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Abstract

The rapid evolution of artificial intelligence (AI), specifically
large language models (LLMs), has opened opportunities for
various educational applications. This paper explored the fea-
sibility of utilizing ChatGPT, one of the most popular LLMs,
for automating feedback for Java programming assignments
in an introductory computer science (CS1) class. Specifi-
cally, this study focused on three questions: 1) To what extent
do students view LLM-generated feedback as formative? 2)
How do students see the comparative affordances of feedback
prompts that include their code, vs. those that exclude it? 3)
What enhancements do students suggest for improving LLM-
generated feedback? To address these questions, we gener-
ated automated feedback using the ChatGPT API for four lab
assignments in a CS1 class. The survey results revealed that
students perceived the feedback as aligning well with forma-
tive feedback guidelines established by Shute. Additionally,
students showed a clear preference for feedback generated by
including the students’ code as part of the LLM prompt, and
our thematic study indicated that the preference was mainly
attributed to the specificity, clarity, and corrective nature of
the feedback. Moreover, this study found that students gener-
ally expected specific and corrective feedback with sufficient
code examples, but had diverged opinions on the tone of the
feedback. This study demonstrated that ChatGPT could gen-
erate Java programming assignment feedback that students
perceived as formative. It also offered insights into the spe-
cific improvements that would make the ChatGPT-generated
feedback useful for students.

Introduction
The rapid recent evolution of artificial intelligence (AI)
technology makes the integration of AI into the educa-
tion sector promising (Chen, Chen, and Lin 2020). Simple
AI tools are already widely utilized in education to auto-
mate relatively mundane and repetitive tasks (Kathe Pelletier
2023). As AI technology continues to advance in complex-
ity and capability, there is a growing potential to utilize it
in more intricate educational tasks. Particularly, Large Lan-
guage Models (LLMs), such as OpenAI’s ChatGPT, have
strong performance on various natural language processing
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tasks (Chang et al. 2023). They present a compelling op-
portunity for automating a series of natural language-based
educational tasks. Specifically, this paper evaluated LLM-
generated feedback for programming assignments in an un-
dergraduate Introduction to Java course (CS1) by delving
into students’ perceptions, using formative feedback guide-
lines (Shute 2008) and questions about their preferences of
the LLM-generated feedback.

In educational contexts, feedback can be categorized into
summative and formative feedback. While summative feed-
back mainly functions as an evaluative tool at the end
of an instructional period, formative feedback offers on-
going guidance aimed at enhancing learning and perfor-
mance (Dixson and Worrell 2016). Feedback is a crucial
component in students’ learning process. Numerous stud-
ies across diverse academic disciplines consistently indicate
that formative feedback is effective in facilitating student
learning (Hao et al. 2019). While the importance of feed-
back is well-established, generating feedback for program-
ming assignments is challenging since it requires substantial
effort by teaching personnel (Gulwani, Radiček, and Zuleger
2018). As interest in computer science education continues
to surge, the need for automated feedback systems tailored
for programming assignments becomes increasingly critical.

Extensive research has been conducted on automated
feedback for programming assignments. The state of prac-
tice in most classrooms includes evaluating the correct-
ness (e.g. (Morris 2003; Cheang et al. 2003)), maintainabil-
ity (Cordova et al. 2021), and readability (Liu and Petersen
2019) of students’ code through dynamic analysis and static
analysis (Messer et al. 2023). AI-based methods, mainly ma-
chine learning algorithms trained on various datasets, have
also emerged as a complement to traditional methods for
programming assignment feedback generation (Piech et al.
2015; Corbett and Anderson 1994; Shi et al. 2022, 2021).

