The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

A Generalizable Theory-Driven Agent-Based Framework to Study
Conflict-Induced Forced Migration

Zakaria Mehrab', Logan Stundal', Srinivasan Venkatramanan', Samarth Swarup', Bryan Lewis',
Henning Mortveit', Christopher Barrett', Abhishek Pandey?, Chad Wells 2, Alison Galvani?,
Burton Singer’, Seyed Moghadas*, David Leblang', Rita Colwell’, Madhav Marathe'
'University of Virginia
2Yale School of Public Health
3University of Florida
“York University
SUniversity of Maryland

Abstract

Large-scale population displacements arising from conflict-
induced forced migration generate uncertainty and intro-
duce several policy challenges. Addressing these concerns
requires an interdisciplinary approach that integrates knowl-
edge from both computational modeling and social sciences.
We propose a generalized computational agent-based mod-
eling framework grounded by Theory of Planned Behavior
to model conflict-induced migration outflows within Ukraine
during the start of that conflict in 2022. Existing migration
modeling frameworks that attempt to address policy impli-
cations primarily focus on destination while leaving absent
a generalized computational framework grounded by social
theory focused on the conflict-induced region. We propose
an agent-based framework utilizing a spatiotemporal grav-
ity model and a Bi-threshold model over a Graph Dynami-
cal System to update migration status of agents in conflict-
induced regions at fine temporal and spatial granularity. This
approach significantly outperforms previous work when ex-
amining the case of Russian invasion in Ukraine. Policy im-
plications of the proposed framework are demonstrated by
modeling the migration behavior of Ukrainian civilians at-
tempting to flee from regions encircled by Russian forces. We
also showcase the generalizability of the model by simulating
a past conflict in Burundi, an alternative conflict setting. Re-
sults demonstrate the utility of the framework for assessing
conflict-induced migration in varied settings as well as iden-
tifying vulnerable civilian populations.

Introduction

The large-scale forced migration caused by the 2022 Rus-
sian invasion of Ukraine led to the largest refugee flows in
Europe since World War II. Around 8.3 million Ukrainians
took refuge in different parts of Europe while another 5.4
million remained in Ukraine as internally displaced persons
(IDP), as of May 2023. This population displacement has
caused almost 10.2 million Ukrainians to need humanitarian
assistance (UNOCHA 2023). Understanding the dynamics
of migration is essential for policymakers to plan resource
distribution and other logistical decisions to support these
people in need of assistance. Reactive approaches without
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adequate information have failed in the past to meet the re-
quirements arising from refugee surges (Suhrke et al. 2000).
Among different dimensions of migration, information on
the time, location of migration, and demographics of the mi-
grants are of interest to policymakers (Clemens et al. 2018).
Due to the sudden nature of forced migration, the availabil-
ity of such information is not trivial (Adhikari 2013). Thus, a
computational framework to explain these dynamics of mi-
gration would immensely help inform policymaking.

Despite several works in computational modeling that
have tried to understand these dynamics from the perspec-
tive of destination countries (Suleimenova et al. 2017; Davis,
Bhattachan et al. 2018; Asgary, Solis et al. 2016), we ob-
serve few works attempting to study these questions from the
perspective of the origin country. And, if we take a step back,
we realize that prior to understanding the choice of destina-
tion, we need to understand which individuals among the
population in the affected region undergo forced migration.
Moreover, these studies are country-specific (Asgary, Solis
et al. 2016; Davis, Bhattachan et al. 2018; Searle and van
Vuuren 2021; Smith 2014). To the best of our knowledge,
there is no existing work that attempts to explain conflict-
induced migration outflows from a social-theoretic stand-
point. A proper approach to this problem requires interdisci-
plinary collaboration between social scientists and compu-
tational scientists (Frydenlund and De Kock 2020).

