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Abstract

The problem of finding the minimum three-dimensional
Kochen–Specker (KS) vector system, an important problem
in quantum foundations, has remained open for over 55 years.
We present a new method to address this problem based on
a combination of a Boolean satisfiability (SAT) solver and
a computer algebra system (CAS). Our approach improved
the lower bound on the size of a KS system from 22 to 24.
More importantly, we provide the first computer-verifiable
proof certificate of a lower bound to the KS problem with
a proof size of 41.6 TiB for order 23. The efficiency is due
to the powerful combination of SAT solvers and CAS-based
orderly generation.

Introduction
The KS theorem, a fundamental result in Quantum Foun-
dations by Kochen and Specker (1967), rules out non-
contextual hidden-variable theories via the existence of a fi-
nite set of vectors, referred to as a KS vector system. Since
1967, physicists and mathematicians have wondered about
the cardinality of the smallest-sized KS vector system, a
combinatorial object that witnesses a contradiction between
non-contextuality and the SPIN axiom of quantum mechan-
ics (see Table 1). Finding the minimum KS system is not
only of scientific and historical interest, but also has appli-
cations in quantum information processing.

We present the first implementation of a SAT+CAS tool
(a combination of a SAT solver and a Computer Alge-
bra System with proof verification) aimed at solving prob-
lems in quantum foundation. We do so by leveraging the
SAT+CAS paradigm to incorporate an isomorph-free gener-
ation method (as part of our tool, PHYSICSCHECK1) to ob-
tain tighter bounds on the minimum KS problem with orders
of magnitude speedup over previous methods. Recently, this
paradigm has found wide application in diverse fields that
require solving hard combinatorial problems (Bright, Kot-
sireas, and Ganesh 2022). We implement an extension of the
standard Boolean proof certificate format DRAT (Wetzler,
Heule, and Hunt Jr 2014) to construct certificates of nonex-
istence for KS systems.
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1https://github.com/curtisbright/PhysicsCheck

Authors Year Bound
Kochen, Specker 1967 ≤ 117
Jost 1976 ≤ 109
Conway, Kochen 1990 ≤ 31
Arends, Ouaknine, Wampler 2009 ≥ 18
Uijlen, Westerbaan 2016 ≥ 22
Li, Bright, Ganesh 2022 ≥ 23
Li, Bright, Ganesh / 2023 ≥ 24Kirchweger, Peitl, Szeider

Table 1: A chronology of the bounds on the size of the min-
imum KS vector system in three dimensions.

Kochen–Specker Graphs and Systems
A set of 3-dimensional vectors K has a corresponding or-
thogonality graph GK = (V,E), where V = K, E =
{ (v1, v2) : v1, v2 ∈ K and v1 · v2 = 0 }. A graph is em-
beddable if it is a subgraph of an orthogonality graph. It
is 010-colorable if there is a {0, 1}-coloring of the vertices
such that no two adjacent vertices are colored 1 and the ver-
tices are not all colored 0 in each triangle. A KS graph is
an embeddable and non-010-colorable graph, and the mini-
mum KS problem is to find the smallest KS graph. Arends,
Ouaknine, and Wampler (2011) proved a number of proper-
ties that the smallest KS graph must satisfy. We encode these
properties and the non-010-colorability of KS graphs in con-
junctive normal form (CNF), solutions of which are referred
to as KS candidates. If a KS candidate is embeddable, then
the corresponding set of vectors is a KS system.

Orderly Generation via SAT+CAS
A crucial part of our SAT+CAS tool PHYSICSCHECK is
the combination of a Boolean encoding (the SAT part) with
an orderly isomorph-free generation routine (the CAS part).
The orderly generation approach was developed indepen-
dently by Read (1978) and Faradžev (1978). An adjacency
matrix M of a graph is canonical if every permutation
of the graph’s vertices produces a matrix lexicographically
greater than or equal to M , where the lexicographical or-
der is defined by concatenating the above-diagonal entries
of the columns of the adjacency matrix. The orderly gen-
eration method is based on the property that if a matrix is
not canonical, then all of its extensions are not canonical

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23559



Orderly Generation in SAT

During the search the SAT solver will find partial solutions
(complete definitions for the edges in some subgraphs). . .
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Figure 1: Orderly generation algorithm of SAT+CAS.

and can be discarded. In SAT+CAS, when the SAT solver
finds an intermediate/partial matrix, the canonicity of this
matrix is determined by a canonicity-checking CAS routine
implemented in the PHYSICSCHECK system. If the matrix is
found to be noncanonical, then a “blocking” clause, created
via CAS, is dynamically added to the SAT solver, thus re-
moving this matrix and its extensions from the search. Oth-
erwise, the partial matrix may be canonical and the solv-
ing continues. As can be seen from Table 2, the SAT+CAS
method is orders of magnitude faster than SAT-only or CAS-
only approaches. The CAS compared against was the nauty
graph generator (McKay and Piperno 2014) with the same
configuration used by Uijlen and Westerbaan (2016).