While these feedback generation systems have been ef-
fective in many aspects, there is room for further enrich-
ment in the area of natural language-based automated feed-
back. Prior work, such as JavaTutor (Wiggins et al. 2015),
mostly relied on pre-defined templates for natural language-
based feedback generation. The rise of LLMs opens up a
new opportunity for generating more customized natural
language-based feedback without pre-defined templates, as
LLMs exhibit strong reasoning and natural language gen-
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eration abilities (Chang et al. 2023). Recent studies also
demonstrated the ability of LLMs to solve introductory pro-
gramming problems (Finnie-Ansley et al. 2022) and cre-
ate new programming problems (Sarsa et al. 2022), sug-
gesting LLMs’ potential for generating feedback specific to
programming assignments. Given that LLM-generated feed-
back is an emerging area, there are many research questions
that deserve exploration in order to understand how LLMs
can be integrated into real-world educational settings, such
as how LLM-generated feedback affects learning outcomes
and how students perceive LLM-generated feedback.

In this paper, our research focus is on students’ perception
of LLM-generated feedback. We aim to understand how stu-
dents perceive the programming assignment feedback gener-
ated by ChatGPT, one of the most popular LLMs, in terms of
formative qualities. We also seek to understand how students
see the comparative affordances of feedback prompts that
include their code, vs. those that exclude it since ChatGPT
has the capability to offer in-depth suggestions when pro-
vided with code. However, there is also a risk of generating
inaccurate advice if the code is misinterpreted. Lastly, we
gathered students’ suggestions for how to further improve
the ChatGPT-generated feedback. We conducted our exper-
iments in a CS1 introductory Java course, with 58 students
who mostly major in computer science, at a U.S. public uni-
versity during the Summer of 2023. We designed a series
of surveys based on the formative feedback guidelines pro-
posed by Shute (Shute 2008). Then we generated automated
feedback by ChatGPT API for four selected lab assignments
in the Java course. After the grades of each lab assignment
had been released, we distributed the feedback to students
and collected students’ responses through the survey. We
also performed a thematic analysis of the open-ended ques-
tions in the survey to understand the reasons for feedback
preference and the areas for improvement suggested by stu-
dents. In general, experiments in this paper answered the fol-
lowing three research questions (RQs):

RQ1. To what extent do students view ChatGPT-generated
feedback as formative?

RQ2. How do students see the comparative affordances
of feedback prompts that include their code, vs. those that
exclude it?

RQ3. What enhancements do students suggest for improv-
ing ChatGPT-generated feedback?

Our study makes several contributions to the field of
computer science education. Firstly, by evaluating the
ChatGPT-generated feedback against formative feedback
guidelines through surveys, we provide empirical evidence
that ChatGPT-generated feedback aligns well with formative
feedback guidelines established by Shute. Secondly, we find
a clear preference among students for feedback generated
from prompts that contain their code. Our thematic analy-
sis suggests that this preference is largely driven by the per-
ceived specificity, clarity, and corrective nature of the feed-
back. Thirdly, this study captures students’ suggestions for
improving the ChatGPT-generated feedback. According to
our thematic analysis, students commonly desire more spe-

cific and corrective feedback with sufficient code examples.
Additionally, we uncover divergent preferences concerning
the tone of the feedback; while some students appreciate an
encouraging tone, others opt for more critical evaluations.
This divergence underlines the need for personalization in
automated feedback systems, offering a direction for future
advancements in this area.

Related Work
Formative Feedback and Feedback Quality Evaluation.
Formative feedback is generally regarded as effective in ed-
ucational contexts (Hao et al. 2019). According to Shute, it
is defined as “information communicated to the learner that
is intended to modify the learner’s thinking or behavior to
improve learning” (Shute 2008). Prior research often eval-
uated the quality of formative feedback by measuring im-
provement in students’ learning outcomes (Hao et al. 2022;
Irons and Elkington 2021). This approach, while objective,
may not fully capture students’ own perceptions of the feed-
back or the multi-faceted nature of formative feedback as
articulated by Shute’s formative feedback guidelines. To ad-
dress this nuanced aspect, we implemented a survey-based
methodology, involving students to evaluate the degree to
which ChatGPT-generated feedback adheres to Shute’s for-
mative feedback guidelines. This methodology enables us to
understand students’ subjective evaluations of the feedback,
thereby enriching the multi-dimensional assessment of for-
mative feedback quality.

