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Abstract

Deep learning, the most important subfield of machine learn-
ing and artificial intelligence (AI) over the last decade, is con-
sidered one of the fundamental technologies underpinning the
Fourth Industrial Revolution. But despite its record-breaking
history, deep learning’s enormous appetite for compute and
data means that sometimes it can be too costly to practi-
cally use. In this paper, we connect technical insights from
deep learning scaling laws and transfer learning with the eco-
nomics of IT to propose a framework for estimating the cost
of deep learning computer vision systems that achieve a de-
sired level of accuracy. Our tool can be of practical use to
AI practitioners in industry or academia to guide investment
decisions.

Introduction
As technologies mature, the economic impacts of their im-
plementation can be reasonably anticipated with some level
of accuracy, e.g. the cost and benefits of a database. Such
assessment is important for effective resource-allocation de-
cisions. But case studies that we conducted with industry
about deep learning systems indicate that they are far from
reaching this level of predictability. This lack of precision
in costs and benefits creates investment uncertainty, because
while these systems can reach impressive, nearly human-
level performance in tasks such as vision and language, they
also come with an enormous appetite for compute and data
that can be costly. In the absence of complete information,
decision makers are less informed and often invest in alter-
native projects with a lower expected value. Project uncer-
tainty also likely hinders useful industry implementations of
deep learning because of limited assurance that it will be
money well spent. Given the rapidly rising economic and en-
vironmental costs of deep learning (Thompson et al. 2020;
Strubell, Ganesh, and McCallum 2020), this lack of infor-
mation needed for planning is problematic.

In this paper, we provide evidence that a better way is pos-
sible. In particular, we show that regularities in deep learning
scaling and transfer learning can be the basis for making pre-
dictive estimates for the cost and accuracy of new systems.
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We operationalize this method by re-analyzing data from
Mensink et al. (2021), and then parameterizing it and val-
idating it with data from 14 real industry implementations.
While most of the literature typically relies on repeated ex-
periments using publicly available benchmark datasets, our
method bridges the gap and provides industry-tested evi-
dence (Klemetti et al. 2023). Overall, we find promising re-
sults that not only can such a model be predictive of deep
learning costs, but that the inputs needed would be relatively
straightforward for users across industry or academia.

Challenges in Resource Allocation

A decision on when and how to invest in deep learning must
depend on a reasonable cost-benefit analysis in light of the
desired model performance. When assessing deep learning
suitability, a notable difficulty lies in accurate assessment
of implementation costs (IBM 2021). Availability of ade-
quate cost estimates is important for several reasons. First, in
business terms project approvals often depend on the mag-
nitude of a reasonably estimated cost. Second, costs need
to be tracked and audited. Third, more practically, knowing
costs can allow firms to prioritize experiments that can fea-
sibly achieve desired performance. The ability to select the
most promising experiments is an important factor when the
speed of solution delivery matters.

When building deep learning systems, the costs of achiev-
ing a desired level of accuracy may be too high, given the
expected benefits. Indeed, high costs are one of the primary
reasons organizations say attempted deployments fail (Wig-
gers 2019). In fact, the largest deep learning experiments re-
quire resources that exceed the budgets of all but a handful
of institutions (Ahmed and Wahed 2020).

Faced with cost uncertainty, firms with risk-averse cul-
tures or incentive structures may choose not to invest or
only invest in incremental options (Hoskisson, Hitt, and Hill
1993). Prior work has shown that this rarely leads to break-
through innovations and instead results in lower-payoff eco-
nomic benefits (Carson et al. 2020). Thus, firms forced to
make resource allocation under high uncertainty may make
worse decisions.
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Transfer Learning
Transfer learning (Pan and Yang 2010; Zhuang et al. 2021)
can sometimes be used to overcome some of the challenges.
The high-level idea behind this technique is a transfer of
knowledge from a source domain, which consists of a large
dataset with high-quality labels, to a target domain, where
data is limited and labels are not always available, with the
goal of improving performance in the latter. In contrast to
developing a deep learning model from scratch, where train-
ing and testing happens within one domain and one task,
transfer learning enables extrapolation to solve new prob-
lems. Source domains and tasks for the training can be dif-
ferent from the target ones but need to be related to some
extent. For example, a model analyzing cars might still be
useful for analyzing snowmobiles because many low-level
visual features (lines, edges, etc.) are needed for processing
both.

