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Abstract

The Ramsey problem R(3, 8) asks for the smallest n such
that every red/blue coloring of the complete graph on n ver-
tices must contain either a blue triangle or a red 8-clique. We
provide the first certifiable proof that R(3, 8) = 28, auto-
matically generated by a combination of Boolean satisfiabil-
ity (SAT) solver and a computer algebra system (CAS). This
SAT+CAS combination is significantly faster than a SAT-
only approach. While the R(3, 8) problem was first compu-
tationally solved by McKay and Min in 1992, it was not a
verifiable proof. The SAT+CAS method that we use for our
proof is very general and can be applied to a wide variety of
combinatorial problems.

Introduction
Ramsey Theory was first introduced by Frank P. Ramsey in
On a problem of formal logic (Ramsey 1930). Contempo-
rary proof techniques to finding Ramsey numbers are often
computer-assisted, making formal verification an essential
step in such a proof method. Ramsey numbers are renowned
and challenging problems; only 9 non-trivial Ramsey num-
bers are known, despite an extensive literature on the topic
(Radziszowski 2011).

The Ramsey Theorem states that for every p, q ∈ Z, there
exists an n ∈ Z such that any red/blue coloring of the edges
of the complete graph of order n, denoted Kn, contains a
monochromatic blue p-clique or a red q-clique (an m-clique
is a complete subgraph of order m). A Ramsey problem
is defined as finding the smallest such integer n, denoted
R(p, q), for some given input (p, q).

A (p, q)-graph is a colored complete graph without a
monochromatic blue p-clique and without a red q-clique.
Figure 1 demonstrates that R(3, 4) > 8 by exhibiting a
(3, 4)-graph on 8 vertices.

In 1992, McKay and Min computationally showed that no
(3, 8)-graph exists on 28 vertices (McKay and Min 1992).
Combined with a previous result that R(3, 8) > 27 (Grin-
stead and Roberts 1982), this showed R(3, 8) = 28. Ac-
cording to McKay and Min, their computation required ap-
proximately 1014 machine instructions on a network of SUN
workstations.
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Figure 1: A red/blue edge coloring on 8 vertices without a
blue 3-clique or red 4-clique, showing R(3, 4) > 8.

A conflict-driven clause learning (CDCL) satisfiability
(SAT) solver is a computer program that takes as input a
Boolean formula in conjunctive normal form (CNF), and de-
cides whether the input is satisfiable. CDCL SAT solvers
can solve some instances with millions of variables effi-
ciently (Ganesh and Vardi 2021). However, SAT solvers face
challenges when solving combinatorial problems such as the
Ramsey problem, in part due to the considerable amount of
symmetry in the associated search space.

Computer Algebra Systems (CASs), such as Maple and
Mathematica, are storehouses of mathematical knowledge
and are widely used to solve a variety of scientific and en-
gineering problems. We use a CAS to dynamically provide
mathematical context to the SAT solver in order to break
symmetries in the search space associated with an input
formula. In particular, we use a CAS to generate blocking
clauses that are given to the SAT solver dynamically via a
programmatic interface (Ganesh et al. 2012). The clauses
block the solver from exploring noncanonical matrix rep-
resentations of a graph, since they are all isomorphic to
one “canonical” representation. An adjacency matrix M of
a graph is canonical if every permutation of the graph’s
vertices produces a matrix lexicographically greater than
or equal to M , where lexicographical order is defined by
concatenating the above-diagonal entries of the columns of
the adjacency matrix starting from the left. Blocking non-
canonical graphs is achieved using orderly generation (Li,
Bright, and Ganesh 2022) and is implemented through the
SAT+CAS paradigm (Bright, Kotsireas, and Ganesh 2022).
This technique can dramatically prune a formula’s search
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space, since the CAS guides the SAT solver to not only
block a noncanonical subgraph but also all its extensions.
The SAT+CAS paradigm has been shown to be an effective
approach to solving hard combinatorial math problems. Re-
garding the work presented here, we performed an ablation
study demonstrating that SAT+CAS is orders of magnitude
faster than a SAT-only solver. For example, for R(3, 7) on
23 vertices, SAT+CAS solved the problem in 2 minutes and
the SAT solver alone could not solve it in 24 hours on an
i7-9750 processor running at 2.60 GHz with 8GB of RAM.

Methodology
The Ramsey problem is encoded for a given n, p, q by gen-
erating a Boolean formula in CNF asserting the existence of
a (p, q)-graph of order n. The encoding enforces every p-
clique to have at least one edge in the opposite (red) color
and every q-clique to have at least one edge in the opposite
(blue) color, i.e.,∧

Kp⊆Kn

∨
e∈Kp

¬e ∧
∧

Kq⊆Kn

∨
e∈Kq

e,

where the variable e is assigned true when the correspond-
ing edge is colored blue (and false otherwise). A SAT as-
signment corresponds to finding a (p, q)-graph of order n.
Similarly, UNSAT means no such colorings exist for this
particular n, i.e., all colorings contain a blue p-clique or a
red q-clique. Partial static symmetry breaking clauses that
enforce a lexicographic ordering on the rows of a graph’s
adjacency matrix are also used (Codish et al. 2019). Ver-
tex degree constraints are appended to the encoding stating
that for a (p, q)-graph on n vertices, each vertex v satisfies
n−R(p, q− 1) ≤ deg(v) ≤ R(p− 1, q)− 1 where deg(v)
is the number of blue edges on vertex v (Conlon, Fox, and
Sudakov 2015).

Verification of Our Result
The value of the Ramsey number R(3, 8) = 28 is concluded
by obtaining an UNSAT result on the encoding asserting the
existence of a 28-vertex (3, 8)-graph and a SAT result on the
encoding asserting the existence of a 27-vertex (3, 8)-graph.
Thus, the correctness of the result is crucially dependent on
the encodings and computational tools we use. Results given
by the SAT+CAS paradigm can be verified, as the method
generates certificates in the DRAT format (Wetzler, Heule,
and Hunt Jr 2014), allowing an independent third party to
certify the SAT solver’s search is indeed exhaustive and also
that the learned clauses provided by the CAS are correct.
Thus, one only needs to trust the correctness of the proof
verifier, rather than the SAT solver or the CAS.

R(3, 8) on 28 vertices was found to be UNSAT using
MapleSAT (Liang et al. 2016) combined with a CAS, af-
ter 96 hours on an AMD EPYC 7763 2.45 GHz processor
with 16 GiB of RAM. A 30 GiB DRAT file was generated
and verified in 63 hours. Verification was performed on a vir-
tual machine with an Intel Xeon CPU E5-2673 v3 processor
running at 2.40 GHz and with 28 GiB of RAM.

Verification was performed using the DRAT-trim proof
checker (Wetzler, Heule, and Hunt Jr 2014) slightly mod-
ified to support the addition of trusted clauses (Li, Bright,

and Ganesh 2023). MapleSAT generates a DRAT proof con-
sisting of the clauses learned by it during the solving pro-
cess. The proof checker then verifies that each clause can
be derived from the previous clauses via resolution. The
CAS-derived blocking clauses are verified by evidencing
that the clause blocks graphs whose adjacency matrices are
not canonical. This is verified by checking a permutation ap-
plied to the blocked graph’s corresponding adjacency matrix
produces a matrix smaller in lexicographical order. The per-
mutation is derived by the CAS during solving and recorded
as a witness for the trusted clauses in the DRAT proof.

In summary, we present the first formally verified proof
that the Ramsey number R(3, 8) is 28, via a SAT+CAS tech-
nique where the CAS implements orderly generation.
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