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Abstract

Automatic short answer grading (ASAG) seeks to mitigate
the burden on teachers by leveraging computational meth-
ods to evaluate student-constructed text responses. Large
language models (LLMs) have recently gained prominence
across diverse applications, with educational contexts being
no exception. The sudden rise of ChatGPT has raised ex-
pectations that LLMs can handle numerous tasks, including
ASAG. This paper aims to shed some light on this expectation
by evaluating two LLM-based chatbots, namely ChatGPT
built on GPT-3.5 and GPT-4, on scoring short-question an-
swers under zero-shot and one-shot settings. Our data consists
of 2000 student answers in Finnish from ten undergraduate
courses. Multiple perspectives are taken into account during
this assessment, encompassing those of grading system devel-
opers, teachers, and students. On our dataset, GPT-4 achieves
a good QWK score (0.6+) in 44% of one-shot settings, clearly
outperforming GPT-3.5 at 21%. We observe a negative as-
sociation between student answer length and model perfor-
mance, as well as a correlation between a smaller standard
deviation among a set of predictions and lower performance.
We conclude that while GPT-4 exhibits signs of being a capa-
ble grader, additional research is essential before considering
its deployment as a reliable autograder.

Introduction
Short answer question is a common form of constructed-
response questions, which can test for deeper knowledge
understanding (Hancock 1994; Kuechler and Simkin 2010).
While widely used in educational settings, its drawbacks
include being time-consuming and requiring prerequisite
knowledge to evaluate. The task of automatic short answer
grading (ASAG) seeks to use computational methods to re-
duce human efforts in the evaluation of short answers. There
has been much research effort dedicated to it (Burrows,
Gurevych, and Stein 2015; Bonthu, Sree, and Prasad 2021;
Putnikovic and Jovanovic 2023).

Pre-trained language models have brought revolutionary
progress in natural language processing in recent years. As
the size of the pre-trained models gets larger (e.g. above tens
of billions of parameters), they gain the ability to perform
certain tasks where the performance of smaller models can-
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not exceed random baselines (Wei et al. 2022a). These capa-
bilities are called emerging abilities (Wei et al. 2022a) and
models of such sizes large language models (LLM) (Zhao
et al. 2023). LLMs had been steadily gaining popularity un-
til the release of ChatGPT 1, whose conversational ability
impresses the world and led to a surge of research work
on LLMs (Zhao et al. 2023). In terms of its application in
the educational domain, there has been various efforts to
investigate how LLMs can be used and how they may im-
pact the education system. These include the use of LLMs
in intelligent tutoring systems (Cao 2023), educational chat-
bots (Dan et al. 2023), teacher-response generation in edu-
cational dialogues (Tack et al. 2023), automated evaluation
of student text (Hackl et al. 2023), among others. Nonethe-
less, various challenges, including low technological readi-
ness, concerns about replicability and transparency, and in-
adequate privacy and beneficence considerations, currently
impede the widespread integration of LLMs in educational
settings (Yan et al. 2023). For the automated evaluation of
student text, there have been more research on the use of
LLMs in automated essay scoring, such as discourse co-
herence prediction (Naismith, Mulcaire, and Burstein 2023)
and second language learner essay evaluation (Yancey et al.
2023; Mizumoto and Eguchi 2023). The research on LLMs
advancing ASAG is in its early stages; Yoon (2023) uses
one-shot prompting for LLM to identify justification keys,
or key phrases in student-written short answers and com-
pare the extracted key phrases with those of reference an-
swers. They find that the GPT-3.5 model has an accuracy
of 90.3% in extracting these justification keys. The identi-
fied justification keys are compared with a reference scoring
rubric, which is utilized to compute the final score. Hackl
et al. (2023) evaluate the consistency of GPT-4 in text-rating
in terms of style and content, and find high self-consistency
(interclass correlation coefficient 0.94-0.99) in GPT-4. Ma-
telsky et al. (2023) build a tool to automatically give feed-
back to answers to open-ended questions. Concurrent to our
research, Schneider et al. (2023) compare GPT-3.5 and hu-
mans in assessing bachelor-level German and master-level
English short answers, reporting observed issues with the
grading of the LLM.

