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Abstract

Individuals with color vision deficiencies (CVDs) often
face significant challenges in accessing vital information for
decision-making. In response, we introduce EnColor—a deep
Encoder-decoder Color corrector for images, enabling indi-
viduals with CVDs to perceive the contents in originally in-
tended colorization. Our network architecture is designed to
effectively capture essential visual features for reconstruct-
ing standard images into color-corrected versions. In partic-
ular, our training pipeline is integrated with a CVD simu-
lator so as to ensure the fidelity of output throughout the
lens of individuals with impaired color vision. For evalua-
tion, we focus primarily on tomato images, considering the
profound impact of color vision deficiencies on practical do-
mains like agri-food systems. Our quantitative results demon-
strate that the EnColor model achieves over 16.8% improve-
ment over previously introduced algorithms in terms of color
retention, supporting our design choices. Furthermore, a sur-
vey with 43 participants provides subjective assessments with
the highest scores on our method. Additionally, specific vi-
sual examples are presented to highlight accurately restored
colors. We also publicly share all our codes of EnColor as
well as the baseline methods to ensure reproducibility and fa-
cilitate more studies in CVD correction.

Introduction
Color plays a pivotal role in effective communication for
decision-making. For instance, traffic lights use color to
communicate road directions, leading to restrictions for
those with color vision deficiencies (CVDs) (Parry 2015).
Another example is illustrated, in Fig. 1, in which fruits be-
come difficult to distinguish by color for people with CVDs.
In real life, many individuals with CVDs struggle to identify
ripe fruits (Cole 2004), raising a potential issue for farmers.

To address this problem, previous studies have introduced
technological tools for adjusting original images to enhance
contrast, so that individuals with CVDs could successfully
identify distinct objects. (Lillo et al. 2022). These meth-
ods, however, employed simplistic, linear models with pre-
defined parameters, and their main focus was on contrast en-
hancement rather than correcting images so that individuals
with CVDs could see the image closer to what someone with
normal color vision would see.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Simulations of different types of CVDs. (a) origi-
nal, (b) dueteranomaly, (c) dueteranopia, and (d) protonopia

In this paper, we propose EnColor—a novel framework
for an Encoder-decoder Color corrector designed to learn
the conversion of images into ones that preserve the origi-
nal colors for viewers with CVDs. To be specific, as illus-
trated in Fig. 3, a deep convolutional encoder-decoder ar-
chitecture is employed to automatically learn useful spatial
features for color correction. In particular, EnColor involves
a “CVD simulator” in the pipeline to calculate the loss func-
tion, specifically designed to assess image quality for indi-
viduals with CVDs. Additionally, we conduct experiments
with tomato image data, taking into account the significant
impacts of CVD on agricultural systems. Our quantitative
evaluations show that the EnColor model can improve color
restoration by over 16.8% compared to baseline methods.
Furthermore, a survey with 43 participants provides subjec-
tive assessments with the highest scores on our method. Ad-
ditionally, specific visual examples are presented to high-
light accurately restored colors. We also release all our codes
of EnColor and the baselines to promote reproducibility and
further relevant studies1.

1https://github.com/Satgoy152/EnColorExperiments
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Figure 2: Spectral sensitivities of human cone cells: S, M,
and L types. Curves are results of normalization with re-
sponsivity. (Plot by Vanessaezekowitz (2007))

The remainder of this paper is organized as follows. We
first describe background knowledge of CVD to provide un-
derstanding of the phenomenon. Then, the next section ex-
plores previous relevant works on CVD simulations and au-
tomated color corrections. In the following section, we in-
troduce our EnColor method with technical details. The de-
scriptions of our experimental settings and results are then
presented with discussion. Lastly, we conclude the paper
with the summary of our work and future research plans.

Background: Color Vision Deficiency
In humans, color vision is facilitated by photosensitive cells,
called cones, in the retina. Those cone cells can be cate-
gorized into three types based on their sensitivity to dif-
ferent wavelengths of light: long (L), medium (M) and
short (S) (Hunt and Carvalho 2016), as visualized in Fig. 2.

