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Abstract
Unsupervised learning methods such as principal component
analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and autoencoding are regularly used in dimension-
ality reduction within the statistical learning scene. However,
despite a pivot toward fairness and explainability in machine
learning over the past few years, there have been few rigor-
ous attempts toward a generalized framework of fair and ex-
plainable representation learning. Our paper explores the pos-
sibility of such a framework that leverages maximum mean
discrepancy to remove information derived from a protected
class from generated representations. For the optimization,
we introduce a binary search component to optimize the La-
grangian coefficients.

Introduction
One method to satisfy general fairness constraints is to alter
the data such that it still explains the structure, yet it is penal-
ized for probabilistic fairness conditions that induce equality
of odds and demographic disparity. Such an approach is de-
tailed in (Zemel et al. 2013). We will pursue a similar goal,
but instead, we will penalize by the distance between the dis-
tribution of subsets of the data that have different protected
attributes.

Maximum Mean Discrepenacy
Maximum Mean Discrepancy (MMD) is a popular distri-
bution distance introduced by (Gretton et al. 2008) which
focuses on using means directly to establish the distance.
While (Gretton et al. 2008) provides the theoretical defini-
tion of MMD, we will use the function’s plug-in estimator.
Formally, for instances X = (Xi)i≤m and Y = (Yi)i≤n
sampled from distributions p and q, respectively, an estima-
tor for the MMD is provided by (Gretton et al. 2008) as

MMD(U, V ) = [U(X) + V (Y )− UV (X,Y )]
1
2 ,

where we have that for the Gaussian kernel k, we define

U(X) =
1

m2

∑
i,j≤m

k(Xi, Xj), V (Y ) =
1

n2

∑
i,j≤n

k(Yi, Yj)

and UV (X,Y ) = 2
mn

∑
i≤m,j≤n k(ui, vj).
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For our setup, suppose that we are working with a data
set X , for which A is a binary, protected feature. We aim
to transform xi → yi, where yi are the transformed vectors
that embed xi’s. Let A(x) be the value at the attribute A of
datapoint x. Then, say that N (p) = {i : A(xi) = p} for
p ∈ {0, 1} and for a possible transformation of X, say Y
let Y (p) = {yi : i ∈ N (p)}. To achieve fairness between
the two populations of classes of A, we want to minimize
the difference between the underlying distributions of the
samples Y (0) and Y (1).

Constrained Optimization
Define f(Y ;X) as the loss characteristic to f induced by
the representation Y of the original dataset. For instance, for
PCA that would be the reconstruction error, and for T-SNE
that would be KL divergence.

Now we impose a bound on the MMD, say δ and then
resolve the constrained optimization problem (1)

argminY ∈Rp f(Y ;X)

s.t. MMD(Y (0), Y (1))2 ≤ δ2

We solve this problem using the Lagrangian method and to
minimize the gradient of the following objective

f(Y ;X) + βMMD(Y (0), Y (1))2.

This is a non-convex problem, hence we propose Algorithm
1 which performs a binary search to find a decent value of β
and runs gradient descent for each instance of βk.

Alternative Approach
We assume that f is a differentiable function. If this does
not hold, or if f is hard to work with, then an alternative
approach would be to substitute f(Y ;X) with MMD(Ŷ , Y )

in (1), where Ŷ = argminY f(Y ;X).

Experiments
We empirically demonstrate how our Algorithm 1 differs
from the baseline when applied to T-SNE, first introduced by
(van der Maaten and Hinton 2008), keeping f(Y ;X) to be
KL divergence. In order to evaluate the performance of our
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Algorithm 1: Fair optimization for unsupervised dimension-
ality reduction algorithm with loss function f

Input: Dataset X of Rd, vanilla embeddings Ŷ , δ,
ρ, βmax

Initialize: Y0 = Ŷ , l ∈ N,βmin = 0, εk, k = 1, . . . l,M
for k = 1 to l: do
βk ← 1

2 (βmax + βmin)
Solve
Yk = argminY ∈Rf(Y ;X) + βkMMD(Y (0), Y (1)) via
gradient descent by initializing Yk = Yk−1 and until
‖∇Y f(Y ;X) + βk∇Y MMD(Y (0), Y (1))‖ ≤ εk
if MMD(Y

(0)
k , Y

(1)
k ) ≥ δ : then

βmin ← βk
end if
if MMD(Yk, Ŷ ) ≥ ρ : then
βmax ← βk

end if
if MMD(Y

(0)
k , Y

(1)
k ) ≤ δ and MMD(Yk, Ŷ ) ≤ ρ :

then
Return Yk and end

end if
end for
Output: If did not end, Yl the final value

algorithm in a real-world scenario, we applied it to a sub-
set of 1000 samples from the Census Income dataset, pub-
licly available from the UCI Machine Learning Repository,
which had categorical features one-hot encoded (Barry and
Ronny 1996). We executed our algorithm (implemented in
PyTorch) based on the original dataset, T-SNE embeddings
(Ŷ ) over a range of deltas, using gender as the protected
attribute. We show some of the results, notably at roughly
1/2 and 1/50 of the baseline MMD in Figure 2 and Fig-
ure 3, respectively. These embeddings were visualized using
Matplotlib, with points color-coded to indicate both gender
(blue/red) and income level in green and orange (above or
below $50,000/year, respectively).

Results
We notice in Figure 1 that T-SNE without fairness con-
straints clearly separates women from men, even if this is
unintended.

Figure 1: T-SNE with no fairness constraint. Left: < 50K
and >= 50K Income Points, Right: Male Female Points

After running our algorithm by setting δ equal to roughly
1
2 of T-SNE’s MMD and ρ = 0.1 we see in Figure 2 that the

separation between men and women is less apparent, while
the income classes are still clustered. We also tried setting δ
to 1

50 of the vanilla T-SNE MMD, which is shown in Figure
3. It is obvious that males and females are scattered, indicat-
ing strong fairness. Surprisingly, the income classes remain
relatively separated, hence our algorithm has satisfactorily
preserved the dataset structure despite a fairness constraint.

Figure 2: Algorithm 1 with δ set to 1
2 of the original MMD.

Left: < 50K and >= 50K Income Points, Right: Male Fe-
male Points

Figure 3: Algorithm 1 with δ set to 1
50 th of the original

MMD. Left: < 50K and >= 50K Points, Right: Male Fe-
male Points

Conclusion
We have successfully introduced a framework for fair rep-
resentation learning and dimensionality reduction via con-
strained optimization which can optimize against any fair-
ness threshold. The power of our algorithm is its applicabil-
ity to numerous models such as autoencoders and PCA, and
we encourage further experimentation in these directions.
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