Automated Generation of Feedback for Programming
Assignment. Providing manual feedback for program-
ming assignments is challenging as it requires substantial ef-
forts by teaching personnel (Gulwani, Radiček, and Zuleger
2018), and the instructor-to-student ratio is often low for
computer science courses (Camp et al. 2017). To mitigate
this issue, initial efforts focused on automatic grading sys-
tems that offered binary feedback on the correctness of code
submissions (Von Matt 1994). The advent of more advanced
technologies has enabled the provision of richer and more
nuanced feedback. For instance, Singh et al designed a rule-
based system to provide feedback on how incorrect a given
solution was (Singh, Gulwani, and Solar-Lezama 2013). Be-
sides, some studies underline the importance of program-
ming styles, developing rule-based tools to assess code style
in students’ programming assignments (Ala-Mutka, Uimo-
nen, and Jarvinen 2004). More recently, AI techniques, such
as machine learning and deep learning, have been integrated
into the feedback generation process. These technologies
are used in intelligent tutoring systems for student model-
ing (VanLehn 1988) and undergo modifications to better suit
the realm of programming education. For example, Bayesian
knowledge tracing (Corbett and Anderson 1994), commonly
used for tracking student performance in multiple-choice
scenarios, was adapted by Shi et al. to be applicable for
open-ended programming assignments (Shi et al. 2022). De-
spite these advancements, the potential of ChatGPT in pro-
gramming assignment feedback generation remains largely
unexplored. This paper aims to fill this gap by examin-
ing student perspectives on ChatGPT-generated feedback for
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programming assignments.

Large Language Models for Education. The integration
of large language models (LLMs), such as ChatGPT, into
educational settings, has become an increasing research in-
terest. Many studies were conducted to explore how LLMs
can assist students’ learning process, such as generating
quizzes (Dijkstra et al. 2022), algebra hints (Pardos and
Bhandari 2023), and code explanations (MacNeil et al.
2022). Those studies demonstrate that LLMs have the po-
tential to generate educational materials for students.

In a recent study, Maciej et al. explored the potential of
using OpenAI’s GPT-3.5 model for automated hint gener-
ation in programming assignments (Pankiewicz and Baker
2023). They designed a controlled experiment to quantify
the impact of AI-generated feedback on students’ perfor-
mance and conducted a quick affect survey to gauge stu-
dents’ emotional states during task completion. The study
indicated that compared to the control group, the availability
of the AI-generated hints improved students’ performance
but didn’t significantly impact students’ affective state. Dif-
ferent from their experiment that involves students’ perfor-
mance, we focus on understanding students’ subjective eval-
uation and preference of the ChatGPT-generated feedback
and soliciting their suggestions for future improvements.

Concurrent with the advancements in the educational
applications of LLMs, there is a growing concern about
the ethical implications of their integration. For instance,
Qureshi et al. discuss the possibility of cheating and a shal-
low understanding of the course material when students are
provided with direct access to ChatGPT (Qureshi 2023).
These concerns are not isolated. Educational institutions
in New York State have banned the use of LLMs due to
fears over academic integrity and plagiarism (Elsen-Rooney
2023). While the debate over the ethical use of LLMs in ed-
ucation continues, the academic community has started to
form guidelines and policies for the use of these tools. Re-
searchers and educational institutions begin to regard LLMs
not just as potential sources of academic misconduct but also
as useful teaching aids (Abramson 2023; Rose 2023).