CVDs occur when one or more of these cone categories
are either missing (dichromacy or monochromacy) or altered
(anomalous trichromacy) (Parry 2015). For example, the ab-
sence of L cones leads to protanopia (Fig. 1d), resulting in
reduced sensitivity to red light. Similarly, individuals with
no or defective M cones experience deuteranopia (Fig. 1c)
or deuteranomaly (Fig. 1b), causing impaired perception of
green wavelengths (Parry 2015).

Our EnColor model is designed to learn the synthesis of
non-perceivable colors (e.g., red or green) using others, en-
abling individuals with CVDs to sense colors similar to the
original (cf. Fig. 6). In particular, our experiments are con-
ducted namely with simulations of deuteranopia and deuter-
anomaly because a review of the literature around CVDs by
Birch (2012) reports that these red-green CVDs are the most
prevalent conditions in the population.

Related Work
While the efficacy of specialized physical filters for CVDs
have been extensively studied (Werner, Marsh-Armstrong,
and Knoblauch 2020; Tanuwidjaja et al. 2014), software and
algorithmic approaches in this domain remain relatively un-
explored. Still, there are software tools designed primarily
for content creators and designers to simulate CVDs. For

instance, Color Oracle2 and Sim Daltonism3 can apply the
filters of a particular CVD to computer screens so that de-
signers can ensure that their visuals are accurately perceived.
Game developers can also utilize similar tools, such as ones
integrated into the Unity game engine4 to assess vision-
related accessibility issues. However, our work is distinct
because it aims to assist individuals with CVDs directly. We
not only automate the identification of problematic colors
but also recolor the contents to enhance perception.

With similar motivations, Color Contraster (CC) (Yun,
Michelson, and Brand 2007) was designed as a model for
image enhancement for CVD, simply increasing the redness
and greenness on pixels. As a consequence, this heuristic
approach adds more contrast to these targeted pixels. Dody
et al. (2019) also proposed a similar approach yet identified
clusters of problematic colors in images. Their correction
application is then targeted to the relevant clusters only.

Linear transformation models from (Petrovic and Fujita
2017) also enhance the contrast. More specifically, the orig-
inal image and the image of the CVD simulation are com-
pared to compensate for the difference by a multiplica-
tion a pre-defined matrix. Also, authors in (Lee and San-
tos 2010) introduced a “fuzzy logic-based” CVD correction
algorithm. This method takes a weighted summation of two
images generated for protanopia and deuteranopia, while the
weights are dermined by fuzzy logic.

These models were namely designed to perform relatively
simple, linear transformations with manually predefined pa-
rameters. In contrast, EnColor in our method can automat-
ically use data to learn the parameters for conversion with
non-linearity within neural networks. Furthermore, our ex-
periments incorporate multiple evaluation metrics not only
to quantify improved contrasts but also color restoration.

DeepCorrect (Petrovic and Fujita 2017) presents the most
similar approach to ours since their framework also includes
a deep neural network-based color corrector, involving a
CVD simulator in the training loop. However, DeepCorrect
leverages an adversarial learning setting in which a color
corrector is trained to enhance RGB images while a ref-
eree network performs typical image-classification tasks on
the enhanced images with CVD simulation applied. During
training, the authors claim that the color-correction network
learns to generate the images that are realistic even in the
color space of CVD.

Yet, we claim that the abstract error signals for holistic
image classification may not provide sufficient information
to learn to synthesize similar colors to the original at each
pixel location. Their outputs demonstrate this limitation be-
cause regenerated colors tend to appear dissimilar from the
original ones. To tackle this issue, our EnColor instead di-
rectly compares the original RGB images with the simulated
ones after color correction. This approach is to ensure the in-
tended colors are successfully synthesized with other colors
in receptive wavelengths. Additionally, we perform surveys
with human participants.

2https://colororacle.org/
3https://github.com/michelf/sim-daltonism/
4https://unity.com/
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Figure 3: Illustration of the pipeline of color correction with EnColor, encoding and decoding an image I into a color-corrected
image I ′. EnColor learns to generate I ′ minimizing the difference ∆ between its CVD-simulated version S(I ′) and the original
image I.

