
Optimizing IT FinOps and Sustainability through Unsupervised
Workload Characterization

Xi Yang1, Rohan R. Arora1, Saurabh Jha1, Chandra Narayanaswami1,
Cheuk Lam2, Jerrold Leichter2, Yu Deng1, Daby M. Sow1

1IBM Thomas J. Watson Research Center
2IBM Software

{xi.yang, rohan.arora, saurabh.jha}@ibm.com, chandras@us.ibm.com,
{cheuk.lam, jerry.leichter}@ibm.com, {dengy, sowdaby}@us.ibm.com

Abstract

The widespread adoption of public and hybrid clouds, along
with elastic resources and various automation tools for dy-
namic deployment, has accelerated the rapid provisioning of
compute resources as needed. Despite these advancements,
numerous resources persist unnecessarily due to factors such
as poor digital hygiene, risk aversion, or the absence of effec-
tive tools, resulting in substantial costs and energy consump-
tion. Existing threshold-based techniques prove inadequate in
effectively addressing this challenge. To address this issue,
we propose an unsupervised machine learning framework to
automatically identify resources that can be de-provisioned
completely or summoned on a schedule. Application of this
approach to enterprise data has yielded promising initial re-
sults, facilitating the segregation of productive workloads
with recurring demands from non-productive ones.

Introduction
Infrastructure as Code (IaC) and IT automation tools have
greatly enhanced the convenience and flexibility of provi-
sioning a variety of IT resources, such as virtual machines
(VMs), Kubernetes/OpenShift clusters, and database-as-a-
service (DBaaS) instances. Also, these tools have simplified
the deployment of applications on or with the aforemen-
tioned resources. However, an unintended consequence of
this automation is the proliferation of redundant resources.
This issue has sparked attention towards resource optimiza-
tion, financial operations (FinOps) (Bryant 2022), and the
reduction of carbon footprints in hybrid clouds.

Several prior approaches (CloudWatch 2013; VMWare
2020; Google 2023) identify idle workloads, which we con-
sider a subset of non-productive workloads, via threshold-
based methods. In these approaches, thresholds are manu-
ally predefined based on domain knowledge. However, their
common challenge is the utilization of excessively conser-
vative thresholds, leading to the oversight of a significant
number of non-productive workloads. Recently, Duan et al.
employed a supervised learning technique, constructing a
binary classifier, to distinguish non-productive workloads
from productive ones (Duan et al. 2019). However, it re-
quires extensive manually tagged data, which can be time-
consuming and labor-intensive to acquire.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we tackle these challenges by introducing a
comprehensive, data-driven, fully unsupervised framework.
Our framework characterizes workloads in two phases: in-
active and active. By leveraging the phase abstraction, the
workloads can be categorized into three distinctive types:
1) non-productive, persisting in the inactive phase; 2) con-
stantly productive, consistently remaining active; and 3) al-
ternating productive, intermittently switching between the
two phases. For the alternating workloads, we further mea-
sured whether there are repeatable patterns within a speci-
fied time unit (e.g., daily, weekly). Timetabling can then be
derived accordingly to optimize resource consumption.

Productivity is intricate and varies across different sce-
narios (Kim et al. 2017). For certain workloads, productivity
could be quantified by the number of transactions completed
or web requests processed, while for others, its significance
lies in facilitating a specific workflow or process. Thus, ex-
plicitly elaborating rules for characterizing workload pat-
terns is challenging. Recent advancements in data acquisi-
tion tools have enriched available data, providing the po-
tential to derive more comprehensive and automated work-
load characterization. Metrics data collected by Application
Performance Management (APM) tools, as well as service
topology information, can contribute to a holistic under-
standing of productivity. As an emerging work, in this paper,
we primarily focus on resource utilization metrics, while our
framework is easily adaptable to more extensive datasets.