Results and Verification
Instances up to order 22 were solved sequentially using the
SAT+CAS paradigm on an Intel Xeon E5-2667 CPU. The
difficulty of solving order 23 required us to use a parallel
cube-and-conquer approach on a cluster of up to 5000 Intel
E5-2683 CPUs. All computations are measured in the to-
tal CPU time reported by the solver in Table 2. The lower
bound was improved to 24 independently by Kirchweger,
Peitl, Szeider and Li, Bright, Ganesh in 2023.2 We estimate
that our search in order 21 is about 35,000 times faster than
the search by Uijlen and Westerbaan (2016). Furthermore,
we achieve comparable runtime to Kirchweger, Peitl, and
Szeider (2023) that uses a SAT modulo symmetries (SMS)
solver. We found that all KS candidates of order less than 24
are not embeddable, and hence the smallest KS system has
at least 24 vectors (Table 1).

The computations were performed by MapleSAT (Liang
et al. 2016) combined with a CAS and were verified using a
proof produced by the solver in the DRAT format (Wetzler,
Heule, and Hunt Jr 2014), except the CAS-derived clauses
were prefixed by ‘t’ to signify they must be verified sepa-
rately. The CAS-derived noncanonical blocking clauses are
justified via a CAS-derived permutation that provides a wit-
ness that the blocked matrix is noncanonical and is safe to
block. We have certified the results up to and including or-
der 23. The uncompressed proofs in order 22 and 23 are of

2At the 2022 SC-Square workshop, we presented a preliminary
version with a lower bound of 23 (Li, Bright, and Ganesh 2022).

Speedup Speedup
order SAT+CAS over SAT over CAS

17 0.02 h 8.4× 24.2×
18 0.04 h 123.8× 211.5×
19 0.22 h 883.5× 717.6×
20 1.35 h timeout timeout
21 18.12 h timeout timeout
22 356.88 h timeout timeout
23 52,619.16 h timeout timeout

Table 2: Speedup of SAT+CAS over SAT-only and CAS-
only. Order 23 was solved with a cube-and-conquer ap-
proach.

size 1.9 and 41.6 TiB. The certifications of orders 22 and 23
were done using a parallel cube-and-conquer solver (Heule
et al. 2011) to ensure that each DRAT proof could be verified
with at most 4 GiB of memory. In addition to these proofs,
we have conducted extensive cross-verification on all the re-
sults produced by the SAT solver in PHYSICSCHECK.
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graphes, 131–135.
Heule, M. J. H.; Kullmann, O.; Wieringa, S.; and Biere, A.
2011. Cube and conquer: Guiding CDCL SAT solvers by
lookaheads. In HVC, 50–65. Springer.
Kirchweger, M.; Peitl, T.; and Szeider, S. 2023. Co-
Certificate Learning with SAT Modulo Symmetries. In IJ-
CAI, 1944–1953.
Kochen, S.; and Specker, E. P. 1967. The Problem of Hidden
Variables in Quantum Mechanics. JMM, 17: 59–87.
Li, Z.; Bright, C.; and Ganesh, V. 2022. An SC-Square Ap-
proach to the Minimum Kochen-Specker Problem. In SC-
Square@FLoC 2022.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016. Learning Rate Based Branching Heuristic for SAT
Solvers. In SAT 2016, 123–140.
McKay, B. D.; and Piperno, A. 2014. Practical graph iso-
morphism, II. JSC, 60: 94–112.
Read, R. C. 1978. Every one a winner. In Annals of discrete
mathematics, volume 2, 107–120. Elsevier.
Uijlen, S.; and Westerbaan, B. 2016. A Kochen-Specker sys-
tem has at least 22 vectors. NGC, 34(1): 3–23.
Wetzler, N.; Heule, M. J. H.; and Hunt Jr, W. A. 2014.
DRAT-trim: Efficient checking and trimming using expres-
sive clausal proofs. In LNCS, 422–429. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23560