(a) (b) (c) (d) (e)

Figure 4: Visualizations of varying degrees of deuteranomaly simulated: (a) Original, (b) 0.3, (c) 0.5, (d) 0.8, and (e) 1.0

Methodology
In this section, we describe two major components of En-
Color with technical details: 1) a Neural network-based im-
age corrector, and 2) a CVD simulator. In addition, our novel
training process integrating both is introduced.

Image-Correction Network
Inspired by the successes of encoder-decoder architec-
tures in image reconstruction (Badrinarayanan, Kendall, and
Cipolla 2017; Mastan and Raman 2019), we incorporate
them into the image corrector f of EnColor. To be specific,
as illustrated in Fig. 3, the execution flow of the image cor-
rector involves taking an ordinary RGB image I with dimen-
sions w × h × 3 to encode it into an abstract representation
and then decoding it into an altered image I ′ with the same
dimensions as the input but modified colors.

Our image-correction network f employs convolutional
layers to learn useful spatial patterns for color adjustment.
More specifically, its encoder is built up with two convo-
lutional layers with 16 and 8 3 × 3 kernels, respectively.
In particular, each layer downsizes the input image by ap-
plying the kernels with a stride of 2, eventually producing
a three-dimensional abstract representation v with dimen-
sions w′ × h′ × 8. The decoder takes v as input to process
it sequentially by two transposed convolutional layers with
16 and 8 3 × 3 kernels, respectively. Note that, as in the

encoder, each decoding layer also uses a stride of 2 to en-
large images. Finally, an additional convolutional layer with
three 3 × 3 kernels and a stride of 1 is applied to generate
the output image I ′.

CVD Simulator
The CVD simulation function S is designed to return images
with the colors that would be viewed by individuals with a
particular type of CVD (cf. Fig. 4). Here, we leverage it to
train our image corrector to generate images that are seen to
be similar to the original by those with CVDs. (Machado,
Oliveira, and Fernandes 2009)

Specifically, we employ a linear transformation to adjust
the data within the red (R), green (G), and blue (B) chan-
nels, replicating the perceptual alterations occurring when
“M” cones malfunction or are absent (Machado, Oliveira,
and Fernandes 2009). Mathematically, we apply a 3× 3 ma-
trix to the RGB vector of each pixel in the image, thereby
“shifting” the values to generate a simulated CVD image.
Based on how much we shift the values in each channel, we
can adjust the intensity α of CVD in simulation; for instance,
deuteranomaly (0 < α < 1) and deuteranopia (α = 1). Fig-
ure 4 shows examples under various α values.

Specifically, the CVD simulator computes the following
to convert a pixel with R, G, and B channels into simulated
one, applying α = 0.5 for simulation of deuteranomaly:
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Intensity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Average
EnColor

SSIM 0.934 0.929 0.932 0.918 0.923 0.922 0.916 0.915 0.926 0.921 0.923
MSE 137.68 144.97 143.66 193.27 178.60 214.69 432.40 481.22 640.75 798.89 396.67

Linear
SSIM 0.980 0.966 0.954 0.945 0.938 0.931 0.925 0.921 0.918 0.915 0.942
MSE 52.03 155.36 273.37 390.32 500.19 600.91 691.72 773.53 847.34 913.68 559.82
CC

SSIM 0.880 0.890 0.890 0.880 0.870 0.840 0.810 0.780 0.740 0.710 0.810
MSE 1028.71 800.74 624.86 518.92 510.19 641.34 969.85 1561.08 2463.14 3633.11 1225.22
Fuzzy
SSIM 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.880 0.880 0.890
MSE 374.09 396.11 416.22 432.29 448.86 466.14 481.45 495.72 507.78 518.74 476.63

Cluster
SSIM 0.960 0.940 0.920 0.890 0.870 0.840 0.810 0.780 0.750 0.730 0.850
MSE 59.16 114.7 196.9 304.16 437.13 594.36 776.33 981.20 1206.92 1452.48 612.33

Table 1: MSEs and SSIMs of tested methods under vaiours intensities of CVD. For each intensity, the best performance per
metric is marked in bold. The right-most column provides the averaged performance over the intensities.

