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Abstract

In recent intelligent transportation applications, metro flow
forecasting has received much attention from researchers.
Most prior arts endeavor to explore spatial or temporal de-
pendencies while ignoring the key characteristic patterns un-
derlying historical flows, e.g., trend and periodicity. Although
the multiple granularity distillations or spatial dependency
correlation can promote the flow estimation. However, the po-
tential noise and spatial dynamics are under-explored. To this
end, we propose a novel Disentanglement-Guided Spatial-
Temporal Graph Neural Network or DGST to address the
above concerns. It contains a Disentanglement Pre-training
procedure for characteristic pattern disentanglement learning,
a Characteristic Pattern Prediction for different future charac-
teristic explorations, and a Spatial-Temporal Correlation for
spatial-temporal dynamic learning. Experiments on a real-
world dataset demonstrate the superiority of our DGST.

Introduction
Metro flow forecasting serves as a pivotal task within the
realm of Intelligent Transportation Systems as it plays a
paramount role in effectively managing passenger flow and
optimizing metro scheduling. Recent efforts on flow learn-
ing have devised diverse deep neural networks such as RNN
variants to model temporal dynamics as well as developing
graph networks to incorporate explicit spatial dependencies.

Despite the effectiveness, existing efforts still have three
major limitations for metro flow prediction. First, histori-
cal metro flows themselves have a variety of temporal char-
acteristics or signals, such as trend and periodicity, which
play different roles in future flow evolutions. However, ex-
isting solutions are usually designed locally and most of
them use the flow sequence generated from the past one
hour as input data, which results in a narrow perspective
to capture these temporal characteristics and may lead to
inaccurate forecasts. Second, some works attempt to learn
periodicity features from different temporal granularities in-
dividually to uncover the inherent flow dynamics. For in-
stance, ASTGCN (Guo et al. 2019) categorizes historical
flow into hourly and weekly granularities to enhance peri-
odicity pattern learning. However, such approaches could

*Corresponding Author (qianggao@swufe.edu.cn).
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

result in noise from hand-crafted flow segments, thereby
leading to inaccurate estimations. Third, existing practices
mainly apply a static adjacency matrix to learn spatial re-
lations. However, the spatial dependencies between stations
are highly dynamic. Hence, they lack the ability to model
time-varying spatial dependencies.

To address the limitations above, we propose a novel
Disentanglement-Guided Spatial-Temporal graph network
for metro flow forecasting or DGST. DGST has a disentan-
glement pre-training procedure, which uses a devised vari-
ational disentanglement to decompose trend and periodicity
signals into different latent spaces, which enables more in-
terpretable and robust representations from historical metro
flows. Next, we design a Characteristic Pattern Prediction
module to generate the future characteristics of trend and
periodicity, respectively. To uncover the dynamics underly-
ing spatial dependencies, we build a spatial-temporal cor-
relation module with an attention mechanism to adaptively
determine the station relations. Finally, we fuse the outputs
from the above modules to make future flow forecasting.

Methodology
Problem Formulation. Let Xt ∈ RN×D denote the
metro flow of N stations at time t, where D represents the
number of observation types. Given historical metro flow
XΩ ∈ RTh×N×D, our goal is to learn a function fθ from
XΩ to forecast T steps’ flow in the future, denoted as:

[Xt+1, · · · ,Xt+T ] = fθ[Xt−Th+1, · · · ,Xt]. (1)

Disentanglement Pre-training. Inspired by previous
study (Wang et al. 2022), we devise a disentangled en-
coder by following the rule of variational Bayes and in-
formation theory. Given historical metro flow XΩ, we em-
ploy two fully connected layers as the encoder skeleton
to respectively model periodicity posterior q(zp|XΩ) and
trend posterior q(zt|XΩ), where the prior assumptions (e.g.,
p(zt)) are derived from the standard Gaussian distribution.
Then, we introduce an approximate estimator with Jensen-
Shannon divergence to make posterior disengagement in a
self-supervised manner, where the objective is to minimize:

L = Lrec (2)

−KL
[
q
(
zt | XΩ

)
∥p(zt)

]
−KL [q (zp | XΩ) ∥p(zp)]

+ Eq(zt|zp)[−s(−Tθ(z
t, zp))]− Eq(zt)q(zp)[s(Tθ(z

t, zp)].

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23514



Herein, Lrec refers to reconstruction loss, KL denotes KL
divergence, s(·) is the softplus function, and Tθ is a discrim-
inator function modeled by a fully connected network.