Even though transfer learning allows for cost reduction
thanks to knowledge reuse, it can still require substantial
resources for the fine-tuning stage. Fortunately, a growing
body of research investigates the conditions under which
transfer learning works well, e.g., selecting the most op-
timal source dataset, architecture, or pre-training schemes
(Agostinelli et al. 2022).

Typically, the exact cost of running deep learning models
is proprietary, and thus can only be inferred by an educated
guess, or via anecdote (Sharir, Peleg, and Shoham 2020).
There is also little to no requirement for reporting the finan-
cial cost of developing, training, and running deep learning
or fine-tuned models in published research (Schwartz et al.
2020). Thus, when faced with a decision of whether to invest
in these models, companies have to choose from one of two
poor decisions: Incur the cost of training to discover how
much it would cost and how accurate it will be, or do not in-
vest and potentially lose out on a competitive advantage. In
effect, many deep learning projects fail due to cost overruns
or because cost concerns prevent innovations being pursued.

Our Contribution
We propose an approach to discovering how much a deep
learning investment would cost, how much data is needed,
and how accurate it would be at a much lower cost than that
of actually training the model. We re-analyze data from ear-
lier transfer learning research (Mensink et al. 2021) and use
the empirical results (and a novel measure that we propose)
to estimate the cost of adapting a pre-trained deep learning
vision model to new proprietary data. Finally, we propose a
practitioner-oriented tool that can help predict the costs and
performance of new computer vision models developed in
this way.

While past research often quantified the resource foot-
prints of deep learning models with metrics such as train-
ing time and GPU use (Dehghani et al. 2021), our economic
model makes it possible to flexibly predict the costs and data
requirements of several complex scenarios even by practi-
tioners who might be less technical.

The results of our study and the economic model can be
useful to several stakeholders. First, businesses and organi-
zations may use the tool to estimate the feasibility of their

deep learning projects and experiments on proprietary data.
In this way, they can have a better understanding into how
much data is needed to achieve the desired level of accuracy
and at what dollar cost. In a similar vein, applied researchers
preparing project proposals would be in a better position
to evaluate data requirements and justify the cost of their
projects to sponsors. Second, platform engineers may use
the economic model to better estimate the resources, such
as computation and memory, required to feasibly train and
deploy a preferred model in production. In all these cases,
better knowledge of the cost and accuracy of the deep learn-
ing systems can translate into better resource-allocation de-
cisions.

Related Work
Deep Learning Deployment Costs
Prior literature has often considered the various challenges
in deploying deep learning (Paleyes, Urma, and Lawrence
2022) associated with typical stages of a machine learning
project life cycle: data management, model learning, model
verification, and model deployment (Ashmore, Calinescu,
and Paterson 2021). Overall, deep learning project deploy-
ment requires not only a large amount of data and copious
computing power, but also highly skilled personnel, ongoing
maintenance and refinement, and careful management.

The economic cost of the training stage, which entails
supplying the data to the chosen model architecture to learn
patterns, is considered one of the biggest concerns (Malta,
Avila, and Borin 2019).

Deep Learning Performance Prediction
To compare feasibility of models, it is essential to account
for both performance and costs (Menghani 2021). When two
models perform equally well, the preferred model will be the
one costing less. At present, cost considerations associated
with deep learning model training and inference are typi-
cally fragmented, since the research focus has been predom-
inantly placed on achieving the best possible performance,
as measured by accuracy or related metrics (Schwartz et al.
2020; Dehghani et al. 2021).

Various footprint metrics have been proposed for the spe-
cific elements of model learning or characteristics of the in-
frastructure, mostly with the goal to optimize them: training
time, number of epochs to converge, forward and backward
pass latency, number of parameters in model architecture,
number of required labels in datasets for training and valida-
tion, hardware/cloud compute, number of floating point op-
erations (FLOPs), RAM consumption, and model disc size.
Among them, the most important ingredients contributing to
the overall deep learning cost were recognized to be the size
of the training dataset, the number of model parameters, and
the number of FLOPs required to run an instance of a model
to achieve desired performance (Sharir, Peleg, and Shoham
2020).

