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Abstract
Convolutional neural networks (CNNs) are being increas-
ingly adopted in medical imaging. However, in the race for
developing accurate models, their robustness is often over-
looked. This elicits a significant concern given the safety-
critical nature of the healthcare system. Here, we highlight
the vulnerability of CNNs against a sporadic and naturalistic
adversarial patch attack (SNAP). We train SNAP to mislead
the ResNet50 model predicting metastasis in histopathologi-
cal scans of lymph node sections, lowering the accuracy by
27%. This work emphasizes the need for defense strategies
before deploying CNNs in critical healthcare settings.

Introduction
Artificial Intelligence (AI) in healthcare is being increas-
ingly integrated into diagnostic and prognostic workflows.
Specifically, Convolutional neural networks (CNNs) have
become the backbone of various image-processing tasks in
computational pathology. However, before deploying them
in clinical settings, ensuring their robustness against adver-
sarial attacks is crucial (Foote et al. 2021). An adversarial
attack involves adding noise to an image’s pixel values to
mislead a model’s prediction. Although the umbrella of ad-
versarial attacks is quite large, adversarial patch attacks have
gained significant traction due to their real-world application
(Sharma et al. 2022). Adversarial patches are optimally for-
mulated and localized perturbations in the form of a patch.
Given the safety-critical nature of the healthcare system, it
is imperative to explore the vulnerabilities of CNNs and de-
velop mitigation strategies (Ghaffari Laleh et al. 2022).

Patch attacks are often visually perceptible to human eyes,
making them suspicious and easy to detect by a human-in-
the-loop. Although digital attacks (like PGD, FGSM) (Foote
et al. 2021) are covert and more potent, the adversarial train-
ing of CNNs makes it easier to defend against them. How-
ever, the influence of patch attacks is harder to mitigate with
adversarial training (Sharma et al. 2022). The existing work
on patch attacks mainly considers a single patch, which is
relatively large (∼ 5 - 10 % of image). Our study aims to
showcase the threat to CNNs from a modified patch attack,
designed explicitly by exploiting the fundamental character-
istics of histopathological images. We call it Sporadic and
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Naturalistic Adversarial Patches (SNAP). We propose a gen-
eralized framework for designing SNAP to mislead a CNN
trained for a histopathological application.

SNAP has three important properties that make it a seri-
ous threat to the histopathological domain. First, the spo-
radic nature of SNAP helps attackers distribute the patch
into multiple pieces, textually blending it in the scene. Sec-
ond, the naturalistic appearance increases the visual fidelity
of SNAP in the scene. Third, the current state-of-the-art
defenses mostly tackle single patch attacks (Sharma et al.
2022) and the possibility of evading them with sporadic
patches is high. Overall, SNAP is designed to evade detec-
tion and yet be effective to mislead a CNN.

Methodology
Model Formulation We assume an input image x ∈ X ∈
Rw×h×c, where w, h, c is the width, height and the num-
ber of channels, respectively. The neural network model
F : X → Y produces the output vector y⃗ ∈ Y ∈ Rn for
a given image input x, where n is the number of classes
in the dataset. Each element of y⃗ is the class classification
probability. The class with maximum probability is the final
classification label k given as:

k = argmax[F(y⃗|x)] , (1)

We assume ko is the original label of the image and kt is the
target label to which the attacker wants the model to incor-
rectly predict on an adversarial image x′ = x + δ for the
carefully calculated perturbation δ.

Attack Formulation An adversarial attack is crafted by
optimizing a loss function. The loss of classifying the im-
age to the original label L(argmax[F(y⃗|x′)], ko) is max-
imised in an untargeted attack. In a targeted attack, the loss
of classifying to the target label L(argmax[F(y⃗|x′)], kt) is
minimised. The gradient of the loss is used to iteratively up-
date the image’s pixel values until satisfactory performance
is achieved. We define a mask to limit the perturbation to a
small, local region to create an adversarial image as

x′ = (1−m)⊙ x+m⊙ δ , (2)

where x′ ∈ X , δ ∈ [0, 1]
w×h×c is the adversarial patch and

m ∈ M ⊂ {0, 1}w×h×c is the binary mask. The ⊙ is the
Hadamard operator for element-wise matrix multiplication.
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Figure 1: A generalized framework for SNAP training to mislead CNNs used for Histopathological cancer detection.

Mask Design The most important aspect of SNAP is to
design an appropriate mask to ensure the sporadic spread
of patches all over the image. A sporadic patch approach
is used to mitigate the perceptual distortion that arises from
training a single patch. Hence, the patch’s structure (shape
and texture of each patch as a part of the whole sporadic
patch) is designed to resemble the shape of a cell to blend
into the overall image seamlessly. The mask design depends
on the application of interest, and its characteristics.

Patch Training SNAP is a special class of multi-patch at-
tacks designed for histopathological applications. To design
patches of severe potency, it is necessary to have simultane-
ous training of all patches. This helps the patches that are
part of SNAP learn collaborative and complementary pat-
terns to perform an attack. As discussed in attack formula-
tion, the patch is trained iteratively to optimize the loss func-
tion. The training is carried out until it reaches the maximum
iteration or the confidence score of the attack reaches 95%.

An interesting challenge in patch training arises from the
unique colors in histopathological images. It is necessary to
restrict the color of the trained patch to match the color space
of the image for high visual fidelity. During patch optimiza-
tion, the pixel values are constrained within a specific range
determined by the pixel colors in the image. We also found
starting with a patch of specific color, based on the median
pixel value of the image (pink in our case), rather than ran-
dom initial values helped in the training process.

Experimental Setup and Results
For this study we use a Histopathologic Cancer Detec-
tion (HCD) dataset (Cukierski 2018), containing images of
metastatic tissue in histopathologic scans of lymph node sec-
tions. Each image is 64 × 64 and its ground truth label in-
dicates if the central 32 × 32 region contains at least a sin-
gle pixel of metastatic tissue. We resize all images to 224 ×
224 for improved resolution, along with transformation for
increasing robustness in training. We use 8000 images for
training and 2000 for validation. We use ResNet50, a CNN

model pre-trained on ImageNet, which we then fine-tune on
HCD. The model achieves a training accuracy of 96.28 and
a validation accuracy of 89.35. For the attack, the patch is
trained to target the class 0, which indicates the absence of
metastasis. When the model is attacked using the trained
patch it results in the reduction of accuracy from 96.28 to
69.0, which demonstrates the effectiveness of SNAP.

Conclusion
This work demonstrates the threat of adversaries to safety-
critical clinical settings. The framework of designing SNAP
can be adopted by a malicious attacker to mislead a CNN
in a histopathological setting. Some possible directions to
extend our work are as follows:
• Extensive empirical evaluation of SNAP against various

CNNs and vision transformers (ViT).
• Use of generative techniques (GANs) to train a stronger

SNAP with more naturalistic behaviour.
• Develop a defense strategy to mitigate the influence of

SNAP in the scene.
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