Characteristic Pattern Prediction. We aim to use the
pre-trained encoder to generate zt and zp from XΩ, respec-
tively. For trend characteristic, we feed zt to stacked MLPs
to predict future trend Y t ∈ RT×N×D.In cases where the
metro flow exhibits strong seasonality, frequency-domain
models tend to be more sample-efficient in practice than
time-domain attention models. Hence, we apply the Fourier
Transform to tackle zp by performing an attention network
in the frequency domain and then convert the results back to
the time domain using the inverse Fourier transform. Finally,
we can generate the future periodicity Y p ∈ RT×N×D.

Spatial-Temporal Correlation. Instead of using a static
adjacency matrix, we employ the input of each time step as
the key and query in self-attention to construct a fully con-
nected graph, which represents the dynamic interactions be-
tween metro stations. We assume that regional heterogeneity
can be estimated by the difference between their long-term
temporal patterns. Consequently, to maintain regional het-
erogeneity, we introduce two adjacency matrices, denoted
as At and Ap, whose elements are constructed based on the
similarity of distributions of long-term trend and periodicity.
We consider the above matrices as additional signals to fa-
cilitate the learning of spatial-temporal correlations, where
the attention score of Xt can be computed as:

αt = S( (WqXt)(WkXt)
T

√
d

+Wt ⊙At +Wp ⊙Ap), (3)

where S denotes the Softmax function, W∗ are learnable pa-
rameters, ⊙ is the element-wise Hadamard product. We ap-
ply 1st order Chebyshev polynomial as graph convolution
operation and replace the MLPs in GRU with spatial graph
convolution to capture spatial and temporal correlations.

Fusion & Forecasting. We design a fusion layer to effec-
tively unite the learned components and make forecasting:
Xt+1, · · · ,Xt+T = W ST ⊙ Y +WLT ⊙ (Y t + Y p) , (4)

where Y is the output of the Spatial-Temporal Correlation
module, and W∗ are learnable parameters.

Experimental Results
We conduct experiments on Hangzhou Metro dataset and
compare with the following popular baselines: STGCN (Yu,
Yin, and Zhu 2018), ASTGCN (Guo et al. 2019),
AGCRN (Bai et al. 2020), STGODE (Fang et al. 2021),
MegaCRN (Jiang et al. 2023). We adopt Mean Absolute Er-
ror(MAE), Root Mean Square Error(RMSE) and Mean Ab-
solute Percentage Error(MAPE) as our evaluation metrics.

Table 1 summarizes the experimental results. In partic-
ular, DGST outperforms all baselines in both short-term
and long-term forecasts. These results demonstrate the bene-
fits of DGST in capturing spatial-temporal dependencies for
metro flow forecasting. Besides, we compare DGST with the
base model, the model without pre-train (w/o Pre-train) and
the model without dynamic spatial graph (w/o DySG). Fig 1
shows the results of these variants on the inflow aspect.

Model Metric Inflow (min) Outflow (min)
15 30 60 15 30 60

STGCN
MAE 24.20 25.73 29.54 25.42 28.18 35.34
RMSE 40.61 43.60 51.83 43.44 47.84 60.16
MAPE 0.213 0.221 0.249 0.181 0.201 0.247

ASTGCN
MAE 26.16 26.30 26.91 26.77 26.79 27.45
RMSE 46.70 46.92 48.88 43.97 44.12 46.02
MAPE 0.251 0.261 0.294 0.196 0.201 0.232

AGCRN
MAE 23.24 24.09 26.05 21.90 22.90 24.52
RMSE 39.26 41.20 46.33 39.32 40.54 43.08
MAPE 0.204 0.210 0.230 0.149 0.159 0.172

STGODE
MAE 27.09 29.15 35.38 27.46 29.94 36.26
RMSE 46.25 50.09 64.09 49.06 53.46 66.80
MAPE 0.247 0.271 0.377 0.197 0.220 0.289

MegaCRN
MAE 25.83 26.88 29.85 27.33 29.01 32.44
RMSE 44.81 47.49 58.55 51.26 55.11 63.32
MAPE 0.214 0.214 0.253 0.201 0.213 0.247

DGST
MAE 22.59 23.34 24.71 21.78 22.51 24.62
RMSE 38.56 40.30 44.40 37.11 38.23 41.84
MAPE 0.199 0.202 0.214 0.147 0.152 0.168

Table 1: Performance comparisons.
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Figure 1: Ablation Study on Hangzhou Metro.
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