In order to bridge the gap between social science and
computational science in the context of conflict-induced
forced migration, we must ponder carefully on the choice
of the computational technique. One option is to choose tra-
ditional models of migration like the Gravity Model (Zipf
1946) or the Radiation Model (Simini et al. 2012). How-
ever, these are more suitable for voluntary migration, which
is carried out over a longer period and less sudden, contrary
to forced migration. Also, the functional forms of such mod-
els do not allow for straightforwardly accommodating con-
flict events. Another alternative is to use a Machine Learn-
ing (ML) approach, which has shown promise in studying
migration destinations (Robinson and Dilkina 2018). How-
ever, ML techniques are inadequate in modeling the different
decision processes of heterogeneous groups of people (fair-
ness), and using such a technique makes it difficult to un-
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derstand how different components interact with each other
(explainability). Also, social theory comprises a set of rules
that are difficult to model by these techniques.

Due to these issues, we approach this problem using the
agent-based modeling (ABM) technique, which implicitly
makes several Al methodologies and topical areas applica-
ble in our context. ABM is well-suited for studying the prob-
lems where decisions and interactions of individuals result
in an aggregated phenomenon (Asgary, Solis et al. 2016; Bi-
jak, Higham et al. 2020). Thus, ABM can be used to observe
the dynamics of emergent social phenomena in the advent
of shock events (Social Simulation). Generally, in an ABM
framework, each agent carries out some action depending
on their own characteristics and their interaction with the
environment or other agents following a set of simple rules
(Explainable AI). ABM makes it flexible to incorporate var-
ious data as environments or agents. It also allows for dif-
ferent rules for different types of agents, ensuring fairness
and equity (Fairness). Moreover, the rules of the agents can
be incorporated from an appropriate social theory (Social
Science Guided AI), making ABM the choice of a com-
putational model that can be incorporated with social the-
ory most seamlessly. Overall, in our context, ABM is like a
planning algorithm in the form of a set of rules that help the
agents reason about their actions toward the specific goal of
migration (Goal Directed Behavior).

This study attempts to understand the following research
questions. First, how to formally and computationally for-
mulate a social theory within an ABM framework in the con-
text of conflict-induced forced migration. Second, how does
the model perform compared to existing models, and how
generalizable it is for other countries. Third, how this model
can be used in other policy-relevant use cases. In order to
answer the first question, we employ the Theory of Planned
Behavior (Ajzen 1991) to design a hierarchical agent-based
framework that uses a spatiotemporal gravity model to cap-
ture the interaction between agents and events and a bi-
threshold model atop a graph dynamical system (GDS) to
capture the interaction between agents. To answer our sec-
ond question, we compare the performance of our model
with the model proposed by (Pandey et al. 2023) in captur-
ing different dimensions of forced migration in Ukraine. We
discover that our model outperforms the existing model in
capturing the daily trend of refugees as well as generating
other summary statistics. We also show that our model can
easily be transferred to study other similar forced migration
events, using the Burundi conflict as an example. Finally,
we showcase how the model can be used to study entrapped
population by imposing “entrapment” conditions for certain
regions to limit migration for a period of time. After relax-
ing this restraint, we compute subsequent refugee surges to
demonstrate the model’s capability to describe previously
trapped populations fleeing during windows of opportunity.

Related Work
Voluntary migration: Early models for voluntary migra-
tion include the Gravity Model (Zipf 1946) and Radiation
Model (Simini et al. 2012). The Radiation model has re-
cently been extended to incorporate pull factors other than
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population (Alis et al. 2021). Used primarily for voluntary
migration, these models assume that the outflow of mi-
gration from the country of origin is already known and
uses that as input to understand the destinations of intend-
ing migrants. Recently, AI communities have grown inter-
ested in using Al techniques to study migration. Yang et al.
(2018) used regression techniques to distinguish migrants
from locals in Shanghai using their call log records. Robin-
son and Dilkina (2018) showed that ML models can outper-
form traditional models in predicting migration destinations
at county and country levels. However, they mostly focus on
destinations and the data required to train such models are
infeasible to obtain during forced migration.
Forced migration: Prior forced migration research primar-
ily focuses on natural disaster-induced migration. Hassani-
Mahmooei and Parris (2012) studied impending migration in
Bangladesh due to climate change and concluded that in 40
years, there will be large population shift towards the eastern
regions. Davis, Bhattachan et al. (2018) proposed a univer-
sal model for studying migration flows due to sea level rise
and, using Bangladesh as a case study, estimated resulting
end-of-century displacement and resource needs for the dis-
placed. Temporal scale of these studies is quite long-term
compared to forced migration as a result of forced events.
Several works have also tried to model conflict-induced
forced migration. Searle and van Vuuren (2021) proposed a
framework for modeling forced migration as a result of con-
flict events and used push and pull theory to determine the
destination of migrants from Syria under that framework.
Suleimenova et al. (2017) developed FLEE, a generalized
simulation model that can be used to estimate the destina-
tion of migrants from a conflict-induced region. However,
their work assumes that the people who want to migrate are
already known and their model has to use this information as
input. The work by Pandey et al. (2023) is perhaps the clos-
est to us. They proposed an exponential decay model where
they considered locations as agents and estimated the num-
ber of migrants from each location considering surrounding
events. However, their method is neither backed by any so-
cial theory nor does it take interaction between agents into
account, something we address in our study.