Past research most often quantified the deep learning
model footprint with training time, FLOPs, number of pa-
rameters and GPU use. Yet (Dehghani et al. 2021) note
that the choice of the reported cost indicators resulted in
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an incomplete cost picture leading to potentially mislead-
ing conclusions about model efficiency, what they term as
’efficiency misnomer’. For example, a low number of FLOPs
may not mean that the model is actually fast since the FLOPs
metric does not account for the degree of parallelism or
memory access. Similarly, model-size measures with the
number of trainable parameters does not mean it is fast to
train or fine tune. Models with very few trainable parame-
ters can be very slow in practice, for example in cases when
their parameters are shared across computational steps.

Overall, previous studies rarely attempt to quantify simul-
taneously the most important drivers of model training costs.
To the best of our knowledge an exception is Sharir, Peleg,
and Shoham (2020) who predict the cost of NLP models,
and Malta, Avila, and Borin (2019) who are interested in the
most cost-optimal choice of cloud deployment. It continues
to be a challenge to find the most appropriate combination of
the essential cost-driving elements for a given problem that
achieves a desired performance at minimal cost.

Empirical Approach
Our economic model aims to reduce the uncertainty in re-
source allocation with a data-backed evaluation of the bene-
fits and costs of investing in a deep learning vision system.
This roughly translates to a desired level of performance and
the estimated financial cost of training a model to achieve
that level of performance. Because we want this tool to be
usable by those with or without technical knowledge of deep
learning, we focus on considering prediction inputs that are
accessible, and we aim to minimize the amount of detail that
users need to provide to maximize the information they re-
ceive out of it.

We take an empirical approach to building our economic
model by leveraging both prior research in transfer learning
performance and proprietary data from IBM clients. A flow
chart of our model can be found in Figure 1. At the core,
our economic model consists of a fitted generalized linear
model (GLM). Its parameters and outputs are then used as
inputs to a cost model, which generates suggestions for the
most cost-effective solutions.

Due to challenges in sourcing data, we limit the scope of
our work to only computer vision image-based neural tasks.
Specifically, we limit it to classification and semantic seg-
mentation tasks.

Inputs
Target Performance. Research by Thompson et al.
(2021) and earlier by Hestness et al. (2017) has shown that
scaling a model’s performance is governed by power laws.
As the desired performance increases, the amount of com-
pute grows polynomially. Practically, this means that equal
percentage reductions in error require an equal percentage
increase in compute. Consequently, the desired target per-
formance is a core cost driver.

Datapoints. Reflecting the real-world limitation that infi-
nite data is impossible to collect, we allow users to specify
as an input both the amount of data that is already usable,
as well as that which could realistically collected. We upper
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Model
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Model

Desired Accuracy
# Datapoints (present)

Max datapoints 
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Training Time
$/Compute
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Additional 
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(Based on 
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Figure 1: Our economic model architecture, showing user
inputs, soft assumptions, intermediate regression model out-
puts, and final outputs.

bound our model’s best possible performance based on the
amount of data available.

In combination with the cost of collecting data, users can
weigh the trade-off in marginal cost of acquiring more data
versus marginal model performance improvement.

Number of Classes. Intuitively, it takes more data and
computation for more challenging tasks. We define task dif-
ficulty by the number of classes being classified and com-
pare the relative difficulty of the input task to a very diffi-
cult baseline. Optionally, we can obtain even more accurate
scores by providing the number of examples in each class.
More details on how this is implemented can be found below
under Relative Complexity.

Soft Assumptions
Common Model Architectures. The size of a given
model architecture (in the number of parameters) directly
impacts the computational resources required to train it. In
discussions with IBM’s clients, it became evident that they
predominantly engaged in two practices: training a model
using existing architectures or fine tuning from a check-
point of an existing architecture. We did not encounter
novel architectures being deployed. Thus, we present a
compilation of the most commonly used designs and their
model sizes. We include in our list AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), EfficientNet-B0 (Tan and
Le 2019), EfficientNet-B7 (Tan and Le 2019), Inception-
ResNet-v2 (Szegedy et al. 2017), Inception-v3 (Szegedy
et al. 2016), Inception-v4 (Szegedy et al. 2017), Mask R-
CNN (He et al. 2017), ResNet-32 (He et al. 2016), ResNet-
34 (He et al. 2016), ResNet-101 (He et al. 2016), VGG-
16 (Simonyan and Zisserman 2015), VGG-19 (Simonyan
and Zisserman 2015), YOLOv3 (Redmon and Farhadi
2018), and YOLOv5 (Jocher et al. 2022).