This paper explores the suitability of LLMs for ASAG,

1https://openai.com/blog/chatgpt/
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testing ChatGPT based on GPT-3.5 and GPT-4 on 2K
Finnish short-question answers from ten bachelor-level
courses. The experimental design seeks to elucidate whether
direct use of ChatGPT in summative assessments by educa-
tors is feasible. We find that while one-shot GPT-4 achieves
QWK scores considered good on 44 of the 100 tested ques-
tions, further research is required before deploying an LLM-
based short-answer grader.

Related Work
The definition of short answers vary across studies (Bur-
rows, Gurevych, and Stein 2015; Haller et al. 2022). Typ-
ical criteria for short answers are their being under a certain
length and evaluation being mainly focused on the semantic
instead of the syntax of the answer. ASAG research, span-
ning three decades (Burrows, Gurevych, and Stein 2015),
remains aligned with current NLP developments, as many
ASAG systems now employ deep learning techniques (Bon-
thu, Sree, and Prasad 2021; Haller et al. 2022). Additionally,
recent advancements include generalizable ASAG, wherein
models are trained to generalize to target domains that do not
overlap with their training domain (Zeng et al. 2023). Aside
from systems primarily centered on score prediction, other
research directions encompass using machines as a second
grader (Kulkarni et al. 2014), resorting to human evaluators
for more challenging questions (Li et al. 2023), exploring
adversarial attacks on grading systems (Filighera, Steuer,
and Rensing 2020; Filighera et al. 2022), and generating ex-
plainable predictions (Tornqvist et al. 2023), among other
areas of investigation.

Data
We use “prompt” to refer to the input to LLM-based chat-
bots, “question” to refer to the exam task description initiat-
ing student responses, and “answer” to refer to the student
responses.

We possess a database dump of 24K student exam an-
swers from diverse disciplines at University of Turku. For
each answer, we have information about the exam question,
the course, the maximum possible score and the evaluated
score. No information about the grading criteria is avail-
able. To assess LLM performance in content-based scoring,
we focus on courses with short-answer questions to narrow
down the scope of this study, as longer content-based an-
swers caused the models to mostly exclusively predict high
grades in initial experiments. Our selection process aims for
ten courses, each with adequate questions and answers. We
prioritize questions with a greater number of answers, as-
suming that a set of answers with a balanced grade distribu-
tion is more likely to be selected from a larger answer pool.
When multiple questions meet this criterion, the number of
possible scores and the average answer length of these ques-
tions are taken into account during selection to observe the
impact of these factors on model performance.

The final selected answers are written in Finnish by na-
tive speakers taking bachelor-level courses. The answers are
typically a few sentences to a paragraph long. A summary
of ten selected courses from seven disciplines are shown in

Table 1. Ten questions are chosen for each course. In total,
377 student answers are selected to be the grading examples
shown to the model, and 2,000 student answers are selected
as the test data. Out of this 2,000 answers, 200 has a binary
word-based grading scale (‘pass’ or ‘failed’), while the rest
has varying numerical grading scales.

Experimental Settings
We aim to evaluate if direct use of OpenAI’s LLM-based
chat models for autograding is feasible for educators, and if
so, which types of questions and what disciplines may bene-
fit most. Due to the nature of our data, our experiments align
with summative assessments, prioritizing grade predictions
over feedback for students. Prompt design is limited by the
lack of scoring criteria, and we operate in a single-prompt,
single-response setting, assuming no series of interactions
with the models.

Initial Explorative Experiments
The initial experiments were carried out on the user inter-
face of OpenAI using the GPT-3.5 due to cost consider-
ations and the then lack of GPT-4 access. We tested sev-
eral types of questions with abundant numbers of answers in
our data to identify ideal candidates for further experiments.
These include questions from advanced writing courses ask-
ing for correction of language flaws and citations, content-
focused short answer questions, and questions asking for
longer content-focused essays. We found that, under our set-
ting, questions initiating content-focused short answers is
the most feasible type of question for automatic scoring by
LLM-based chatbots.

We next did prompt engineering on a small subset of data
from various disciplines. We aimed for easily understand-
able prompts for both human and machine, as well as effi-
cient token usage without compromising performance. We
optimized on the following aspects: (1) the presentation of
the questions, short answers, and possibly evaluated scores
to the model, (2) the language(s) of the prompt, and (3) the
number of examples and short answers for evaluation in a
prompt.