Methods
Underlying Social Theory

According to the Theory of Planned Behavior, the decision
in response to an event is built upon three phases: a) Atti-
tude, b) Perceived behavior control (PBC) and c) Subjective
norm. Attitude can be correlated to the impact associated
with an event observed by an individual (Kniveton, Smith,
and Black 2012). PBC accounts for the fact that the same
observed impact can be perceived differently across individ-
uals, depending on their demographic attributes or experi-
ences. Subjective Norm is correlated with the social accept-
ability of a particular action.

Before accommodating these constructs computationally,
we want to paint a picture of how an agent in a conflict-
induced region may, through these constructs, decide to mi-
grate or not. First, the conflict events surrounding an agent
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may instill a sense of risk. Second, agents in the same house-
holds communicate among themselves to form an initial mi-
gration intention. Finally, households in the same neighbor-
hood communicate with each other to take the final decision.
The first step follows the attitude and pbc phase and subjec-
tive norm comes into play in the next two steps.

Input and Features

Holistically, the input space encompasses a set of con-
flict events C' = {cq1,¢2,..,¢j,..}, a set of person agents
A = {a1,as,..,a;,..} and a set of household agents H =
{h1, ha,...h, ...}. Each event ¢; is associated with the fol-
lowing features: its location L, time of the event 77, and its
severity .S;. We also assume that the following features are
known about a person agent. These features are the location
of an agent a; at time ¢, xﬁ, and the risk perception, (3;; which
is an indicator of their level of non-tolerance to the overall
risk observed from events. We are also given the mapping
function n : A — H, which maps each person agent a; to a
household agent h;. We assume that migration decision oc-
curs at the household agent level and once a household agent
migrates, all associated person agents migrate as well.

Problem Modeling and Framework

We model our problem by dividing it into two phases. The
first phase is called the Intention Phase where an initial in-
tention to migrate is formed based on interaction with events
and limited interaction with agents within household and the
last phase is where households communicate with each other
to make the final decision of migration is called the Decision
Phase. Each phase corresponds to one timestep. Agents up-
date their states after every decision phase, indicating that
the system evolves at every even timestep.

Intention Phase: The problem for the intention phase can
be modeled as follows: At time ¢, given the remaining agents
A(t), the conflict events C, the agent-household mapping 7;
find the intention to migrate for each household h}, € H(t),
where H(t) = {n(a;) : a; € A(t)}, find the migration
intention of the households at timestep ¢ 4+ 1. The intention
phase is further subdivided into two sub-phases:
Risk-perception sub-phase: At time ¢, given the remaining
agents A(t) and the conflict events C, find the perceived risk
of each agent a! € A(t). To functionally formulate the per-
ceived risk of an agent as a result of conflict events, we seek
help from literature (Weidmann and Ziircher 2013). First, we
calculate the perceived risk pr! based on a modified version
of their proposed spatiotemporal gravity model to take into
account the severity of the event as well as an agent’s own
perception of the event.