IaaS Cost Estimates. Almost all of the IBM clients chose
to use infrastructure-as-a-service with GPUs for training
their models, which is a commonly applied deployment
paradigm (Klemetti et al. 2023). In combination with model
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size and number of datapoints to process, this is a core driver
of training cost.

Model testing costs. We assumed that model testing costs
are small compared to training costs - consistent with what
we observed in our case studies. However, when extensive
testing is required (e.g. in a regulated environment), we rec-
ommend amending the default number of epochs.

Outputs
Top Three Model Recommendations. Our economic
model suggests the three best models based on a lowest-
cost prediction. Additionally, it provides information about
the best possible performance achievable given the available
and collectable data. We choose the lowest cost as it is the
most desirable when performance is equal across multiple
models. Our model’s interface for inputs and outputs can be
seen in Figure 2.

Outputs

Best Model EfficientNet-B0

Max Achievable Accuracy 96.50%
Model Training Cost $ 9,610.92 
Data Cost $ 93,423.00 
Data Needed 149,000 

Total Cost $ 103,033.92 

2nd Best Model Inception-v3

Max Achievable Accuracy 96.50%
Model Training Cost $ 43,313.31 
Data Cost $ 93,423.00 
Data Needed 149,000 

Total Cost $ 136,736.31 

3rd Best Model YOLOv5

Max Achievable Accuracy 96.43%
Model Training Cost $ 76,317.51 
Data Cost $ 93,423.00 
Data Needed 149,000 

Total Cost $ 169,740.51 

Inputs

Task Classification

Target Accuracy 96.50%

Limit of Datapoints 200000

$ per Datapoints ($) 0.63

Datapoints
Number of Classes

- OR -
Class Distribution

Class Label # Datapoints
Positive 50000

Negative 1000

Total Datapoints 51000

Soft Assumptions

Base Model VGG-16

Pretrain TRUE

$ per FLOP ($) 3E-11

Epochs to Train 50

Figure 2: Model inputs (left) and model outputs (right)

Total Costs. Corresponding to each model, we provide a
breakdown of the total costs into model-training cost and ad-
ditionally collectable data required along with its cost. The
calculations for these can be found below.

Regression Model
We implement GLM using the Python statsmodels
package version 0.12.2 (Seabold and Perktold 2010).

Data. Data used to fit the model come from two sources.
The main source of our data is 48 datapoints of semantic
segmentation performance from the transfer learning paper
by Mensink et al. (2021), which we re-analyze. Usefully,
their work also provides us with an ”all else equal” analysis
on how well different models performed on various tasks
with and without the use of transfer learning from a pre-
trained checkpoint.

To test the real applicability of this model, we conducted
35 case-study examples of deep learning deployments with
IBM clients. Most of these were able to provide broad, qual-
itative information, but in 14 deployments we have sufficient
information to include them in our analysis. We use eight of
these to augment our training, and six for testing the predic-
tions of our regression model.

While data from the literature is on semantic segmenta-
tion, we also adapt it for use in image classification by con-
ceptualizing it as a complex form of multi-class classifica-
tion.

Regression Variables. Our approach aims to be general-
izable across a range of tasks and datasets. Thus, we define
and encode Boolean variables that we intend to use in fu-
ture work. The core of our regression model’s contribution
lies in defining concepts of ”distance” between two tasks and
two datasets, which we call Relative Complexity and Dataset
Distance respectively.

Peformance Error. The model error, either for semantic
segmentation calculated as mean (1 − JaccardIndex) av-
eraged over target task classes, or (1− Accuracy) for clas-
sification tasks.

Datapoints. How much data the model was trained on for
the target task.

Pretrain. A Boolean variable that indicates whether the
model was fine-tuned from a pre-trained model checkpoint.
We encode 0 for ”no”, and 1 for ”yes”.

Relative Complexity (RC). The relative difficulty of a tar-
get task versus a very difficult baseline task, as measured
by entropy. This score is calculated by TargetTaskEntropy

BaselineTaskEntropy ,
where a score closer to 0 is an easy target task, and
a score closer to 1 is a task that approaches the dif-
ficulty of the baseline. The entropy of each task for n
classes can be calculated from classic (Shannon 1948) as

H(Y ) = −
n∑

k=1

P (yk)logP (yk). Given that our baseline up-

per bounds this score, by default we choose ImageNet-1000
(Russakovsky et al. 2015) for our baseline. However, this is
a parameter that can be manually adjusted.

Type. A Boolean variable used in bootstrapping from task
performance data. Semantic segmentation is encoded as 1
and classification is encoded as 0.