Experimental Design
Our IRB-approved experiments were conducted in the Sum-
mer of 2023 in an introductory Java programming course
(CS1) at a U.S. public university. A total of 58 students con-
sented to participate in the study and completed one or more
of our four surveys. The number of respondents for each sur-
vey ranged from 23 to 28 students. Our study focused on
four specific lab assignments—lab 6, lab 9, lab 12, and lab
14—that were designed to evaluate fundamental Java skills,
such as string manipulation, arithmetic calculations, loops,
and file processing (see Figure 1 for an overview of our ex-
perimental process). These labs were strategically selected
to offer a balanced representation of both the course time-
line and the varying complexities of the assignments.

All students in the class would receive two pieces of
ChatGPT-generated feedback within 1 to 2 days after the
professor published the final grades for each of the four
selected lab assignments. These pieces of feedback aimed

Figure 1: Experimental Design: The Experiment is divided into 4
sequential phases, 1⃝- 4⃝. In 1⃝, we selected 4 lab assignments cov-
ering critical topics in the Java course. In 2⃝, we categorized stu-
dents into groups based on their grades to tailor the prompts accord-
ingly. In 3⃝, Prompts were processed through ChatGPT to generate
feedback. And in 4⃝, we collected and analyzed survey results.

to assist students in improving their grades by evaluat-
ing their failed test cases, code, and the GitHub feedback,
which was automatically generated by the grading system
with each push to GitHub. The first piece of feedback in-
cludes students’ code in the prompt while the second did
not. This design allowed us to explore the impact of includ-
ing students’ code in the prompt on students’ preferences
towards the ChatGPT-generated feedback. After receiving
the ChatGPT-generated feedback, students were requested
to complete a survey within one week. These surveys were
designed to capture students’ experiences, satisfaction lev-
els, and suggestions for improvements. This assignment-
feedback-survey procedure was repeated for all four lab as-
signments to study the extent of the formative nature, stu-
dents’ preference for prompts, and potential improvement of
ChatGPT in Java assignment feedback generation. The pro-
cedures for feedback generation and survey generation are
elaborated in the sections below.

Feedback Generation
A pivotal part of our experimental design involves the gener-
ation of feedback for students’ assignments using ChatGPT
API. This process includes the following key considerations.

Message Roles: The ChatGPT API allows users to send
messages to ChatGPT by two roles: “system” and “user” (J.
2023). Messages tagged with the “system” role serve as pre-
defined instructions that guide ChatGPT’s behavior. They
are referred to as system prompts in this paper. Messages
tagged with the “user” role represent the input from users in-
teracting with the ChatGPT and are termed as user prompts
in this paper. Student-specific information such as code and
test cases was entered into ChatGPT through the “user” role.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23252



Figure 2: Prompts: In the Role section, ChatGPT was desig-
nated as a teaching assistant to provide feedback. The Pur-
pose section categorized students by full or partial scores
and tailored prompts for customized feedback. The Require-
ment section outlined basic criteria for generating feedback,
and the Lab Results section included specific student condi-
tions as prompts for feedback.

Temperature Setting: Temperature is a parameter that
controls the randomness of ChatGPT’s outputs. Lower tem-
perature values make the output more deterministic, while
higher values introduce more randomness (OpenAI 2023a).
To avoid unnecessary randomness in responses, the temper-
ature was set to 0 for feedback generation in this paper.

Token Restrictions: OpenAI imposes token limits on
ChatGPT, which can be challenging when generating feed-
back for assignments with extensive code. Although our ex-
periments were unaffected by this constraint, we acknowl-
edged it as a potential bottleneck for real-world applica-
tions. To assess the impact of including students’ code in
user prompts on their preferences, we generated two feed-
back versions for students. One included their code in the
prompt, while the other didn’t. This approach helped us un-
derstand how code inclusion affected perceived feedback
usefulness (OpenAI 2023b).

Prompts: In our experiments, prompts were divided into
system prompts and user prompts as defined in the Message
Roles section. System prompts varied based on students’
grading outcomes. For students receiving full scores, the
system prompt required ChatGPT to generate words of en-
couragement and a summary of the student’s performance.
For students who did not receive a full score, the system
prompt required ChatGPT to give tailored feedback high-
lighting mistakes in the code and how the student could im-
prove. The user prompt was composed of the following com-

ponents, separated by square brackets indicating the begin-
ning and end of each component (See Figure 2):

• Failed Test Case: Details of test cases that students failed,
comprising the name of the function these test cases
are designed for, input and expected output of these test
cases, and the actual output from students.