The characterization of workloads offers the potential to
devise suitable strategies for minimizing resource consump-
tion. For instance, non-productive workloads could be iden-
tified as candidates for permanent removal or deletion, with
the option to archive associated storage if necessary. Con-
versely, active workloads with recurring demands could be
dynamically scaled up or down, powered off during peri-
ods of inactivity, or migrated to a serverless architecture.
Given that VMs continue to constitute a significant portion
of enterprise data centers, our initial investigation focuses
on VMs, while the experimental findings provide insights
into expanding our framework to encompass other workload
types and even the applications running on them.

Problem Statement and Framework
To elevate FinOps practices and foster workload sustainabil-
ity within enterprise-grade VM-based applications, cloud-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22990

Figure 1: Framework Overview

Figure 2: Analysis Engine

native applications, and cloud services, we designed a work-
load characterization framework, as illustrated in Figure 1.

Our workload characterization is rooted in the data mon-
itored by APM tools (e.g., service or infrastructure metrics,
topology) and, when accessible, cloud event monitoring ser-
vices (e.g., login events, error events). For each monitoring
tool, corresponding serverless applications are established.
These applications function periodically, extracting essen-
tial utilization and service metrics, as well as event details,
using REST APIs from the monitoring tools. The gathered
data is then stored within TimeScaleDB (Instana 2023; Sys-
dig 2023), a database optimized for time-series data.

The data retrieved from TimescaleDB can be fed into an
analysis engine for workload pattern analysis. This engine,
depicted in Figure 2, consists of three components:

1. Phase abstraction: Serving to partition the time periods
and characterize them as active or inactive phases.

2. Workload classification: Categorizing workloads into 1)
non-productive (consistently inactive), 2) consistently
productive (maintaining active), and 3) alternating pro-
ductive (switching between active and inactive).

3. Workload timetabling: Devising a timetable for alternat-
ing workloads, provided they exhibit repeatable patterns.

The analysis engine can be periodically triggered via a
Kubeflow pipeline. Leveraging our framework, organiza-
tions can unlock their insights into workload status, fostering
informed actuation (as illustrated in Figure 1) to optimize re-
source allocation and operational effectiveness.

Methodology
In this section, we mainly focus on the analysis engine,
where we design three integral components—phase abstrac-
tion, workload classification, and workload timetabling—for
workload characterization, as shown in Figure 2.

Phase Abstraction
Subsequence Clustering To effectively capture the evolv-
ing patterns of workloads throughout their recorded time
span, we approached the task as a subsequence cluster-
ing problem. For this purpose, we employed a Multi-series
Toeplitz Inverse Covariance-based Clustering (M-TICC) al-
goriathm (Yang 2021), which is adept at automatically learn-
ing subsequence clusters in an unsupervised manner.

Taking multivariate time-series {xn
t |t ∈ [1, Tn]} as input,

where n ∈ [1, N] is the index of workloads, and Tn is the
number of timestamps for the n-th workload, our goal is to
simultaneously partition and cluster the subsequences based
on their latent time-invariant patterns, by learning a mapping
from each timestamp xn

t to a certain cluster {k|k ∈ [1,K]}.
Considering the interdependence of neighboring states, in-
stead of treating each state independently, we explored the
patterns within a sliding window ω ≪ Tn. The Xn

t is rep-
resented as a Mω-dimension random variable (obtained by
concatenating the M -dim metrics of Xn

t in ω) and will be
fit into K Gaussian distributions, with the k-th distribution
corresponding to the k-th cluster.

Determining the mean vectors {µk|k ∈ [1,K]} is equiv-
alent to matching each timestamp to a cluster, yielding clus-
tering assignments P = {Pk|k ∈ [1,K]}, where Pk ⊂
{1, ..., Tn|n ∈ [1, N]} denotes the indices of timestamps
(sliding windows) belonging to the k-th cluster. Meanwhile,
the inverse covariance matrices Θ = {Θk|k ∈ [1,K]} aims
to characterize time-invariant patterns within each cluster.
Θk is constrained to be block-wise Toeplitz, comprising ω
sub-blocks A(i) ∈ RM×M , i ∈ [0, ω − 1], with the objec-
tive of capturing the partial correlations of M features within
a timestamp and across different timestamps. The objective
function of M-TICC is defined as:

argmin
Θ,P

K∑
k=1

[N∑
n=1

∑
Xn

t ∈Pk

(Log-likelihood︷ ︸︸ ︷
−ℓℓ(Xn

t ,Θk)