Bi 3 As(af,

c; €C

prt 7 Lj)(sAT(t, E)TSJ' lij <=t

€ otherwise

Here, 5 and J7 are functions to calculate the distance
and time passed between the location of the agent and the
event, respectively. The function also utilizes a spatial-decay
parameter (§) and a temporal-decay parameter (7). Both of
these parameters should be negative; ensuring that events
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less recent and further away should have less impact on
the observed risk. Furthermore, since future events are not
known beforehand, we do not consider them in the calcula-
tion of the observed risk. Since the same observed risk can
be perceived differently by different agents according to the
PBC construct of the theory of planned behavior, we scale
the observed risk (summation term) by their non-tolerance
(B;) to calculate perceived risk. This ensures heterogeneity
among various demographic groups.
Household-intention sub-phase: At time ¢, given the per-
ceived risks pr! for each agent a! € A(t), calculate the mi-
gration intention for each household hi € H(t) for time
t + 1. The probability of migration intention of a household
is calculated as follows:

>

a;en—t(ht)
Here, [ is an activation function to transform the perceived
risk into a probabilistic value. In our case, we employ the
general sigmoid function of the form [(x) = W,
where () is the no-risk migration parameter and r is the
growth-rate parameter. Afterward, the migration intention
(MI) for each household Ay, is calculated as follows.

]V[I,i"*‘1 < X ~ Bem(Pr(hl, intends to migrate))

[pri)/In~" ()|

Pr(h}, intends to migrate) =

Decision Phase: The problem for the decision phase can
be modeled as follows: Given the network of households
G(V, E), the migration intention of the households at time
t+1, the migration decisions of the households at time ¢; find
the migration decisions of the households at time ¢ + 2. In
order to model the decision phase, we utilize Graphical Dy-
namical System (GDS), a popular framework that has been
used to study bio-social systems (Adiga et al. 2019; Qiu et al.
2022; Alam et al. 2015). In its primary form, GDS is mod-
eled with a graph G, a set K specifying the domain of the
vertex states, a family of local state transition functions F’,
and an update scheme U specifying the sequence by which
the local transition functions are processed. We define our
update scheme to be synchronous, making our system a Syn-
chronous dynamical system (SyDS).

Our SyDS is defined as a tuple S = (G, F'). Here G(V, E)
is the given household network where V. = H and F' =
{fx : Yhi € H} is a set of local transition functions each
vertex computes. Each vertex v € V has the following states
at time ¢ + 1 as described below.

@, = (ML, M)

where MI!T1 = {0, 1} is the migration intention calculated
from the intention phase and M! = {N, I, R} denotes the
migration status of household v at timestep ¢; N being the
household has not migrated yet, I being the household has
migrated as internally displaced and R being the household
has migrated as refugee. Whether a household migrates or
not next is decided by the following rules:

e Households already migrated will take no further action.

e Non-intending households will migrate if more than I,
neighbors are intending to migrate.

o Intending households will not migrate if less than I; neigh-
bors are intending to migrate.
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B, of agents W of events
Group B; (NF) | B; (F) Event Type W;
Elderly 0.15 0.20 Explosion 3
Child 0.50 0.70 Battle/Violence | 2
Adult Male 0.02 0.05 Protest/Riots 1
Adult Female 0.20 0.70 Other 0

o NF = No Family e F = With Family

Table 1: Weights of different demographic groups and events

e The household would migrate based on their intention to
migrate if none of the above holds.

We assume that if a household decides to migrate, with
A (0 < A < 1) probability they become a refugee and
with 1 — X\ probability they become internally displaced
(IDP) (Pandey et al. 2023). Let, f :R — {N,I,R} bea
function where f()) is R with probability X and I with prob-

ability 1 — A when 0 < A < 1. Otherwise, f()\) = N. Also,
let 3, cnrwy MILTH = 9t denote the number of neigh-
bors of vertex v intending to migrate at time £+ 1. Given this,
we can formally write the local transition function f:*2 for
updating the migration decision state M2 of a vertex v at
time ¢ + 2 using a Bi-Threshold function (Kuhlman, Kumar

et al. 2011) as follows.

M} if M =TorM,=R
FIA2 a1y = fN) if M = N and ! > I,
v v N if MY = N and ST < I,
FOMILYY  otherwise

After this local transition function is computed, before
the next intention phase at time ¢ + 2, households with
M!*? = N and corresponding agents are retained from
A(t) and H (t) and the rest are removed. Moreover, by look-
ing at the values M2, M2, ..., we can identify the migrating
households at different timestamps.