Dataset Distance. Our measure of ”distance” between
a target task dataset and a baseline dataset, using sam-
pled embeddings from both. We calculate this by first sam-
pling 10,000 images from each dataset. We then pass these
through a pre-trained Inception-V3 model (Szegedy et al.
2016) and average the penultimate fully connected layer’s
embeddings. We then measure the Wasserstein distance
(Kantorovich 1960) between both averaged embedding vec-
tors, producing a no-maximum score where 0 indicates an
identical embedding space, and increasing score indicates
an increasingly different embedding space.

Regression Equation Setup. We iteratively fit our model
and record both statistical significance and R2. During this
process, dataset distance repeatedly failed to meet our statis-
tical significance threshold of 0.05, and was thus dropped.
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Our final regression model is parameterized as such:

log10(error) =− 0.813− 0.070 ∗ log10(datapoints)
− 0.053 ∗ Pretrain ∗ log10(datapoints)
+ 0.609 ∗RC + 0.622 ∗ Type

(1)

Cost Model
With our fitted GLM, we rearrange the terms in Equation 1
and solve for datapoints with the following equation:

dataneeded =

10
log10(error)+0.813−0.609∗RC−0.622∗Type

−0.070−0.053 (2)

Finally, we combine our defined economic model inputs
in the following manner to calculate the total cost for a given
model.

costtotal = costtraining + costdata (3)
costtraining = costperflop ∗ 2 ∗modelsize (4)

∗ epochs ∗ 3 ∗min(dataneeded, datamax)

costdata = costperdatapoint (5)
∗ (min(dataneeded, datamax)− datapresent)

In Equation 3, we break our cost calculation into the cost
of training (costtraining) and the cost of additional data ac-
quisition (costdata).

Using a FLOPS-of-compute estimation by Sevilla et al.
(2022), we multiply with the per-FLOP cost (costperflop) in
Equation 4. We ensure that we take the lesser of the required
amount of data and the maximum amount of data that the
user can collect.

To calculate the marginal cost of data in Equation 5, we
multiply the per-datapoint cost (costperdatapoint) with the
difference of the current quantity of available data and the
lesser of the required amount of data and the maximum
amount of data that the user can collect.

Discussion of Results
Our GLM achieves a highly predictive R2 of 0.840 with all
variables statistically significant at a threshold of 0.05. The
corresponding regression details can be found in Table 1.
The model’s partial regression grid can be found in Figure
3. We verify the predictions of our regression model against
our test set. In all but one case, our model was able to ap-
proximately predict similarly to our observed error, as seen
in Table 2.

We further evaluate the proposed economic model on a
number of real-world case studies of deep learning model
deployments. In internal discussion with IBM stakeholders
and external discussion with IBM clients, we validated our
model’s usefulness in the closed-problem case where the pa-
rameters of the task are well known. In the open-problem
case, we identified areas for future improvement.

Figure 3: Partial regression grid/added variable plots show-
ing the effect of adding a variable to a model with one or
more existing independent variables, with all else held equal.

Where this model shines is when the problem, business
case, and inputs are well-defined. Potential users saw the
value of our economic model in acceptance testing. One
client stated that they ”based [their] solution decisions of
go/no-go on some soft criteria ... [such as if] there is a fea-
sible opportunity; this provides a go/no-go that’s based on
data and [is] structural”. Other potential users pointed to the
usefulness as a resource-allocation tool for prioritization of
research and its strength in use cases focused on deploy-
ment. In particular, it allows for accurate ”amortization of
costs over multiple solutions or implementations, such as in
grocery stores ... or multiple product [lines],” according to
another client.

Other clients offered opportunities for extensions of our
work in less defined cases. Different paradigms to approach-
ing training and regularization exists, such as early stop-
ping. A client suggested that being able to compare these
paradigms and ”knowing convergence early on” would be
helpful for them to evaluate not just what to train, but also
how to train. There are also suggested extensions to the cost-
benefit analysis, such as incorporating the economic cost of
the consequence for errors and the economic benefit of other
forms of returns. In the former, the cost of making a mistake
classifying mammography scans was given as an example.
In the latter, first-mover advantage and positive press were
offered as possible returns to be captured. It was also sug-
gested to focus on capturing the nuances of data. For exam-
ple, how to model stability of data in the real world or to
quantify the cost-benefit of remedying dataset class imbal-
ance.