+ β

Consistency︷ ︸︸ ︷
1{t− 1 /∈ Pk}

)
+ λ

Sparsity︷ ︸︸ ︷
||Θk||1

]
,

(1)

which consists of three terms detailed as follows:
1. Log-likelihood that Xn

t belongs to cluster Θk.
2. Consistency encouraging neighbored events {Xt−1,Xt}

to be assigned into the same cluster due to temporality.
3. Sparsity controls sparseness of Θk to prevent overfitting.

Herein, β and λ are regularization coefficients. They are
determined by cross validation as 4 and 1e-5, respectively.

Abstracting Clusters as Inactive and Active Phases
Given the K clusters learned by M-TICC, we further ab-
stracted them as two phases (Inactive and Active), denoted
as Ph = {Phc|c ∈ {I, A}}, where Phc ⊂ {1, ..., Tn|n ∈

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22991

[1, N]}. I and A indicate Inactive and Active, respectively.
For each metric m ∈ [1,M], we computed cluster-wise me-
dian value over {xn

t [m]|t ∈ Pk}, among which we pick the
cluster with the minimal median value. By doing so, we des-
ignated each metric with a cluster, and then a majority voting
was employed: If the k-th cluster possesses the most mini-
mal medians across different metrics, it is assigned as an
inactive phase PhI ; Otherwise, the cluster falls into the ac-
tive phase PhA. Our goal was to abstract the cluster with the
smallest metrics as inactive while all other clusters as active,
considering that the inactive phase is in general stable, while
the active phase usually processes diverse patterns.

Workload Classification
Given the phase abstraction results, we categorized work-
loads into three distinctive classes based on their historical
phases over the preceding τ days, where τ is usually set as
7 in prior studies (CloudWatch 2013; VMWare 2020) while
applying the threshold-based rules. When time is measured
in hours, the tracing back window is denoted as ωc = τ ∗24.
The three categories of workloads are elucidated as follows.

1. Non-productive: Remaining in the inactive phase, i.e.,
t ∈ PhI , ∀t ∈ [T − ωc, T];

2. Constantly productive: Remaining in the active phase,
i.e., t ∈ PhA, ∀t ∈ [T − ωc, T];

3. Alternating: Switching between the two phases, i.e., (t ∈
PhI , ∃t ∈ [T − ωc, T]) ∧ (t ∈ PhA, ∃t ∈ [T − ωc, T]).

The workload classification outcomes offer valuable in-
sights for well-targeted actions to optimize resource con-
sumption. Specifically, non-productive workloads are poten-
tial candidates for termination to enhance efficiency. On the
other hand, constantly productive workloads may not re-
quire immediate intervention and can continue their opera-
tions without specific actions. For the alternating workloads,
more intricate analyses are necessary. Therefore, we devel-
oped a timetabling approach, detailed in the next section.

Workload Timetabling
For alternating workloads, we investigated whether they ex-
hibit repeatable scheduling patterns with a certain periodic-
ity (e.g., daily, weekly). Let pu denote possible time values
with a specific unit for a periodicity (e.g., pu ∈ [0, 23] for
daily periodicity with an hourly unit, pu ∈ [1, 7] for weekly
periodicity with a daily unit). For each alternating workload,
we computed the probability of it being inactive at pu:

probI(pu)
n =

1(⌊t⌉ = pu ∧ t ∈ PhI)∑
c={I,A} 1(⌊t⌉ = pu ∧ t ∈ Phc)

, (2)

where t ∈ [1, Tn]. n ∈ [1, NA] is the index of alternating
workloads. Moreover, we measure the frequency with which
it switches to active phase along the horizon t ∈ [1, Tn−1]:

freqn
IA =

1[(t ∈ PhI) ∧ (t+ 1 ∈ PhA)]

Tn/Z
, (3)

where Z is a normalizer. When time is measured in hours, Z
is 24 for daily periodicity and 7*24 for weekly periodicity.