For data point presentation, we tried presenting the ques-
tions, answers, and scores as jsonl, in natural language with
or without detailed descriptions about the setup. We tried mi-
nor changes in the format such as use of delimiters and punc-
tuation. We also tested varying the presentation of the evalu-
ated scores, such as numeric scores or ordinal grading scale
(e.g. fail, satisfactory, good, excellent). Overall, no format
consistently outperformed others across the questions. For
further experiments, we use natural language descriptions as
it most resemble a conversation. We also use the original
grading scales of the individual questions, which varies by
course and question.

For the language of the prompt, although both models
are mainly English models, they have good command of
many other languages, including Finnish. Their tokenization
is, however, optimized for English. We tried two settings:
the code-switching setting, with English instructions and
Finnish data, and the monolingual setting, where everything
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Course Discipline Answer length (in character) Grading scale Number of definitions
C1 Biology ∼150 / ∼600 (0,1,1) / (0,5,1) 10
C2 Software Engineering ∼250 / ∼550 (0,1,0.5) / (0,3,0.5) 5
C3 Business & Administration ∼250 / ∼600 (0,1,1) 6
C4 Economics ∼300 (0,2,0.5) 10
C5 Educational Sciences ∼400 (0,1,0.25) 10
C6 Medicine ∼400 pass, fail 0
C7 Medicine ∼50 / ∼400 various 0
C8 Psychology ∼275 (0,2,1) 10
C9 Psychology ∼375 (0,2,1) 0
C10 Psychology ∼300 (0,2,1) 0

Table 1: Summary of the selected courses. For the grading scale, the numbers in the parenthesis are in the format of (lowest
score, highest score, interval). “Number of definitions” refers to how many of the selected questions out of ten questions ask
for term definitions.

Figure 1: The prompt template and its English translation. The angle brackets and the text within are replaced by the respective
items of the actual data point. The italicized text are only included in the one-shot settings.

was Finnish. We found that code-switching only marginally
damaged model performance. We choose the monolingual
setting for further experiments to emphasize a language-
specific context and facilitate clearer understanding for the
model.

The model performance suffers a visible toll when more
than one answer to be evaluated is included in a prompt.
The model is shown one example per possible score in the
one-shot settings. Performance under these settings are on
average better than that under zero-shot settings, and one-
shot setting performance is affected by the examples shown.
For further experiments, we test both one-shot and zero-shot
settings to investigate the effect examples have, and only in-
clude one answer for evaluation in each prompt.

Main Experiments
We choose 10 courses, each with 10 questions, and eval-
uate 20 answers per question. These 2000 examples are

evaluated on chatbots based on GPT-3.5 and GPT-4 un-
der zero-shot and one-shot settings. The design of the fi-
nal prompt template takes into account the results from the
initial experiments. The template and its English transla-
tion is shown in Figure 1. The models are called through
the official OpenAI API. The chat model versions used are
gpt-3.5-turbo-0301 and gpt-4-0613 respectively.
The temperature of the models are set to zero for determin-
istic output, so that the predictions adhere better to the given
template and that unwanted noises are otherwise reduced.

The sampling of answers for each question is stratified by
grade. For each question, an instance is randomly selected
for every possible grade. To avoid leaking gold standards to
the model, the example answers are sampled once and used
for all 20 prompts. They are excluded from the answers to
be graded.

Baselines Given the absence of comparable baselines in
the in-context learning setting, we calculate the majority

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23175



baselines for all metrics and settings by taking the most fre-
quently occurring grade in the gold standards for each ques-
tion. Training traditional machine-learning models is im-
practical due to the limited number of answers per question,
sometimes with only a couple of answers beyond the 20 test
answers and the few shown examples in the experiments.

Metrics
Our aim is to make the results as understandable to end
users as possible, and we acknowledge that the conventional
QWK metric can be abstract for end users. We therefore in-
clude two additional self-developed metrics based on accu-
racy and relative answer merits.