Some clients painted a less rosy picture of the economic
model’s use. In some cases, clients were more focused on re-
search innovation rather than economic outcome. With other
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Variable Coefficient Std. Err. t P > |t| [0.025 0.975]

Intercept -0.813 0.151 -5.378 0.000 -1.117 -0.510
log10(datapoints) -0.070 0.029 -2.456 0.018 -0.127 -0.013
Pretrain*log10(datapoints) -0.053 0.016 -3.367 0.001 -0.084 -0.021
Relative complexity (RC) 0.609 0.136 4.464 0.000 0.335 0.883
Type 0.622 0.093 6.719 0.000 0.436 0.808

Table 1: Results of an OLS regression model predicting log10(error) with R2 of 0.840.

Case Data RC Obs. Err. Pred. Err.

Boston Sci. 50100 0.012 3% 4%
Boston Sci. 61000 0.012 1% 4%
IBM CAO 61000 0.100 1% 5%
Navtech 3000 0.200 6% 8%
Navtech 3000 0.348 12% 9%
Navtech 3000 0.403 45% 1%

Table 2: The inputs and predictions to our regression model,
verifying its predictive power against our test set in transfer
learning for classification.

clients, their projects were too open ended for this model
to be of use, such as not knowing what experiments were
needed to be run, or how many, within a single project.

Overall, this feedback suggests that our work makes
progress towards a better model for reducing the uncer-
tainty of resource allocation. In fact, these discussions have
demonstrated that so much uncertainty exists that users wish
to expand on the current scope and level of nuance our model
provides.

Limitations & Future Work
Our work represents an early attempt to estimate the cost
of machine learning deployments ahead of time. However,
challenges remain that constrained our scope and that we
have identified as opportunities for future work. Many of
these challenges relate to limited data availability.

Limited Data. Our primary constraint was only having
fourteen datapoints from IBM clients. This constrained us
and required bootstrapping on data from prior research. Fur-
thermore, target performance for extremely high or low val-
ues at the limits of our training data may produce unreliable
predictions due to the extrapolation effect. This also pre-
vented us from accurately capturing the cost of training a
model from scratch.

Task. Related to that, our bootstrapped data used semantic
segmentation as the task, compared to the IBM client data
using classification. While these computer-vision tasks are
similar, they are not equivalent to one another, and we ex-
pect an impact in our model’s predictive capability. Conse-
quently, our definitions of performance also differ - we use
mean (1−JaccardIndex) and (1−Accuracy) for semantic
segmentation and classification errors respectively.

Domain. The complexities of different domains meant
that our economic model only applies to computer vision.
We are in the process of exploring how we might apply it to
the domains of language, tabular, and time series data.

Other Fixed Costs. Our economic model presented here
does not capture the human resource or fixed infrastructure
cost required to train these models.

Training Time. We do not capture training time in our
model. Specifically, we do not model the impact that dif-
ferent training duration (and regularization strategies) have
on model performance. We assume this to be the best model
error in all epochs trained with no early stopping for some
sufficiently large number of epochs. Running experiments
across a variety of tasks and datasets will allow us to model
performance as a function of training time used as a model
input.

Environmental Cost. While in this paper we focus on the
economic cost, we are currently extending the analysis to in-
corporate the carbon footprint, following (Strubell, Ganesh,
and McCallum 2020; Thompson et al. 2020; Dodge et al.
2022). We believe that as models grow larger, it is more re-
sponsible to expand the definition of cost from the purely
economic to include environmental cost.

Deployment Path. Our deployment path comprises sev-
eral stages, with initial steps already completed and up-
coming ones planned. In late 2022, we developed a user-
friendly model prototype in Excel. In February 2023, we
hosted a workshop with IBM clients, providing insights into
the tool’s applications. Post-workshop, we shared the model
framework and encouraged alpha/beta testing. Currently, we
are gathering feedback and training additional models for
validation. By early 2024, we aim to release an updated tool
on the IBM intranet, along with the publication of share-
able data and code. We also envision future extensions to
the model, especially to consider more recently published
foundation models.

Conclusion
In this paper, we propose an economic model to estimate
the feasibility and cost of achieving desired performance of
a pre-trained deep learning model for vision problems. Our
method can also provide information on the data needs to
achieve particular levels of performance. Various types of
business and academic stakeholders can benefit from using
the tool to decide on the parameters of their deep learning
projects.
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