[
Rs

Gs

Bs

]
=

[
0.547494 0.607765 −0.155259
0.181692 0.781742 0.036566
−0.01041 0.027275 0.983136

][
Rin

Gin

Bin

]
,

(1)
where Rin, Gin, and Bin represent values of input pixel in
the R, G, B channels, respectively, while Rs, Gs, and Bs are
the counterparts of simulated pixel. In particular, the con-
stants in the transformation matrix were found experimen-
tally by Machado, Oliveira, and Fernandes (2009) who de-
veloped a physiological-based model to estimate the interac-
tion between cones in the eye. Also, for simulation of an en-
tire image, the same conversion can be repeatedly performed
across the pixels.

They provide different matrices tailored for various sever-
ity levels α to simulate. For instance, simulation of deutera-
nomaly (α = 1) can be performed, using:

[
Rs

Gs

Bs

]
=

[
0.367322 0.860646 −0.227968
0.280085 0.672501 0.047413
−0.01182 0.04294 0.968881

][
Rin

Gin

Bin

]
,

(2)
where compared to Eq. 1, each simulated channel Cs pre-
serves the value from the original Cin to a lesser extent.
Leveraging this flexibility in simulation, we conduct experi-
ments under various conditions of CVD intensity.

Training Procedure
By leveraging the CVD simulator S, image corrector f is
trained to optimize the simulated version of its output im-
ages I ′ to be similar to the original image I (cf. Fig. 3).
More formally, our loss function computes the pixel-wise
difference using mean absolute error between the images as
below:

L(θ) =
1

3n

3n∑
k=1

|sk − ik|, (3)

where sk ∈ S(fθ(I)), ik ∈ I , and n = w × h—i.e., the
total number of pixels.

This loss function guides the neural network to generate
color-corrected pixels to be similar to the original I when a
CVD has been applied. In other words, it can be minimized
only when the generated images under CVD simulation ex-
hibit the identical colors to the original. This aligns with our
objective of enabling individuals with CVD to perceive the
same colors from color corrected images I ′ as others would
from the original I.

Experiments
In this section, we show empirical results to demonstrate
performance of EnColor. Firstly, the details of experimental
settings are provided. Then, we present qualitative results in
terms of two informative metrics, comparing to other base-
line methods. Finally, qualitative analysis is offered based on
collected answers from human subjects and notable example
images.

Experimental Settings
Data & Baselines: For experiments, we mainly utilize
the Laboro Tomato dataset5, which comprises more than
600 high-quality images of real ripe and unripe tomatoes.
This dataset presents a useful testbed to validate our method
in practical environments such as agriculture.

For our testing, we reduced the image resolution to 648×
484 to accelerate computation overall. Also, exclusive sub-
sets of data were set up: training set of 600 images, vali-
dation set of 43, and test set of 150. For each experimental
setup, EnColor was trained with the entire training set un-
til the loss for the validation set started to increase. More-
over, the test set was used for performance reports of every
method tested.

For comparative analysis, we adopt baseline image-
correction methods mentioned above: Linear (Petrovic and

5https://github.com/laboroai/LaboroTomato

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23338



(a)

(b)

Figure 5: (a) MSEs and (b) SSIMs of tested methods for
various intensities of CVD. For MSE, the lower the better,
while for SSIM, the higher the better.

Fujita 2017), Color Contraster (CC) (Yun, Michelson, and
Brand 2007), Fuzzy (Lee and dos Santos 2011), and Cluster-
ing (Dody et al. 2019). Because code for most the methods
were not available, we implemented or reproduced them in
Python, following the authors’ instructions. We also release
our codes to promote further relevant research using them.

Metrics: For evaluation, various severity levels of CVD
are considered (i.e., 0.1 for weak deuteranomaly to 1.0
for deuteranopia). Specifically, two metrics are employed:
Mean Squared Error (MSE) and Structural Similarity In-
dex (SSIM) (Sara, Akter, and Uddin 2019). MSE is applied
to quantify pixel-wise intensity differences between the in-
put RGB image I and the simulated one S(I ′) after color
correction applied. Note that we denote S(I ′) as I ′′ here-
after unless mentioned otherwise.