Datasets

Agent Data: The synthetic population' developed by the
Biocomplexity Institute (Mortveit et al. 2020) contains in-
formation about synthetic individuals (i.e. age, gender) and
their households (i.e. location). Since we do not have real-
time location information about person agents, we assume
the location of each person agent to be the same as the lo-
cation of their households across all timesteps. We also di-
vide the person agents into four demographic groups based
on their age and gender (elderly, child, adult male, adult fe-
male). We choose 3; = b x B; for an agent where B; is cho-
sen based on the demographic group and family status of the
agent based on Table 1 and b is a scaling parameter. These
values were chosen based on previous literatures (Castelli
2018; Brunarska and Ivlevs 2022) and consultation with so-
cial scientists.

Conflict Data: We obtain the conflict information
from Armed Conflict Location & Event Data Project
(ACLED) (Raleigh et al. 2010). It contains records of con-
flicts and violent events happening across the globe and the

!Synthetic Population Data available at https://net.science/files/
40e8d15e-d38b-48d4-aaff-79e85e1de87e/
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[ Symbol | Parameter Name | Prior
5 Spatial decay —5,0)
T Temporal decay —5,0]
Q No-risk migration | [0, 100]
r Growth rate (0,5
b Risk scale (0,1
w Event scale (0,1
I Low threshold {reZ:1<x<5}
I, High threshold {reZ:1<x<50}
A Refugee ratio (0,1)
Table 2: Parameters of the proposed framework

data is updated daily. For each event, it has the location and
time of the corresponding event, which we can feed directly
into our proposed spatiotemporal gravity model. Ws calcu-
late severity S; as S; = w x W; x I;. Here, I; is the fa-
tality or impact of event j which is recorded in ACLED as a
field. W; is a weight associated with the type of the event as
defined in Table 1 and w is an associated scaling parameter.
The weights are chosen from weights defined in the GDELT-
CAMEQO codebook (Carammia, Iacus, and Wilkin 2022).
Observed Data: Although not necessary by the framework,
we require observed data to calibrate the model parameters.
Obtaining ground truth about individual agents is realisti-
cally infeasible. Rather, we use border crossing data from
Humanitarian Data Exchange (HUMDATA 2022) which
collects border crossings from a conflict-induced country at
a reasonable temporality, even daily in the best case. Note
that, one can also use other summary statistics from surveys
conducted by many humanitarian organizations. However,
since this data has a good temporal resolution, calibrating
against this data will make the model more robust in esti-
mating other summary statistics automatically.

Calibration

As per our proposed design, we have defined several param-
eters we have to calibrate. Table 2 shows these parameters
and their priors. To calibrate the parameters, we employ the
Bayesian Optimization strategy (Mockus 1989). Bayesian
optimization strategy tries to best fit the objective function
by creating a posterior distribution of functions. As the num-
ber of observations increases, it becomes more confident
about which parameter space is worth exploring.

The objective function we want to optimize is as follows.
Let us assume that y(¢) and g(t) are the refugee estimates by
the model and reported border crossing in the observed data,
respectively, at time ¢. Let Ts = {¢1,t2,...ts} be a sample
of times which we will use for calibration. Thus, we want
to minimize the mean squared error between correspond-
ing model estimates and the observed border crossings along
these time samples.

Results
Performance Study - Ukraine

We calibrate and apply our agent-based framework for the
recent Russian invasion of Ukraine. Our simulation runs
from February 24, 2022 upto May 15, 2022. The result for
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Total Refugee (M)