Taking the daily periodicity as an example, where pu ∈
[0, 23] has hours as time unit, the values of probI(pun) and
freqnIA can be employed to determine the timetabling for an
alternating workload n. For instance, if freqnIA > 2, indicat-
ing that the active phase occurs more than twice per day, no
parking suggestions would be recommended, since frequent
transitions between active and inactive phases make park-
ing less advantageous. Conversely, if freqnIA < 1/7, indicat-
ing the active phase occurs less than once per week, daily
periodic patterns can be hardly captured, and thus, no park-
ing suggestion would be given. Otherwise, if probI(pun) re-
mains consistently high for an extended period, it is consid-
ered as non-productive during that time, and parking sugges-
tions would be offered accordingly. This involves creating a
schedule that aligns with fluctuating demands, reducing allo-
cated resources during inactive phases, and potentially turn-
ing off workloads when demand is low. A serverless design
may be suitable for implementing the timetabling.

Dataset
Our data was collected from thousands of VMs in an active
enterprise IT operational environment, representing diverse
production workloads. Drawing from existing idle VM de-
tection methods (CloudWatch 2013; VMWare 2020; Google
2023), we mainly focused on the metrics shown in Table 1.

The utilization metrics are computed by dividing actual
usage by the maximum capacity (allocation). VMEM is be-
tween 0 and 1. Since the fraction of these VMs are burstable,
VCPU can reach up to 1.5. We selected VMs with recorded
resource utilization metrics available for ∼30 days—77.6%
of the VMs—to allow us to gain insights into long-term re-
source utilization patterns and make informed decisions to
optimize resource allocation and enhance efficiency.

Experiments
Phase Abstraction
To validate the effectiveness of subsequence clustering in
phase abstraction, we analyzed the distribution of metrics
across different clusters. The cluster number K is deter-
mined as 4, based on discussions detailed in the next section.
The clustering results are illustrated in Figure 3. To better
distinguish the Clus 1, Clus 2, and Clus 3 in NET and IO,
we display their medians in Table 2. It is evident that Clus 1
consistently exhibits lower metric values compared to other
clusters, indicating it is relatively more inactive.

Based on Table 2, for each metric, we compared the me-
dian values and selected the cluster with the minimal value.
Afterward, majority voting led us to designate Clus 1, with

Metric Description
VCPU UTIL CPU utilization = CPU usage/capacity
VMEM UTIL Memory utilization = Memory usage/capacity

NET Network throughput in kB/s
IO I/O throughput in kB/s

Table 1: Metric Description.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22992

Clus Idx VCPU VMEM NET IO
1 0.0110 0.1747 1 8
2 0.0788 0.5017 12 28
3 0.2989 0.4350 18 39
4 0.2142 0.4241 10895 178

Table 2: Cluster-wise median for each metric.

Figure 3: Cluster-wise distribution for each metric.

the most minimal medians, as the inactive phase, while con-
sidering all other clusters as the active phase. Across all
VMs, most of their timestamps fall into the inactive phase,
as delineated in Figure 4, i.e., a histogram (% of VMs) for
the percentages of active timestamps (i.e., the number of ac-
tive timestamps divided by the total timestamps) per VM.

Workload Classification
Based on the phase abstraction results, we classify VMs into
three categories. Herein, we set τ = 7 following prior works
(CloudWatch 2013; VMWare 2020). Figure 5 is a histogram
(% of VMs) for the percentages of active phases (i.e., num-
ber of active phases divided by the total number of phases)
per VM. Among the given VMs, 35.6% are categorized as
non-productive, 27.2% are alternating, and 37.2% are con-
stantly productive. Due to the lack of ground-truth labels,
it is hard to directly evaluate this characterization results.
Prior literature (Koomey and Taylor 2015; James M., For-
rest, and Kindler 2008; Duan et al. 2019) has suggested that
more than 30% of enterprise data centers is “comatose”—
not performing productive work. Hence, our identification of

Figure 4: Histogram: number
of active timestamps divided by
total number of timestamps

Figure 5: Histogram: number
of active phases divided by to-
tal number of phases

VM Category VCPU VMEM NET IO
Non-productive 0.0080 0.1470 1 6

Alternating 0.0263 0.2275 2 11
Constantly Productive 0.1134 0.5275 23 35

Table 3: Category-wise median for each metric.