For each input image I, MSE is calculated as below:

MSE =
1

3n

3n∑
k=1

(i′′k − ik)
2, (4)

where i′′k and ik are kth pixel in I ′′ and I, respectively, and
n is the total number of pixels.

In addition, SSIM is used to supplement our analysis, tak-
ing into account the luminance, contrast, and structure of
compared images. More formally, we assess the quality of
simulated output image I ′′ by comparison with the original
RGB image I as follows:

SSIM(I, I ′′) =
(2µIµI′′ + C1)(2σII′′ + C2)

(µ2
I + µ2

I′′ + C1)(σ2
I + σ2

I′′ + C2)
, (5)

where µI and µI′′ are the local means of images I and I ′′;
σII′′ is the covariance; σ2

I and σ2
I′′ are the local variances;

and C1 and C2 are some constants used for stability in the
division (Bae and Kim 2015). In particular, local statistics
are obtained within a spatial window of size 11 to examine
quality in local areas. Then, the multiple local SSIM’s are
averaged to obtain the final, global index for the input im-
age pair. In particular, local statistics are obtained within a
spatial window of size 11 to examine quality in local areas.
Then, the multiple local SSIM’s are averaged to obtain the
final, global index for the input image pair.

While MSE always returns a value greater than or equal
to 0, the output of SSIM is bounded between −1 and 1.
Furthermore, larger MSEs mean more dissimilar images,
whereas the maximum SSIM indicates that the images are
the same. Also, a smaller SSIM indicates more of a differ-
ence between the two images.

Quantitative Results
Figure 5a visualizes variations in color retention while the
severity of CVD changes. While CC presents declining er-
rors from 0.1 up to 0.5 and an exponential increase with >
0.5, other methods tend to consistently struggle with higher
degrees of CVD. This is expected particularly in the case
of EnColor, it has to generate output I ′ that appears more
distinct from input I to compensate for more severe manipu-
lation through the CVD simulation. Moreover, our EnColor
was not the best model for low CVD levels (0.1 ∼ 0.2),
but its MSE increased at a slow phase between the CVD
level of 0.3 and 0.8, which is the most common range in real
world (deuteranomaly) (Tanuwidjaja et al. 2014). While at
the worst CVDs (0.9 ∼ 1.0), Fuzzy outperformed the model
proposed in this paper, it still exhibited the second lowest er-
rors.

Table 1 indicates that in average, Encolor provides 16.8%
and 29.1% better performance than Fuzzy and Linear, re-
spectively. This implies that the corrected images by En-
Color can more likely visualize the originally intended col-
ors for individuals with CVDs. In other words, EnColor suc-
cessfully learns the synthesis of problematic colors using
others in the CVD color space.

In terms of SSIM, Fig. 5b plots the evaluation results. As
in the case of MSE, every method tends to lead to worse
performance as the severity of red-green color blindness
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(a)

(b)

(c)

(d)

Figure 6: (a) Original images; (b) Original simulated; (c)
Corrected; and (d) Corrected Simulated. Corrections were
applied by EnColor under α = 0.5 for simulations.

climbs. Also, from the degree of 0.5 onward, the perfor-
mance of both Color Contraster and Clustering continue to
drop, which is consistent with the MSE evaluation. EnColor,
however, exhibits relatively reliable performance at various
intensity levels, even though the Linear model marginally
outperforms it by 2.1% for the levels up to 0.8. Nonethe-
less, EnColor achieves the lowest rate of decrease, showing
0.8% better performance than Linear at the extreme cases at
the levels of 0.9 and 1.0 (cf. Table 1).

Overall, EnColor is the only method, which produces
high-quality color correction for both MSE and SSIM.