Quadratic-Weighted Kappa Quadratic-Weighted Kappa
(QWK) is a statistical measure used to assess inter-rater
agreement for categorical ratings. It is a standard ASAG
metric and takes into account both the actual agreement be-
tween raters and the potential for chance agreement. Due to
space limits, we refer readers to Section 4 of Bonthu, Sree,
and Prasad (2021) for the definition of QWK. QWK values
range between -1 and 1, where 0 means random agreement.
Thus, the QWK of a majority baseline is 0. Expected QWK
value rises as the number of categories increases (Brenner
and Kliebsch 1996). If the grading scale includes decimal
numbers, the score ranges are converted into categorical rat-
ings. That is, all of the scores are multiplied by the smaller
integer factor which converts all the scores to integers. Scal-
ing scores uniformly does not affect the QWK value. For
binary grading scale, pass is considered 1 and failed 0.

Tolerance-Adjusted Accuracy While QWK calculates
the inter-rater agreement, for end users it can be more inter-
pretable and useful to know the percentage of answers ac-
curately scored. In addition, sometimes predictions within a
certain threshold from the gold standards are acceptable. We
calculate the percentage of accurately scored answers within
a set tolerance, referred to as Tolerance-Adjusted Accuracy
(TAA) thereafter. The tolerance is not meaningful for binary
grading scale, so it is always set to 0.

For a set S of n answers {s1, s2, ..., sn}, let their gold
standard scores be G = {g1, g2, ..., gn} and their predicted
scores be P = {p1, p2, ..., pn}. The tolerance τ is deter-
mined by the user unless the grading scale is binary, in which
case τ = 0. The correctness of a prediction is determined by

Ci =

{
1 if |gi − pi| ≤ τ

0 otherwise
. (1)

TAA is then computed by

TAA =

∑n
i=1 Ci

n
× 100%, (2)

TAA with zero tolerance is equivalent to standard accu-
racy. An issue with TAA is that the gain in TAA as tolerance
increases is unequal for grading scales of distinct granular-
ity. TAA of questions with fewer number of possible scores
increases more drastically as tolerance is loosened, but the
increase in TAA does not reflect the improvement of the au-
tomatic scoring. Rather, it is a result of the low granularity of

the scoring scale, and accepting such TAA in actual uses re-
flects the given level of score differentiation being sufficient
for purpose. The tolerance, in turn, represents the allowable
margin of error in scoring considered acceptable.

Relative Merit Consensus Relative Merit Consensus
(RMC) recognizes that evaluators might hold divergent
score margins. However, a consensus often emerges when
assessing the relative merit of two answers. This metric con-
siders student contentment, assuming students would dis-
pute a lower-quality response receiving a higher score than
theirs or scoring on par with theirs. RMC is calculated as the
percentage of pairs of assigned scores that students would
find satisfactory. Parity is assumed for equal-score answers.
This perspective empowers teachers to establish score cut-
offs based on observed quality of answers.

For a set A of n answers {a1, a2, ..., an} to be evaluated,
let its gold standard scores SG be {sg1, sg2, ..., sgn} and pre-
dicted scores SP be {sp1, sp2, ..., spn}. For every possible
pair of answers (ai, aj) in A where i ̸= j, it is possible that
sgi = sgj or spi = spj , but there must exist at least two
distinct values within both sets SG and SP , i.e. neither SG

nor SP is uniformly scored. The correctness of the pair of
predicted scores (spi, spj) is defined by the binary function:

S(si, sj)


1 if sgi > sgj and spi > spj
1 if sgi < sgj and spi < spj
1 if sgi = sgj and spi = spj
0 otherwise

. (3)

RMC is defined as the fraction of correctly scored pairs out
of all possible pairs:

RMC =

∑i=1
n

∑j=i+1
n S(si, sj)
n(n−1)

2

. (4)

While students arguably should not contest a lower-
quality answer scoring on par with theirs, because the dif-
ference in quality may not be big enough to receive distinct
teacher-assigned scores, we calculate RMC by considering
that students exclusively accept preserved relative scores.
This approach is driven by the fact that the majority of ques-
tions in the dataset offer a very limited range of possible
scores, which often results in RMC approaching 1 when a
less elaborated answer scoring in parity is accepted. Similar
to TAA, the RMC value is notably influenced by the number
of potential scores an answer can attain.

