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Abstract

Reinforcement Learning (RL) in complex environments
presents many challenges: agents require learning concise
representations of both environments and behaviors for effi-
cient reasoning and generalizing experiences to new, unseen
situations. However, RL approaches can be sample-inefficient
and difficult to scale, especially in long-horizon sparse re-
ward settings. To address these issues, the goal of my doctoral
research is to develop methods that automatically construct
semantically meaningful state and temporal abstractions for
efficient transfer and generalization. In my work, I develop
hierarchical approaches for learning transferable, generaliz-
able knowledge in the form of symbolically represented op-
tions, as well as for integrating search techniques with RL
to solve new problems by efficiently composing the learned
options. Empirical results show that the resulting approaches
effectively learn and transfer knowledge, achieving superior
sample efficiency compared to SOTA methods while also en-
hancing interpretability.

1 Introduction
The focus of my doctoral research is on learning abstractions
for effective transfer and generalization in planning and rein-
forcement learning. The guiding question of my research is:
“How do intelligent agents learn succinct and meaningful
abstract knowledge of the world to solve related new prob-
lems efficiently?”. Consider most self-driving cars of today
that train and over-fit to known scenarios which makes it
difficult to start operations in new cities and countries. De-
spite many efforts in autonomously learning state (White-
son 2010) and temporal (Klissarov and Precup 2021) ab-
stractions, these approaches suffer from limited reusability
and sample-efficiency. My dissertation aims to create gen-
eral hierarchical algorithms that learn reusable abstractions
and employ abstractions that are automatically identified as
useful for solving new problems. To realize this goal, I pro-
pose learning and using combined state and temporal ab-
stractions or options with symbolic representations that sat-
isfy the desirable properties: interpretability, composability,
and generalizability (as illustrated in Fig. 1).
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(a) Option o1 (b) Option o2 (c)

Figure 1: Illustration of options in taxi world with passengers and
a destination. The images (a) and (b) show abstract policies and
initiation sets for option o1 (to navigate and pickup passenger) and
option o2 (to navigate and dropoff passenger) that are generaliz-
able due to abstraction. The image (c) shows composability of the
options as abstract state in the termination of o1 (shown in green)
are in the initiation of o2 (shown in blue).

2 Proposed Approach
My dissertation endeavors to learn abstractions that satisfy
the desirable properties with a focus on algorithms for im-
proving sample-efficiency and transfer.

2.1 Learning State Abstractions
Our recently published work (Dadvar, Nayyar, and Sri-
vastava 2023) introduces a novel top-down method called
CAT+RL to learn a hierarchy of state abstractions in the
form of a Conditional Abstraction Tree (CAT) while car-
rying out RL. The CAT+RL algorithm takes as input a
Stochastic Shortest Path problem (SSP) and effectively
learns a CAT and an abstract policy. My follow-up work fur-
ther aims to build upon this result to address the problem
of learning symbolically represented temporal abstractions
or options to improve transfer and generalization to new un-
seen problems as described in Sec. 2.2.

2.2 Learning Temporal Abstractions
Our recent research presents a novel method called CAT
Options Planning and Learning -- COPlanLearn -- for
Transfer Reinforcement Learning (RL) for SSP problems in
factored domains (Nayyar, Verma, and Srivastava 2023). It
learns a library of options with abstract representations and
recomposes these options while discovering novel options
by integrating planning with RL to solve new problems.
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Figure 2: An average of the fraction of problems solved vs learning episodes required by each approach in each domain, computed using 10
independent trials. A total of 20 problems (2 source, 18 target) were solved sequentially by each approach.

Figure 3: Visualization of options for Taxi World. Dashed lines
show the initiation set and solid lines show the termination set for
an option. The left image shows the initial state for the taxi and the
passenger, and the destination. The middle image shows an option
to navigate and pickup the passenger. The right image shows an
option to navigate and dropoff the passenger.

The presented approach first learns a semantically well-
defined state abstraction from an input problem instance and
then uses this abstraction to invent high-level options, to
learn abstract policies for executing them, as well as to cre-
ate abstract symbolic representations for representing them.
Given a new problem instance, our overall approach con-
ducts a novel bi-directional search over the learned option
representations while also inventing new options as needed.
Our main contributions are approaches for learning transfer-
able, generalizable knowledge in the form of symbolically
represented options, as well as for integrating search tech-
niques with RL to solve new problems by efficiently com-
posing the learned options.

3 Preliminary Results
Extensive empirical evaluations on CAT+RL (Dadvar, Nay-
yar, and Srivastava 2023) demonstrated that it effectively
draws out similarities across the state space and enables
the vanilla Q-learning algorithm to outperform SOTA meth-
ods. Furthermore, empirical results on COPlanLearn (Fig. 2)
show that the resulting approach effectively transfers learned
knowledge to problems with different initial and goal config-
urations, achieving superior sample efficiency compared to
SOTA methods. A key advantage over Option-Critic (Bacon,
Harb, and Precup 2017) is that it does not need to predefine
the number of options. The approach also effectively trans-

fers from less to more cluttered and from smaller to larger
environments. Visualizations of learned options in the Taxi
World (Fig. 3) exhibit desirable properties of interpretability,
composability, and generalizability.

4 Future Directions
With the right kind of additional analysis, I aim to extend the
proposed methods to invent options with an increased scope
of their applicability. Specifically, I plan to investigate learn-
ing relational options that are transferable to diverse settings
and are generalizable to an increasing number of objects in
RL, as previously achieved in planning (Karia, Nayyar, and
Srivastava 2022). Moreover, my work so far focuses on do-
mains with discrete action spaces. I am interested in extend-
ing our work to the case where the underlying action space
is continuous. These ideas can be extended to learn abstract
high-level action models and identify drift in them for re-
lated environments, similar to (Nayyar, Verma, and Srivas-
tava 2022). Lastly, my goal is to investigate the connections
between hierarchies of state and temporal abstractions and
support the resulting algorithms with theoretical guarantees.
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