Qualitative Analysis
Survey: To achieve a more comprehensive understanding
of the effectiveness of color correction models, we also con-
ducted a survey, soliciting the opinions of human partic-

Linear Cluster EnColor CC Fuzzy

Contrast 3.19 2.11 1.59 2.46 3.99

Ripeness 2.98 1.79 1.45 2.14 3.47

Retention 25.98 39.63 33.08 3.37 0

Table 2: Participants ranked contrast and ease of identifying
ripe tomatoes on a scale of 1-5, with lower scores indicat-
ing superior performance. Rows 1 and 2 display the average
scores, while Row 3 presents the percentage of respondents
who believe a method has superior color retention, with bold
indicating the best performance for all.

ipants with CVDs. We recruited 43 participants from so-
cial media (Instagram, Whatsapp, LinkedIn, etc.) for around
10 days. Among 43 individuals, 39 self-reported no CVD,
while 4 reported a CVD. On the Qualtrics online platform6,
we first verified their CVD with questions from the Ishihara
plates (Petrovic and Fujita 2017). If they had CVD, we dis-
played three unique tomato images (Fig. 6) that were color-
corrected by all correction methods. Otherwise, simulated
versions of the same images are shown to mimic how indi-
viduals with CVD would view them. For each image, partic-
ipants were asked to subjectively evaluate contrast, ease of
identifying ripe tomatoes, color retention, and overall pref-
erence.

In particular, Table 2 shows that participants provided the
best average scores for the images corrected with EnColor
for both contrast and ripeness-related evaluations, which
are key factors that impact effectiveness for color-correction
models; they had scores of 1.59 and 1.45 respectively on a
scale from 1-5 (with 1 being the best). This human prefer-
ence further supports our model as a useful tool for improv-
ing information delivery for those with CVDs. Overall, the
balanced performance of EnColor, proven by the quantita-
tive evaluations, is a key factor in producing images that are
effectively received by humans.

In spite of these insightful findings, there are limitations
that need to be considered in this survey. For instance, the
sample size of the group with CVDs was small. Though
we incorporated data from the non-CVD group, it remains
unknown whether their perception of simulated images can
perfectly emulate that of corrected images viewed by those
with CVDs.

Examples: Figure 7 displays simulation examples of
color-corrected images by all tested methods. The output
of EnColor (Fig. 7c) appears most similar to the original
(Fig. 7a), while that of Cluster (Fig. 7f) may be considered
to be the second best. This observation is consistent with the
finding from the survey.

Conclusion & Future Work
Color vision deficiency (CVD) presents a significant chal-
lenge that demands an effective solution, particularly given

6https://www.qualtrics.com/
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Simulated results for all baselines and EnColor un-
der intensity α = 0.5: (a) Original, (b) Linear, (c) EnColor,
(d) Fuzzy, (e) CC, and (f) Cluster

its implications in contexts such as farming, where the abil-
ity to distinguish between ripe and unripe fruits/vegeta-
bles is crucial. In this paper, we have proposed EnColor—
a novel framework for an Encoder-decoder Color corrector
capable of learning the transformation of RGB images into
ones that preserve originally intended colors for individuals
with CVDs. Our training scheme with CVD simulators has
yielded significant improvement compared to other baseline
methods, leading to the highest color retention rates on av-
erage.

We have also conducted a qualitative analysis using a
form of human survey. Its results indicate that 43 partici-
pants assessed EnColor’s color correction as the best when
asked about both the visual contrast and the ease of classify-
ing ripe fruits from corrected images.

All these results highlight the potential of EnColor as a
tool for enhancing accessibility in visual communication.
We publicly share all the codes used for our experiments
to encourage further research in this area. In particular, our
designs of algorithms and experiments can serve as a useful
guideline for future investigations.

Potential future work includes training more sophisti-

cated neural network models across domains beyond agri-
culture. To further improve the quality of produced im-
ages, the learning paradigm of Generative Adversarial Net-
works (GANs) could be incorporated into the framework.
Furthermore, a modification to the loss function of EnColor
in Eq. 3 could be explored, possibly incorporating SSIM or
a proxy form into training. Furthermore, we recognize the
importance of developing methods to identify the personal
intensity of CVDs, enabling adaptive utilization of special-
ized color alteration algorithms tailored to individual needs.
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