Figure 6: Category-wise distribution for each metric.

35.6% non-productive turns out to be a reasonable number.
In comparison, using threshold-based approaches (Cloud-
Watch 2013; VMWare 2020; Google 2023), which rely on
predefined thresholds derived from prior knowledge, we are
only able to identify 1.1% as non-productive. All of these
VMs identified by the threshold-based methods are also
categorized as non-productive by our approach. This find-
ing suggests that existing threshold-based methods may use
overly conservative thresholds, resulting in a considerable
number of non-productive VMs being overlooked. Our ap-
proach, which is more data-driven, has the potential to iden-
tify a larger proportion of non-productive VMs.

The distributions of metrics for the three types of VMs are
shown in Figure 6, and their median values are displayed in
Table 3. It is evident that the non-productive VMs in general
have lower levels of resource utilization compared to other
two types, reflected by the smaller median values, while it
is not always the case considering all their timestamps. This
observation aligns with the suggestions put forth in (Kim
et al. 2017) that the requirement idleness may not always be
reflected as resource idleness. For instance, non-productive
VMs might appear productive when they are engaged in ac-
tivities such as virus scans or system updates.

The workload classification results are depicted in Figure
7, showcasing the characterization of three types of VMs: 1)
non-productive, 2) constantly productive, and 3) alternating.
The x-axis represents timestamps, and the y-axis signifies
the two phases: 0 denotes inactive, and 1 denotes active. The
data used for classification spans the last 7 days (i.e., τ = 7),
as indicated by the orange dotted line in the figure. Specif-
ically, the non-productive VM consistently remains in the
inactive phase (0), the constantly productive VM remains in
the active phase (1), and the alternating VM demonstrates
intermittent transitions between the two phases (0 and 1).

To select an optimal number of subsequence clusters, we
varied K from 2 to 8 as shown in Figure 8 and measured:

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22993

(a) Non-productive

(b) Constantly productive

(c) Alternating

Figure 7: Illustration of the two phases for three VM classes.

Figure 8: Selecting the optimal cluster number.

1. Recall(%): Indicating that among the VMs identified by
the conservative threshold-based methods, how many of
them can be accurately classified by our method.

2. Number of Inactive Clusters: Indicating how many clus-
ters the threshold-based methods identified VMs belong
to. A lower count is preferred to prevent non-productive
VMs from being dispersed across multiple clusters.

3. Non-productive VMs(%): Indicating the percentage of
VMs identified as non-productive.

Taking all above factors into account, we set K = 4.

Workload Timetabling
For alternating VMs, we conducted further analysis for their
repeatable scheduling patterns. Figure 9 illustrates this pro-
cess for two distinct VMs, with daily and weekly periodicity,
respectively. For each of them, we check the start clock time
([0-23]) during a day and start day ([1-7]) during a week
for the two phases. For VM1, the frequency of switching
to active phase is ∼1.14 per day, indicating an almost daily
periodicity. When assessing the probabilities of remaining in
the inactive phase, we observed consistent values above 90%
from 10 PM until 7 AM the following day. Consequently, we
recommend parking the VM during this period and resum-
ing its usage when it becomes active again, thereby optimiz-
ing resource consumption. For VM2, the frequency switch-
ing to active phase is ∼1.82 per week, indicating a period-
icity nearly occurring almost twice per week—specifically
on Saturday and Sunday. Besides, the VM tends to switch to
the active phase during weekends, when we identified a high

(a) VM1: Daily periodicity

(b) VM2: Weekly periodicity

Figure 9: Illustration of the timetabling.

probability of staying in the inactive phase, exceeding 90%
from 10 PM until 6 AM on the subsequent day. Thus, we
suggest parking during this timeframe as well as on week-
days, offering further potential for resource optimization.