Results
Instruction Compliance
The models are instructed to follow a specified output for-
mat (Figure 1), but their compliance to this format varies un-
der different settings. Table 2 shows the number of outputs
that cannot be parsed successfully without further process-
ing. Despite this format issue, all of the outputs contain pre-
dicted grades that are within the respective sets of possible
grades. GPT-3.5 occasionally adds explanations, especially
to answers with the binary word-based grading scale. Ac-
cording to the ground truth, 59 out of 200 answers were as-
signed the grade ‘failed’ by teachers. In the zero-shot setting,
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Figure 2: Distribution of normalized grades in gold standards and experimental conditions. The grades have been normalized
based on the maximum achievable grade for each question. To enhance readability and account for infrequent occurrences,
these grades have been rounded to the nearest 0.25.

Setting Incorrect output formats Total
(no. of cases)

GPT-3.5 Has explanations (16) 16
zero-shot
GPT-3.5 Missing ‘Arvosana: ’ (2) 19
one-shot Has explanations (17)
GPT-4 Includes the answer (14) 659
zero-shot Includes the triple quotes (645)
GPT-4 None 0
one-shot

Table 2: Number of LLM outputs that do not conform to
the given output format under each setting. There are 2000
outputs for each setting.

GPT-3.5 only predicted 18 as ‘failed’, 11 of which have ex-
planations added to the predictions. In the one-shot setting,
53 answers were assigned ‘failed’, and seven have explana-
tions. Many of the answers receiving explanations are as-
signed low scores by the models. GPT-4 wraps the answers
within triple quotation marks, akin to the format shown in
Figure 1, in 32% of its outputs in the zero-shot setting. In
the one-shot setting, this confusion does not seem to occur,
perhaps due to the use of delimiters in the examples.

Quantitative Performance
The models tend to assign higher scores than human evalua-
tors. The distributions of normalized grades, or the evaluated
scores divided by the highest possible scores, in gold stan-
dards and across the experimental conditions are depicted in
Figure 2. Across all scenarios, the models are more lenient
than human evaluators for questions with binary word-based
grading scales. This pattern also holds for questions featur-
ing numerical grading scales, except for the GPT-3.5 one-

shot setting. Both models are stricter in the one-shot settings
compared with the zero-shot setting, but still assign fewer
failing grades to answers than human graders.

Unsurprisingly, one-shot GPT-4 attains the best perfor-
mance. We refer to the curve that depicts the percentage of
questions with equal or better performance on a given met-
ric as the survival curve of the metric. Across all metrics
(Figures 3-6), zero-shot GPT-3.5 performs worse than zero-
shot GPT-4, which nearly matches one-shot GPT-3.5 in per-
formance but is clearly outperformed by one-shot GPT-4.
In a recent survey on ASAG systems (Haller et al. 2022),
QWK scores were predominantly reported in the range of
0.6 to 0.8 across various datasets. In a related task, auto-
mated essay scoring, reported QWK scores ranged between
0.68 and 0.83, with a few outliers at 0.53 and 0.90 (Ramesh
and Sanampudi 2022). On our dataset containing 100 ques-
tions, GPT-3.5 achieves QWK values of at least 0.6 in both
zero-shot and one-shot settings for 8 and 21 questions, re-
spectively. In the case of GPT-4, these numbers rise to 19
and 44, with 28 of these questions achieving QWK values of
at least 0.7, and 13 reaching at least 0.8. No patterns emerge
with regard to the discipline or type of the questions.

With a one-shot GPT-4 model, TAA with zero tolerance
yields suboptimal results on our dataset, achieving an accu-
racy of at least 0.8 only 17% of the time. Nevertheless, the
model performs well when assessing questions with a binary
grading scale. Out of 25 such questions in the dataset, the
model consistently achieves an accuracy of at least 0.55 for
all questions and at least 0.75 for 21 questions. In Figure 5,
the TAA survival curve with a tolerance setting of 1 on their
own scale is presented. This curve indicates that, assuming
similar data distribution to our dataset, educators providing
one example per possible grade to GPT-4 can anticipate that,
more than 60% of the answers will receive scores within a
one-point difference of their actual score 95% of the time.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23177



Figure 3: Quadratic Weighted Kappa across the settings:
Percentage of courses meeting or exceeding threshold val-
ues.

Figure 4: Tolerance-Adjusted Accuracy with tolerance=0
across the settings: Percentage of courses meeting or ex-
ceeding threshold values.

For those seeking a minimum accuracy threshold of 0.8, this
level is attained 74% of the time, while a question-wise ac-
curacy of at least 0.9 is realized 54% of the time.

