X and Y are sets of resulting and ground truth
meshes’ nodes. ∥∥2 is L2 norm. The normals’ mean cosine
distance can be derived as:

NMCD =
1

|Fx|
∑

nx∈Fx

(
1− nxny

∥nx∥2∥ny∥2

)
,

where Fx and Fy are sets of resulting and ground truth
meshes faces, nx and ny are normal vectors of the corre-
sponding face in Fx and Fy . Despite the fact that model
quality in this setting is lower than other methods, given

methods are not capable of topological noise filtering. Be-
sides, the quality is sufficient to remove visible nodal noise.
Among deterministic filters, BilaterNorm filter (Zheng et al.
2011) have the best result due to its versatility, but Guid-
edMesh filter (Zhang et al. 2015) shows better results
on CAD models. Fast&Effective filter (Sun et al. 2007)
sacrifices the quality of filtering to efficiency. Cascade-
dReg (Wang, Liu, and Tong 2016) works better on smooth
3D models without corners and sharp edges.

The ablation study showed that GATv2 (Brody, Alon, and
Yahav 2022) graph network layers perform best in the pre-
sented model, two GATv2 layers are good enough for reach-
ing the quality established in this research. The smoothing
coefficient of DPSR (Peng et al. 2021) is set to 3.0, the
higher values negatively affect model’s quality. The con-
straints include the capacity to successfully filter only wa-
tertight meshes and the difficulties of filtering CAD models.
The latter is caused by the Gibbs effect and the inability to
clearly represent sharp geometry in indicator function grid
representation.

Discussion
Recent studies have demonstrated that deep diffusion mod-
els (Zeng et al. 2022) and voxelization-based approaches
have the potential to successfully transform a latent repre-
sentation of a 3D model. However, both of these methods
are computationally expensive. The use of indicator function
grid representation shows promise for combining topologi-
cal and node filtration in a joint manner. This representation
provides a graph structure that can be processed by GNNs.
For future work, it is essential to test the approach on oc-
trees, which are more suitable for graph density than grids.
Additionally, the network should be adapted to modify the
distance function and texture.

Figure 2: Example of mesh denosing, the data used
from (Wang, Liu, and Tong 2016). ”Bunny Hi”, 50% of ver-
tices are preserved, low node noise.
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