Acting on the Recommendations
For VMs categorized as non-productive, once the recom-
mendation is accepted by the SRE or application owner
teams, we expect an automation engine to capture an im-
age of the VM and shut it down. This creates an opportu-
nity for VMs to be consolidated, which in turn creates the
possibility for the low-utilized hosts to either be switched
to a low power consumption mode (if available) or turned
off. Similarly for VMs deemed alternating, we expect SREs
or application owner teams to incorporate the recommenda-
tion into products such as ParkMyCloud 1, which would then
suspend the VM per the schedule defined. As we are in the
early stages of building this technology, we expect the SRE
or application teams to accept or deny the recommendation
before an automation engine is invoked to take the necessary
action. For constantly productive VMs, we don’t expect the
SRE or application owner teams to take any action.

Related Work
Phase Abstraction
To characterize workload patterns, (Janecek, Ezzati-Jivan,
and Azhari 2021) proposed using host system tracing, which
requires specific tooling like LTTng to tap into kernel-
level events. To track the phases automatically, Sherwood et

1https://api.parkmycloud.com/

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22994

al. presented an architecture specifically for executed code
(Sherwood, Sair, and Calder 2003). Also, some techniques
based on machine learning have been proposed (Khanna
et al. 2014; Bhattacharyya, Sotiriadis, and Amza 2017;
Jandaghi, Bhattacharyya, and Amza 2018). For example,
to detect workload phases for inspiring more accurate re-
source provisioning, (Berral, Wang, and Youssef 2020a)
proposed combining conditional restricted Boltzmann ma-
chines and distance-based clustering (i.e., k-means) to dis-
cover behavioral phases from resource usage metrics for
auto-scaling. Recently, (Hossain et al. 2022) presented an
ML-based phase detection to identify uncommon, unknown
customer-specific workloads, where Bayesian change point
detection combined with distance-based clustering (i.e., Eu-
clidean distance with dynamic time warping) is employed to
generate fingerprints for different workloads. The above two
methods rely on distance-based clustering methods, which
are known for not being able to handle noise and outliers
(Thrun 2021). The model-based clustering methods can ad-
dress these issues by robustly learning a generative statistical
model for each cluster. Therefore, in this work, we employ
a model-based M-TICC (Yang 2021) for phase abstraction.

Workload Classification
Cloud service providers, such as Amazon Web Services
(AWS) (CloudWatch 2013) and Google Cloud Platform
(GCP) (Google 2023), along with virtualization providers,
have developed tools to assist customers in identifying idle
workloads based on resource utilization metrics. For VMs,
these tools typically rely on static thresholds for metrics like
CPU utilization, the number of Disk I/O operations, and net-
work throughput observed over a period of 7 days or more.
For example, in AWS CloudWatch, an EC2 instance is la-
beled as “idle” if, over the last 7 days, both of the follow-
ing conditions are met: (a) average CPU utilization < 2%;
and (b) average network I/O < 5 MB. The threshold val-
ues themselves are conservative, thus only a small subset of
VMs could be classified as non-productive.

Workload Timetabling
To use computing resources efficiently for both cost and
sustainablity reasons, (Berral, Wang, and Youssef 2020b)
combined conditional restricted Boltzmann machines and
clustering techniques to discover common sequences of be-
haviors (phases) of container workloads, particularly those
for deep learning (DL) applications. Statistical information
from each phase is used to tune resources allocated to the
container in each phase. They report an overall reduction
in resource utilization. Along similar lines, (Gao et al. 2022)
explored research on scheduling for DL applications in GPU
data centers. In (Buchbinder et al. 2020), the authors devel-
oped a methodology to predict VM loads and then use it for
scheduling VMs to physical hosts. Their approach models
scheduling as a generalized static bin packing problem.