• Students’ Code (only included in the version of prompt
that contained code): The code submitted by students for
an assignment.

• GitHub Feedback: the automated feedback generated by
the grading system covering build time, Checkstyle er-
rors, commit info, code/test compilation status, presence
of .gitignore or *.class files, and project structure validity.

Survey Design
To gain insight into students’ perceptions and preferences of
the ChatGPT-generated feedback, we designed surveys for
the selected four lab assignments. Besides the survey agree-
ments, each survey consisted of 10 questions. The first ques-
tion verified students’ performance on the assignment. The
next two explored students’ preferences regarding the two
types of feedback provided. Continuing with six questions,
we evaluated students’ perceptions of how well the selected
feedback aligns with the formative feedback guidelines out-
lined by Shute (Shute 2008) for the feedback they received.
The last question solicited open-ended comments for future
improvement. Shute divided the formative feedback guide-
lines into four categories: things to do, things to avoid, tim-
ing considerations, and learner characteristics. In our study,
we concentrated on the first category, as things to avoid,
timing considerations, and learner characteristics are not
directly relevant to ChatGPT’s inherent ability to generate
feedback (e.g., one could present ChatGPT-generated feed-
back immediately, or after a delay). For guidelines within
the “things to do” category, we designed survey questions
specifically for those requiring students’ subjective input.
For instance, for the guideline “Present elaborated feedback
in manageable units”, the survey question is “Was the feed-
back presented in small and manageable pieces to avoid
overwhelming you?”, which gauges students’ perspectives
of this guideline. The survey questions and associated guide-
lines can be found in Appendix A of the arXiv version.

Data Processing
We gathered a range of data to facilitate feedback genera-
tion for student assignments. This included students’ names
which were anonymous by index, code, grades, GitHub
feedback, and details of failed test cases. Students’ code and
GitHub feedback were collected from GitHub/GradeScope
using their respective APIs. Information regarding students’
grades and repositories was retrieved from the course grad-
ing system. Test cases for each assignment were provided
by the course lecturer. Utilizing these pieces of data, we ran
a specialized Autograder to detect failed test cases for each
student. To avoid feeding too many failed test cases to Chat-
GPT, we categorized failed test cases based on the program-
ming functionality for which the test cases were designed.
For students with more than 4 failed test cases, we took only
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Figure 3: Survey Questions for Formative Feedback Guidelines

one failed test case from each test case category (if avail-
able) and put it into the user prompt. After that, we gener-
ated students’ outputs for each of these selected failed test
cases. The inputs and expected outputs for these failed test
cases were extracted from the test case scripts provided by
the lecturer. Based on the processed data, we created both
system and user prompts for each student. Finally, we lever-
aged the ChatGPT API to produce tailored feedback.

Qualitative Analysis
We conducted an in-depth analysis of students’ responses
to the two open-ended questions in the survey. The analysis
involved two key components: categorizing survey submis-
sions based on pre-defined properties and processing open-
ended responses through thematic analysis. In the first step,
survey submissions were categorized based on conditions
including respondents’ grades (either a full or partial score)
and their preference for the two pieces of feedback. For the
thematic analysis (Skripchuk, Shi, and Price 2022) in the
second step, three authors independently generated initial
code to identify key elements in the students’ responses, fo-
cusing on the reasons behind their feedback preference and
suggestions for future improvements. Following this, the re-
searchers collaboratively reviewed and reconciled these ini-
tial code to identify overarching themes. These themes were
then meticulously refined and explicitly defined. See Ap-
pendix B of the arXiv version for detailed definitions.