The RMC survival curve is shown in Figure 6. The dras-
tic decrease for the majority baseline occurring at approxi-
mately 0.3 and 0.45 can be primarily attributed to questions
with three and two possible scores, of which there are 35
and 25 in our dataset, respectively. Assuming a threshold of
0.6 for acceptable correct relative scoring (meaning that at
least 60% of the time two randomly selected answers will
have a satisfactory relative scoring for students), one-shot
GPT-4 meets this criterion in 59 out of 100 questions. When
the threshold is increased to 0.8, 13 questions still meet the
criteria, and 5 questions achieve an RMC of at least 0.9.

Top-Performing and Challenging Questions
Zero-shot GPT-3.5 tends to assign one single high score to
all the answers when the answer lengths are too long. In the
QWK survival curve (Figure 3), zero-shot GPT-3.5 takes
a sharp decline at QWK=0. This is due to the model as-

Figure 5: Tolerance-Adjusted Accuracy with tolerance=1
across the settings: Percentage of courses meeting or ex-
ceeding threshold values.

Figure 6: Relative Merit Consensus across the settings: Per-
centage of courses meeting or exceeding threshold values.

signing a single score for 14 questions, with an additional
question receiving predictions that are statistically akin to
random values. This remaining question has an average an-
swer length of 271 characters. The questions receiving uni-
form score predictions have an average answer length of 425
characters compared with the dataset average of 336. With
the sole exception of one question with answers receiving
a score of 1.5 out of 2, GPT-3.5 assigns full scores to all
the answers for the remaining 13 questions. Other settings
exhibit fewer questions with QWK=0; zero-shot GPT-4 has
seven, one-shot GPT-3.5 has three, and one-shot GPT-4 has
two such questions.

Figure 7 illustrates a weak, inverse correlation between
model performance in terms of QWK and the length of an-
swers. Table 3 shows the five top-performing and most chal-
lenging questions across all conditions and their average an-
swer lengths. While this limited sample of five questions per
category may not fully illustrate the trend, shorter-answer
questions generally receive more accurate scores from mod-
els, irrespective of whether they request definitions. The top
10 scoring questions average 307-character answers, com-
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Top-performing questions
320 Ramsey rule
500 Non-covalent interactions
291 Proximal development zone
283 What are mirror neurons and to what cognitive

phenomena are they linked?
579 What do the terms ’cohesion and ‘coupling’

mean? How are these concepts utilized in
achieving software modularity (i.e., software
partitioning)?
Most challenging questions

281 How and when did Johan Haartman influence the
history of medicine in Finland?

190 Hierarchical organization
527 In the planning phase, compromises are often

necessary. Mention two objectives and provide an
example of a compromise between them.

491 The development of antibiotics in the first
half of the 20th century.

274 The relative stability of personality traits.

Table 3: The top-performing and most challenging questions
for the models and their average answer length in charac-
ter. All questions are ranked by QWK and selected based on
their average ranking across all conditions.

Figure 7: QWK values obtained by one-shot GPT-4 and the
average length of answers in characters.

pared to 352-character answers for the bottom 10. From Ta-
ble 3, it can also be observed that the questions exhibiting
superior performance are characterized by a narrower scope,
while the challenging ones encompass a broader range. This
observation prompts further investigation to discern whether
the broader-ranging questions elicit longer answers or if the
content of the responses is inherently more challenging to
grade.

Error Analysis
When examining questions with extreme QWK values, a
notable trend emerges: the standard deviation of predicted

scores tends to be larger for questions with higher QWK val-
ues. One-shot GPT-4 yields a Pearson correlation coefficient
of 0.39 between the QWK values and the standard deviation
of predicted scores, and this relationship is statistically sig-
nificant with a p-value of 6.60e-05.

The few number of incorrect predictions with explana-
tions offer an angle for error analysis. The following answer
to the question “Who was Ambroise Paré and when did he
have an impact?” is graded failed by zero-shot GPT-3.5:

Ambroise Paré had an impact in the 17th century and
he noticed that rose oil and turpentine worked bet-
ter for gunshot wounds than pouring boiling oil into
them. Boiling oil was the established method for treat-
ing gunshot wounds at that time and had a high mor-
tality rate.