Discussions and Future Work
Prior to sharing our recommendations for the entire corpus
with the respective application teams, we requested explicit

feedback on 41 VMs—a smaller subset that were deemed
non-productive by our approach. For 9 of the 41, the applica-
tion owners initiated the process to decommission and sunset
the VMs. For 4 of the 41, the application owners initiated a
re-size action. Eighteen were deemed necessary by the appli-
cation owners. Four of the necessary 18 VMs are conducting
testing tasks (e.g., patch testing) and hence deemed essen-
tial. For the remaining 14 of the necessary 18 VMs, the ap-
plication owners are considering consolidation actions. We
are continuing to work with the application teams to wrap
up this initial evaluation.

Based on this initial feedback, we are actively pursuing
the following next steps to improve our recommendations:
1. Shifting to absolute metrics: Instead of leveraging CPU

and memory utilizations (%), we will explore absolute
values. When systems are over-provisioned, low utiliza-
tion (%), as seen in those 4 cases, may be interpreted
incorrectly as an indicator of inactivity.

2. Extending metric scope: While current metrics allow us
to abstract workload phases, incorporating extra metrics,
e.g., latency, will provide a more comprehensive insight
into resource consumption and workload behavior.

3. Gathering implicit feedback: Collaborating with applica-
tion owners, we are deploying additional tools to VMs,
capturing snapshots of process info, login activity, active
ports, and network connections every 2 hours. This en-
ables the development of an implicit feedback mecha-
nism, enhancing recommendation quality.

4. Learning from user actions: Implementing mechanisms
to track user actions in response to recommendations, ac-
companied by an opportunity to explain their decisions.

In addition to the steps discussed above, we intend to un-
dertake the following extensions:
1. Enhancing relatability: Recommendations should be re-

latable to Site Reliability Engineers and System Admin-
istrators, reducing perceived risk in taking action.

2. Addressing cloud-native deployments and services: The
growth of SaaS deployments and container-based tech-
nologies calls for similar management technologies.

3. Exploring other unsupervised ML techniques: We aim to
enhance phase abstraction by exploring alternative unsu-
pervised ML techniques and leveraging ensemble learn-
ing for more accurate inactive/active phase identification.

4. Refining repeatable patterns and recommendations:
While our current recommendations are periodically re-
peatable, we aim to detect irregular workload behaviors
and capture finer-grained patterns to enhance precision.

During early stages of deployment, we expect the pipeline
to run as a back-end process once a week. Specifically:
1. Delta metrics since the last run are extracted for in-scope

workloads (or all workloads).
2. Phase abstraction and workload classification are re-run,

resulting in recommendations (either terminating non-
productive workloads or scheduling alternating ones).

With quite a few organizations leveraging digital workflow
management tools for their enterprise operations, we expect
these action recommendations to flow into such tools.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22995