Results
In this section, we thoroughly analyzed the survey responses
regarding ChatGPT-generated feedback on Java program-
ming assignments. Most notably, we observed a promising
alignment between ChatGPT-generated feedback and for-
mative feedback guidelines, with the majority of students

offering positive responses. Furthermore, the survey results
indicate a significant preference for feedback generated from
the prompt that contains the student’s code, as it provides
more specific, clear, and corrective feedback. Lastly, we cap-
tured insights from students on how to improve ChatGPT-
generated feedback, offering a direction for future work.

Formative Feedback Guidelines Alignment

We first analyzed the alignment of the ChatGPT-generated
feedback with the formative feedback guidelines articulated
by Shute. Figure 3 presents the survey outcomes. The data
reveals that the ChatGPT-generated feedback largely aligns
with formative feedback guidelines, with over 70% of stu-
dents giving favorable evaluations of this alignment.

Among all the guidelines, ”Give unbiased, objective feed-
back, written or via computer.” received the highest level of
agreement. Overall, 98% (100/102) of the responses men-
tioned that the feedback meet this criterion, indicating that
most of the students perceive ChatGPT-generated feedback
as unbiased and objective. In addition, 95% (97/102) of the
responses affirmed the guideline ”Present elaborated feed-
back in manageable units.” This high rate of agreement can
be attributed to our approach of limiting feedback to fewer
than 150 words and selectively presenting only a handful of
failed test cases, ensuring that the feedback remains succinct
and avoiding redundancy for similar test case failures.

Meanwhile, for the guideline ”Be specific and clear with
feedback message”, it is notable that although 71% (73/102)
of the responses viewed the feedback as either somewhat
clear or clear enough, only 40% (41/102) of the responses
perceived the feedback as clear enough. This discrepancy
underscores the potential for further refinements to enhance
the specificity and clarity of ChatGPT-generated feedback.
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Figure 4: Students’ Preference of Feedback

Figure 5: Students’ Reasons for Their Preferred Feedback

Impacts of Code Inclusion on Students’ Preference
The survey results indicate that in total 72.5% (74/102)
of the responses preferred the feedback generated with the
prompt that contains students’ code (feedback 1) over the
feedback without students’ code (feedback 2). This prefer-
ence is also consistent in each lab (ranging between 70.37%
and 75.00%), underscoring the significance of including stu-
dents’ code in the prompt (Figure 4). Intuitively, ChatGPT,
when provided with students’ code, can offer more specific
suggestions on students’ code issues and thus benefit stu-
dents more. Through a thematic analysis of the 102 survey
responses to the open-ended question asking students why
they preferred either feedback 1 or feedback 2, we found
that the top three reasons that students preferred feedback
1 were its specificity (33/74), clarity (15/74) and corrective
suggestions (9/74), which accounts for 74% of the survey
responses for feedback 1 (Figure 5). This observation indi-
cates that including code in the prompt enhances ChatGPT’s
ability to identify errors and provide actionable solutions.
It also contributes to the readability and clarity of the feed-
back, possibly because the code snippets make the feedback
more concrete than the ones without including the code.

To illustrate this, we analyzed the entirety of feedback
given to students and presented a representative example in
Figure 6, showing the two pieces of feedback provided to a
student for the lab 12 assignment. Both pieces of feedback
are well-structured, beginning with praising the student for
completing the homework and ending by encouraging the
student to keep up the good work.