The reason for this grade is, as explained in the output, that
Ambroise Paré had an impact in the 16th century, not the
17th century. In reality, Ambroise Paré lived from 1510 to
1590 and is considered the Father of Modern Surgery. Inter-
estingly, the quoted answer is graded as a pass in other set-
tings, as well as by the human evaluator. This could be due
to the examiner putting focus on Ambroise Paré’s achieve-
ments, along with the recognition that individuals can im-
pact their field posthumously. This is also reflected in the
human-assigned grades, as exemplified by the ‘pass’ exam-
ple provided in the one-shot setting, which answered the
18th century.

Discussions
The overall results suggest that, even the best performing
one-shot GPT-4 cannot be directly deployed for ASAG. De-
spite this, these LLM models are worth further exploration.
This result aligns with concurrent research (Schneider et al.
2023). Regarding student satisfaction, research has indicated
that, given an autograder of approximately 90% accuracy,
students tend to overestimate the likelihood of an autograder
marking a correct answer as wrong (Hsu et al. 2021). This
overestimation is associated with student dissatisfaction and
perceptions of unfairness. Hsu et al. (2021) offer several
explanations for this overestimation: (1) algorithm aversion
(Dietvorst, Simmons, and Massey 2015), where individuals
tend to distrust algorithms after seeing them err, even when
they surpass human performance, (2) students’ perceptions
being influenced by complaints from their peers, and (3)
some students not being able to distinguish between true and
false negatives. With the best-performing setting in this ex-
periment, only 10 questions achieve a TAA with zero toler-
ance value of at least 0.9. This result falls short of making
the models immediately usable. This aligns with the results
analyzed using RMC, where only five questions achieve an
RMC of at least 0.9. This means that in most of the ques-
tions, more than 10% of two randomly selected answers will
have a relative ranking that is unsatisfactory to students.

This exploratory study does have certain limitations. The
three metrics used are sensitive to the number of possi-
ble scores, and the questions have varying grading scales.
There are no results available from a few-shot baseline using
smaller language models like BERT for comparison. The ab-
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sence of grading criteria and reference answer in the dataset
constrains the content of the prompt. Due to the data collec-
tion method, it is possible that answers to the same question
were graded by different evaluators. The extraction of data
from its original educational context also poses challenges
in assessing whether the model’s accuracy truly reflects the
accuracy of measuring underlying learning outcomes. The
experiments are not conducted on an established English
dataset. The dataset being non-English may have a nega-
tive impact on the reported results, as ChatGPT has been
shown to perform less optimally on non-English data (Lai
et al. 2023). On our dataset, one token from a dedicated tok-
enizer for Finnish2 corresponds to around 2.11 tokens when
processed by cl100k base, the tokenizer of GPT-3.5 and
GPT-4.

Numerous research directions await exploration in LLM-
based ASAG. In terms of prompt engineering, aside from
refining wording, the effects of increasing shots and integrat-
ing grading criteria merit investigation. Considering chain-
of-thought prompting (Wei et al. 2022b) to elicit explana-
tions before grade prediction, in contrast to the approach
adopted in this study, also offers potential advancement in
this task. The predicted grades have various applications.
The model can complement human grading by acting as a
second grader (Kulkarni et al. 2014). Based on the observa-
tion that the standard deviation of predictions for difficult-
to-auto-grade questions tends to be low, human intervention
can be considered when it is detected among a set of an-
swers. Apart from direct grade prediction, other angles of
using LLM include ranking or comparison of answers, as
well as keyword extraction (Yoon 2023). Concerning the im-
plementation of such systems, it is conceivable that certain
students might try to exploit the system if they are aware of
the presence of an automatic grading agent. Consequently,
preventing cheating becomes a crucial area of research.

Conclusions
This study examined the feasibility of directly using LLM-
based chatbots for the assessment of short answers. While
immediate deployment presents certain challenges, the per-
formance exhibited by one-shot GPT-4 justifies a more in-
depth exploration across multiple dimensions. These av-
enues encompass investigating the impact of employing ad-
ditional shots, enhancing question clarity, and providing
the model with comprehensive information, including grad-
ing criteria and reference answers. Lastly, investing more
computational resources to include explanation generation
alongside grading and exploring alternative scoring meth-
ods are all examples of eligible avenues for future research
in this field.
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