12 Summary Statistics g =250
10 —ABM =200
8 =i 2150
6 5 2100
4 Q = Observed
2 I ' i@ S0 — asm
0 I * N = 0

Overall March  April

(c) Summary Comparison (d) Burundi Study

Figure 1: Refugee Estimation

=300 Z 700
o 250 = Observed GJ 600 —— Observed
&,200 — ABM — Pandey etal.
2 150
@ 100
€ 50
®= 0
o o 0&,0‘) 2 oS
(a) ABM (b) Pandey et al.
Method | MAPE RMSE PCC
ABM 20.72% £ 3.22% | 2.6e4 £1.3¢3 0.91+0.01
Pandey | 74.95%+£24.27% | 1.06eb £ 5.17¢c4 0.87 +0.01
Table 3: Metric Comparison
ABM (Pandey et al.)
R| Top 5 (IOM) Top 5 Match| Top 5 ! Match
Kyiv City Kyiv City Kyiv City
Kharkiv Donetsk Luhansk
1| Kyiv Kharkiv 80% | Kyiv Region 60%
Dontesk Luhansk Kharkiv
Zaporizhzhia| Kyiv Odesa
Kyiv City Kyiv City Kyiv City
Kharkiv Dontesk Kharkiv
2| Kyiv Luhansk 80% | Dontesk 80%
Dontesk Kharkiv Kyiv
Chernihiv Chenihiv Luhansk
Kharkiv Dontesk Kyiv City
Kyiv City Kyiv City Donetsk
3] Kyiv Kharkiv 100% | Kharkiv 60%
Dontesk Luhansk Dnipropetrovsk
Luhansk Kyiv Zaporizhzhia

Table 4: Comparison of IDP estimation

each day is obtained after two timesteps of the simulation,
as outlined in the previous section. All pairs of households
under the same S2 cell? are considered neighbors and we
choose level 13 in our implementation (Mehrab et al. 2022).
We select 10 data points as sample times for calibration,
which is less than 60% of the entire observed data.

We compare our model® with the method proposed by
Pandey et al. (Pandey et al. 2023) by accommodating the
agent-event interaction model proposed in their work as the
decision rules of our agents. We follow the parameter pos-
teriors reported by the paper as best as possible except for
two: the kernel dispersion parameter and the conflict time
window; for which we did not find the final posterior of the
parameters. We performed grid search to find the best com-
bination of these two parameters.

Refugee Estimation: Figure 1 draws comparison between
two methods. First, by visually comparing Figure la and

Zhttps://s2geometry.io/
3Source Code available at https://github.com/dmehrab06/abm_
generalized_migration
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Figure 1b, we can see that our ABM framework success-
fully captures the large early influx of migrants and the over-
all trend of the observed data. Conversely, the other method
overestimates early migration and then decays as the sim-
ulation progresses. From Table 3 we can also see that our
method has a higher Pearson Correlation Coefficient (PCC),
lower Mean squared error (MSE) and lower Mean absolute
percentage error (MAPE) with the observed data, compared
to the other method. Finally, Figure 1c shows how closely
the model estimates the number of refugees to the reported
data, both overall and at the monthly level. While the other
method performs comparably in estimating the total refugee
for April, its overestimation in March is quite notable. This
establishes that instead of just an agent-event interaction
model, a framework incorporating both agent-event interac-
tion and agent-agent interaction is likely able to model mi-
gration dynamics more accurately.

IDP Estimation - Ukraine: Similar to daily refugee es-
timates, our ABM can also generate daily IDP estimates.
However, unlike border crossing data, IDP reporting is not
available at daily temporality. Instead, we compare our IDP
estimates against the IDP estimates provided by the In-
ternational Organization of Migration (IOM) (IOM 2022).
These data are collected through Random-digit-dial (RDD)
approach over several rounds, conducted around every 2
weeks. The first three rounds overlap with the timeframe
of our simulation. These surveys provide an estimate of the
top 5 oblasts of IDP origins. We compare them with the top
5 oblasts of IDP origin estimated from our ABM and the
method by Pandey et al.

The first round of survey was conducted in mid-March
and we can see that our top 5 IDP origins match all but one
region reported by IOM (80% match). On the other hand,
the other method misses two of the top 5 reported origins of
IDP (60% match). The match percentage of the two methods
is comparable for the second round conducted on April 1.
However, our model correctly identifies a new top 5 origin
of IDP from the previous round, Chernihiv, which the other
method failed to capture. For the round conducted on April
17, our model matches all top 5 oblasts with the observed
data. Moreover, it successfully identifies Luhansk which was
not reported as a top IDP origin in the previous two rounds.

Generalizability: Refugee Estimation - Burundi

Given agent and conflict data, the design of our model al-
lows us to employ our ABM to examine migration dynam-
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ics for any country. For this purpose, we tested our ABM for
the 2015 Burundi conflict. We used the calibrated model of
Ukraine and applied it to estimate the migrant outflow from
Burundi. The result is shown in Figure 1d. The observed data
is obtained from a previous study (Suleimenova et al. 2017).
However, the data is associated with idiosyncrasies. This is
evident from the figure that although supposed to be cumu-
lative data, it shows a decline at some points from the pre-
vious point. Nevertheless, we find that our model generates
very good estimates of the observed data, underscoring its
generalizability across populations. An interesting future di-
rection would be to study the significance and re-calibration
aspects of these parameters in different contexts.