Nonetheless, feedback 1 excels in its specificity, address-
ing multiple issues within the student’s code, rather than
proffering vague critiques. For example, feedback 1 specif-
ically mentions the misuse of the ”==” operator for string
comparison, whereas feedback 2 mentions a more general
issue of the palindrome logic being incorrect without pin-

Feedback Generated from Prompt Including Students? Code
Great job on completing your Java homework! I have reviewed your code and would 
like to provide you with some feedback to help you improve. In your `isPalindrome` 
method, you correctly check if the input array is null and throw an 
`IllegalArgumentException`. However, you also need to check if any element in the 
array is null and throw the same exception. This will ensure that the method handles 
all possible invalid inputs. In addition, I noticed that you are comparing strings using 
the `==` operator instead of the `equals` method. Remember that the `==` operator 
compares object references, not the actual content of the strings. To compare strings 
for equality, you should use the `equals` method. In your `equals2D` method, you 
correctly check if the input arrays are null and throw an `IllegalArgumentException`. 
However, you also need to check if the dimensions of the arrays are equal before 
comparing the elements. This will prevent an `ArrayIndexOutOfBoundsException` 
from occurring. Overall, your code is well-structured and easy to read. Keep up the 
good work! If you have any questions or need further clarification, feel free to ask.

Feedback Generated from Prompt Excluding Students? Code
Great job on completing Lab 12! I have reviewed your code and test cases, and I 
have some feedback to help you improve. In your `isPalindrome` method, it seems 
that you are not correctly identifying whether the array is a palindrome or not. The 
expected output for the given test case is ?False?, but your code is returning ?true?. I 
recommend reviewing your logic for checking palindromes and making sure you are 
correctly identifying them. In your `equals2D` method, it appears that you are 
encountering an `ArrayIndexOutOfBoundsException`. This error occurs when you are 
trying to access an index that is outside the bounds of the array. I suggest checking 
your array indices and making sure they are within the correct range. Additionally, 
ensure that you are comparing the elements of the arrays correctly to determine if 
they are equal. Remember to carefully review your code and test cases to catch any 
errors before submitting your work. Keep up the good work and don't hesitate to reach 
out if you have any questions or need further assistance.

Figure 6: Example of ChatGPT-generated Feedback

Figure 7: Students’ Ideas for Improving ChatGPT-generated Feed-
back

pointing the core problem. Furthermore, feedback 1 also
provides more explanations. This includes explaining the
difference between ”==” and ”equals” in comparing strings,
and why checking array dimensions can prevent the error of
”ArrayIndexOutOfBoundsException”. In contrast, feedback
2 primarily identifies errors without elucidating their under-
lying causes or suggesting future improvement opportuni-
ties. Consequently, feedback 1, with its more detailed and
instructive nature, is favored by students.

While feedback 1 was the clear favorite among the ma-
jority, a significant 20% of participants preferred feedback
2. The primary reasons they cited for this preference were
the feedback’s specificity (17/28) and its motivational sup-
port (4/28). This indicates that while code snippets might
make error identification easier, they may also skew the
feedback too much toward fault-finding, thus reducing the
motivational support provided. Despite the advantages that
feedback 2 offers in terms of motivational support, it’s still
recommended to include code snippets in the prompt for
ChatGPT-generated feedback since over 70% of the survey
responses prefer feedback 1 to feedback 2.
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Improvements Suggested by Students
In the survey, we included an open-ended question, in which
one student could express more than one opinion, to col-
lect students’ perspectives on potential improvements to the
ChatGPT-generated feedback. A thematic analysis was per-
formed on these responses to identify patterns in students’
responses. One major finding from the thematic analysis is
that students appreciate the specificity, clarity, and correc-
tive nature of the existing ChatGPT feedback generated from
prompts that include students’ code, as indicated in Figure 5.
However, there is a clear further demand in these areas.
Students expressed a particular interest in receiving clearer
feedback (8/117), more corrective (8/117), and more specific
to their code (19/117) and associated failed test cases (6/117)
than the existing ChatGPT-generated feedback. They sought
detailed explanations on which test cases their code failed,
reasons for the failure, insights into the root causes of issues
in their code, and how to fix those issues.

