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Abstract
How are people able to plan so efficiently despite limited cog-
nitive resources? We aimed to answer this question by ex-
tending an existing model of human task decomposition that
can explain simple planning problems by adding structure in-
formation to facilitate planning in more complex tasks. The
extended model was applied to a more complex planning do-
main of spatial navigation. Our results suggest that our frame-
work can correctly predict the navigation strategies of the ma-
jority of the participants in an online experiment.

Introduction
People plan hierarchically—from planning the next holiday
to their long-term career. Previous studies have investigated
the principles that guide how people structure their behav-
ioral hierarchies based on how they can simplify representa-
tional and computational costs (Solway et al. 2014; Correa
et al. 2023) in simple and unstructured planning domains.
We build on a task decomposition framework introduced by
Correa et al. (2023), which was able to predict hierarchi-
cal behavior in people in graph-structured planning tasks.
While the framework accounts for the complexity of plan-
ning, it does not explain how people can plan so efficiently
despite limited cognitive resources. One explanation could
be the incorporation of structural information about the task
to facilitate planning. Binder et al. (2021) suggest that peo-
ple exploit visual structure to inform their planning. We
thus extended the framework of task decomposition to in-
clude structured information about the planning task through
a heuristic search based on spatial distance and applied it
to a more complex spatial navigation task. We tested our
novel framework on a navigation planning experiment that
consists of a large family of tasks, where participants must
choose between two paths to take in order to solve a maze
(see Figure 1). Our results suggest that our framework can
predict the navigation choice of the majority of the partici-
pants in an online experiment.

Methodology
Our modeling approach builds on the framework of task de-
composition by minimizing the computational cost of plan-
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ning while maximizing task utility (Correa et al. 2023). The
framework consists of three levels:

Task decomposition decomposes a task into subtasks
such that overall computational costs are minimized. We for-
malize the task as (S, T, s0, g), which is defined by the set
of possible states, S; an initial state, s0; a goal state, g; and
the set of possible state transitions T ⊆ S ×S , so that s can
transition to s′ when (s, s′) ∈ T . Each subtask z is simply
defined as reaching a subgoal state zsg

1. In our setting, we
assume the task has been decomposed into a fixed set of sub-
tasks Z for simplicity, consisting of the two states adjacent
to s0, a simple approach for formalizing the choice between
the two halves of the maze.

Subtask-level planning decides which subtask to choose
based on the expected reward and computational cost of vis-
iting it en route to the goal. The subtask that maximizes this
overall reward is

z∗ = argmax
z∈Z

RAlg(s0, z) +RAlg(z, g). (1)

We assume the overall task of reaching g can also be a sub-
task for the purpose of action-level planning. Note that while
we fixed subgoals above, the choice between subtasks here
still balances task reward and computational cost.

Action-level planning which finds a sequence of actions
to accomplish a subtask. Action-level planning finds a se-
quence of states from a start state s until the subtask
z is completed by reaching zsg , π = ⟨s0, s1, ..., zsg⟩.
Shorter plans are preferred, formalized by the reward func-
tion R(π) = −|π|. A planning algorithm Alg non-
deterministically returns a plan and algorithm run-time,
PAlg(π, t | s, z). So the expected reward for reaching
the subtask z, while accounting for algorithm run-time, is
RAlg(s, z) =

∑
π,t PAlg(π, t | s, z) [R(π)− t].

We incorporate structural information by using A* (Hart,
Nilsson, and Raphael 1968) with a spatial heuristic cost
based on the Manhattan distance defined as h(s; g) = |sx −
gx| + |sy − gy| given states with coordinates s = (sx, sy).
The algorithm run-time is computed by counting the number
of visited states during search.

1Note that the subtask is essentially an option (Sutton, Precup,
and Singh 1999) that terminates at the subgoal, making subtask-
level planning a semi-Markov decision process.
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Figure 1: One example of the maze, where the participants
were asked to navigate the blue dot to the goal (yellow tile).
The red and blue tiles marked the two subtasks (invisible
to the participants). The subtask associated with the red tile
has a lower planning cost (planning cost 53, step cost 26,
total cost: 79) than the blue one (planning cost 63, step cost
26, total cost 89). In addition to both subtasks having the
same optimal path mirrored along the diagonal, the number
of walls in each triangle is also the same.

Experimental Design and Results
To test our hypothesis, we designed 6 base mazes and cre-
ated 8 transformations through rotations and flipping along
diagonal, horizontal, and vertical axes resulting in a total
of 6 sets, each containing 8 mazes. Each of the resulting
48 mazes can be decomposed into two subtasks, where one
subtask was designed to have a higher planning cost than
the other subtask due to greater number of branchings in
the decision tree. The optimal route for both subtasks is the
same but mirrored along the diagonal (see Figure 1). Our
model hypothesizes that people would choose the subtask
with the lower overall cost, which is the sum of the optimal
path length and planning cost.

To test this hypothesis, we recruited 41 participants (one
participant was excluded due to not completing the task)
on Prolific to each navigate through a series of 12 differ-
ent mazes (two mazes were randomly sampled from each
set to ensure that participants saw two of each base maze).
Prior to playing the game, participants received instructions
and played two practice trials to familiarize themselves with
the task. Participants were given up to one minute in the
beginning for planning, after which they were motivated to
reach the goal as quickly as possible through a performance-
dependent bonus that rewarded shorter paths.

We observed that after the third trial, the majority of par-
ticipants chose the subtask which, according to our model,
is more favorable due to a lower planning cost (see Figure
2). Modeling the path choice in the last trial using logistic
regression (path chosen ∼ intercept), where the more fa-
vorable path was encoded as 1, resulted in an intercept of
0.731 (sd = 0.338, p = 0.030). In addition, we observed a
learning process among the participants. The proportion of
the computationally simpler subtask increased from 42.5%
in the first trial to 67.5% in the last trial. This increas-
ing trend was confirmed by again fitting a logistic regres-
sion model (path chosen ∼ intercept + trial number)
resulting in a significant positive slope with a coefficient

Figure 2: Proportion of the favorable subtask chosen and er-
ror bars showing the standard error at each trial

of 0.063 (sd = 0.027, p = 0.021) and 0.106 intercept
(sd = 0.174, p = 0.542). Therefore, for now, we infer a
learned bias towards the more favorable subtask due to the
significant effect of trial number on the choice.

Discussion and Future Work
In this work, we presented an extension to the task decom-
position framework of Correa et al. (2023) and tested it on a
more complex planning domain of spatial navigation tasks.
Our model can capture the navigation strategies of the ma-
jority of the participants. However, we see that after 12 trials,
32.5% of the participants did not choose the subtask with
lower planning costs. This suggests room for improvement
in the choice of planner and/or heuristics to, for instance,
further understand how people estimate the planning cost.
In addition, due to the observed learning effect, future work
can concentrate on how people learn to decompose and se-
lect tasks. This line of research elegantly bridges our un-
derstanding of the human mind and comprehending human
planning processes with the development of efficient algo-
rithms for advanced machine learning systems.
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