Case Study - Entrapment in Ukraine

Here, we consider the implication of imposing an “entrap-
ment” condition on Raions behind the frontlines in Russian-
controlled territory of Ukraine. Confronted with violence
that would ordinarily compel civilians to flee, conditions on
the ground can sever plausible escape routes leaving civil-
ians trapped in active conflict zones. Faced with the prospect
of crossing active battlefields to reach safety or sheltering in
their home, civilians will rationally opt to remain station-
ary. During the last few weeks of our modeling period (be-
ginning April 14) we qualitatively identified Raions within
Ukraine where the advance and positioning of Russian mili-
tary forces had effectively closed off westward escape routes
for civilians within identified raions.

£ 100 Z12

qj 80 — Entrapped m 10 — Entrapped
[7] — Status Quo o 8 — Statusquo
w 60 oo

2 3 6

g 40 % 4

T 20 %2

® 0 ® 0

08-12 04-26 0510 o524 0812 ga-26 510 o524

(a) Ukraine, total (b) Polohivskyi raion

Figure 2: Entrapment case study

Figure 2 compares status quo estimates with estimates ob-
tained with entrapped Raions between late April and early
May. We only focus on the simulation period from April 1
onwards for this case study because the prior outflow trend
is similar. We also let the simulation continue until the end
of May to see some observable differences. Figure 2a shows
that around late May we would observe an obvious differ-
ence in the outflow of refugees from the scenario where the
entrapment condition was enforced to the status quo condi-
tion. To investigate this further, we looked at Polohivskyi
Raion (Figure 2b). This particular Raion had observed a
large outflow in the status quo scenario during the entrap-
ment period (April 14 - May 5). When we look at the sce-
nario, we find that although people were not able to move
during the entrapment period, as soon as the enforcement
was relaxed, a large amount of migration happened. The
surge of migration is almost twice as large as the surge ob-
served in the status quo scenario. Due to the accumulation of
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fear during this entrapped period for individuals who wanted
to migrate but could not, they fled at the first window of op-
portunity, causing this large surge of migration.

These case study results indicate the policy use of the
model and indicate the sorts of valuable data the model can
generate. Civilians in entrapped conflict zones in need of hu-
manitarian aid is a largely unknown quantity during a crisis
and therefore informed estimates of the sort produced here
represent important data points for both policymakers and
humanitarian aid agencies alike. These estimates can help to
inform likely future refugee flows as escape routes from en-
trapped regions open when conflict conditions change. Such
analysis can also help humanitarian organizations identify
pockets of civilians most in need of aid and therefore can
help those organizations to advocate for limited ceasefires
in geographically explicit regions to provide civilian aid - a
common humanitarian objective in armed conflicts.

Conclusion

We have developed a generalized ABM framework guided
by social theory to model conflict-induced migration from
a host country. Our model has shown promise in estimating
migration at high temporal and spatial resolution for differ-
ent conflict settings. In future, we can extend this framework
to account for other conflict factors (e.g. infrastructure dam-
age, perpetrator of conflict events) or deploy the model in
new contexts such as natural disasters (e.g., point process
events such as earthquakes or landslides), climate-induced
migration (e.g., scenario analysis of migration in response to
sea-level rise), or even economic modeling (e.g., migration
in response to business failures). The model also has sev-
eral public policy applications. For example, our entrapment
analysis highlights regions most in need of humanitarian aid
and therefore would help aid organizations to better iden-
tify optimal locations for resource staging in anticipation
of future refugee flows as conflict conditions evolve. Addi-
tionally, incorporating return migration would strengthen the
model. By considering returns, the model can run to longer
time horizons allowing for better civilian displacement map-
ping. Finally, we only consider agent age and gender de-
mographic characteristics. The availability of other demo-
graphic features (e.g. income) would allow further refine-
ments to modeling conflict-induced migration.
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