Furthermore, students advocated for the incorporation of
example code for correct solutions or similar bugs (8/117).
As a student suggested, ”The AI-generated feedback could
include other examples in other programs of bugs similar
to mine and why they don’t function properly”. Students be-
lieved this would enhance their understanding of code issues
and serve as a valuable guide to arrive at the correct solution.
In addition, there is a call for receiving external resources
(4/117) and additional help beyond the assignment scope
(16/117) to supplement students’ studies. Interestingly, the
desire for such resources varied based on academic perfor-
mance, as suggested by Figure 7. Students with full scores
were more interested in feedback that extends beyond the
course syllabus, while those with partial scores were more
inclined to seek external learning materials and websites.

The analysis also reveals diverging preferences concern-
ing the tone of the feedback. Some students were more re-
ceptive to a positive and encouraging tone (3/117), arguing
that it enhances motivation. Conversely, others expressed a
preference for a more critical tone (5/117) that explicitly out-
lines mistakes and areas requiring improvement. This find-
ing indicates that a one-size-fits-all approach to feedback
tone may not be effective, suggesting the need for person-
alization to better meet individual preferences.

Discussion
Teaching Implications. In this study, one critical take-
away for educators in computer science is the positive per-
ception of ChatGPT-generated feedback by students, not-
ing its alignment with formative feedback guidelines. This
suggests that ChatGPT has considerable potential for gen-
erating practical and meaningful assignment feedback. Such
automated systems could offer multiple benefits, including
improving instructors’ efficiency and reducing the financial
overhead associated with hiring teaching assistants. Addi-
tionally, It’s worth mentioning that student preferences for
feedback tone varied. Some students favored a positive tone,
while others sought more critical assessments. Given these
differences, educators could explore personalization options
to better meet students’ diverse needs in real-world edu-

cational contexts. Techniques such as prompt engineering
could be utilized to tailor the feedback according to individ-
ual preferences.

Research Implications. To fully integrate LLMs into the
education sector, one challenge is to develop interfaces that
are readily accessible to educators. A study with European
teachers shows that while teachers have a favorable view of
AI in education, they seem to have low AI-related skills and
a basic level of digital skills (Polak, Schiavo, and Zanca-
naro 2022). Thus, one direction of future research is to de-
velop an intuitive software interface that facilitates the end-
to-end process from data collection to feedback distribution,
enabling educators to efficiently generate, evaluate, and op-
timize LLM-generated feedback. In addition, in our study,
students suggest that the LLM-generated feedback could be
improved to include code examples and be more specific and
clearer. Based on their suggestions, several opportunities ex-
ist for enhancing the quality of LLM-generated feedback.
Firstly, future research could explore the feasibility of incor-
porating correct code answers into prompts. This might al-
low LLMs to identify errors in students’ code efficiently by
comparing students’ code with correct code. Secondly, fu-
ture research can explore the feasibility of fine-tuning LLMs
on human-generated feedback and common student errors.
By doing so, LLMs might be able to provide more specific
and corrective feedback to students. Thirdly, in our study, the
LLM model lacks context regarding students’ prior actions
and their specific needs. Addressing these limitations by im-
proving the model’s understanding of students’ thought pro-
cesses might enhance the assistance it can provide.

Limitations. Our study is limited by a small sample of
four labs and 58 students, potentially impacting the find-
ings’ generalizability. Future research could expand the
participant pool for broader validation. Furthermore, our
study primarily examines student perspectives on ChatGPT-
generated feedback, but future studies could assess LLM-
generated feedback from various angles, including its ef-
fects on learning outcomes. Our study is also constrained
by the delayed release of grades due to course policy, limit-
ing timely access to feedback. Future research could exam-
ine settings where feedback is more immediately available,
as this may improve learning outcomes and present differ-
ent perspectives. Lastly, to evaluate the extent to which stu-
dents view ChatGPT-generated feedback as formative, we
solely look at the absolute percentage of students who pro-
vided favorable responses, using a subjective threshold of
70%. The lack of a baseline for comparison might limit the
conclusiveness of our assessment. However, our focus on the
student perspective adds an often overlooked but crucial di-
mension to the evaluation of automated educational feed-
back systems,offering a meaningful starting point for more
comprehensive studies.
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