References
Berral, J. L.; Wang, C.; and Youssef, A. 2020a. AI4DL: Min-
ing Behaviors of Deep Learning Workloads for Resource
Management. In HotCloud.
Berral, J. L.; Wang, C.; and Youssef, A. 2020b. AI4DL:
Mining Behaviors of Deep Learning Workloads for Re-
source Management. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX As-
sociation.
Bhattacharyya, A.; Sotiriadis, S.; and Amza, C. 2017. On-
line phase detection and characterization of cloud applica-
tions. In 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), 98–105.
IEEE.
Bryant, J. 2022. Driving into the Cloud: What is Finops?
ITNOW, 64(3): 54–55.
Buchbinder, N.; Fairstein, Y.; Mellou, K.; Menache, I.;
Joseph; and Naor. 2020. Online Virtual Machine Allocation
with Predictions. arXiv:2011.06250.
CloudWatch. 2013. Use Amazon CloudWatch to
Detect and Shut Down Unused Amazon EC2 In-
stances. https://aws.amazon.com/about-aws/whats-
new/2013/01/08/use-amazon-cloudwatch-to-detect-and-
shut-down-unused-amazon-ec2-instances/. Accessed:
2023-12-14.
Duan, J.; Li, G.; Asthana, N.; Zeng, S.; Dell’Era, I.;
Chanana, A.; Agastya, C.; Pointer, W.; and Yan, R. 2019.
CSI2: Cloud Server Idleness Identification by Advanced
Machine Learning in Theories and Practice. In Service-
Oriented Computing: 17th International Conference, IC-
SOC 2019, Toulouse, France, October 28–31, 2019, Pro-
ceedings 17, 243–248. Springer.
Gao, W.; Hu, Q.; Ye, Z.; Sun, P.; Wang, X.; Luo, Y.; Zhang,
T.; and Wen, Y. 2022. Deep Learning Workload Schedul-
ing in GPU Datacenters: Taxonomy, Challenges and Vision.
arXiv:2205.11913.
Google. 2023. Idle VM Recommendations in Google
Cloud. https://cloud.google.com/compute/docs/instances/
idle-vm-recommendations-overview. Accessed: 2023-12-
14.
Hossain, M.; Mebratu, D.; Hasabnis, N.; Jin, J.; Chaudhary,
G.; and Shen, N. 2022. CWD: A Machine Learning based
Approach to Detect Unknown Cloud Workloads. arXiv
preprint arXiv:2211.15739.
Instana. 2023. Data Retention Policy in Instana.
https://www.ibm.com/docs/en/instana-observability/
current?topic=policies. Accessed: 2023-12-14.
James M., K.; Forrest, W.; and Kindler, N. 2008. Revolu-
tionizing Data Center Energy Efficiency. https://www.sallan.
org/pdf-docs/McKinsey Data Center Efficiency.pdf. Ac-
cessed: 2023-12-14.
Jandaghi, S. J.; Bhattacharyya, A.; and Amza, C. 2018.
Phase annotated learning for apache spark: Workload recog-
nition and characterization. In 2018 IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), 9–16. IEEE.

Janecek, M.; Ezzati-Jivan, N.; and Azhari, S. V. 2021. Con-
tainer workload characterization through host system trac-
ing. In 2021 IEEE International Conference on Cloud En-
gineering (IC2E), 9–19. IEEE.
Khanna, R.; Ganguli, M.; Narayan, A.; Abhiram, R.; and
Gupta, P. 2014. Autonomic characterization of workloads
using workload fingerprinting. In 2014 IEEE interna-
tional conference on cloud computing in emerging markets
(CCEM), 1–8. IEEE.
Kim, I. K.; Zeng, S.; Young, C.; Hwang, J.; and Humphrey,
M. 2017. iCSI: A cloud garbage VM collector for addressing
inactive VMs with machine learning. In 2017 IEEE Inter-
national Conference on Cloud Engineering (IC2E), 17–28.
IEEE.
Koomey, J.; and Taylor, J. 2015. New data supports finding
that 30 percent of servers are ‘Comatose’, indicating that
nearly a third of capital in enterprise data centers is wasted.
https://www.anthesisgroup.com/wp-content/uploads/2019/
11/Case-Study DataSupports30PercentComatoseEstimate-
FINAL 06032015.pdf. Accessed: 2023-12-14.
Sherwood, T.; Sair, S.; and Calder, B. 2003. Phase track-
ing and prediction. ACM SIGARCH Computer Architecture
News, 31(2): 336–349.
Sysdig. 2023. Data Retention Policy in Sysdig. https://docs.
sysdig.com/en/docs/administration/data-retention/. Ac-
cessed: 2023-12-14.
Thrun, M. C. 2021. Distance-based clustering challenges
for unbiased benchmarking studies. Scientific reports, 11(1):
18988.
VMWare. 2020. vRealize Operations Report: Iden-
tify Idle VMs so that Resources Can be Reclaimed.
https://digitalthoughtdisruption.com/2020/05/01/vrealize-
operations-report-identify-idle-vms-so-that-resources-can-
be-reclaimed/. Accessed: 2023-12-14.
Yang, X. 2021. Multi-series Time-aware Sequence Parti-
tioning for Disease Progression Modeling. In Proceedings
of the 30th International Joint Conference on Artificial In-
telligence (IJCAI).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22996

