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Abstract

The Neutron star Interior Composition Explorer (NICER) is
an International Space Station (ISS)-based Space Telescope
developed by NASA and devoted to the study of high-energy
X-Ray sources in the universe, including but not limited to
neutron stars, pulsars, and black holes in stellar systems and
active galactic nuclei (AGN). One prominent problem with
NICER observations is the highly variable background spec-
tra, obscuring actual signals of astrophysical sources and neg-
atively affecting scientific analysis of the targets. Therefore,
obtaining accurate estimations of the background spectra is
crucial to filter the noise and facilitate better scientific discov-
eries of new astronomical objects. In this paper, we propose
the very first Deep Neural Network architecture to model
the NICER background spectra variation using information
about the spacecraft and telescope associated with each ob-
servation. In particular, we develop a BERT-based architec-
ture with tokenizers applied to different groups of features
in our tabular dataset. We also introduce an adapted Tabu-
lar Deep Residual Network architecture as the predictor fol-
lowing the Transformer modules in our network. We show
that our model outperforms the current state-of-the-art back-
ground model developed by the NICER team in most evalu-
ation metrics. Finally, we discuss pathways and future work
for the deployment of this model on NASA’s next versions of
HEASARC Software packages.

Introduction
The Neutron star Interior Composition ExploreR (NICER) is
NASA’s X-ray timing and spectroscopy instrument that was
launched on SpaceX’s Falcon rocket and aboard the Interna-
tional Space Station (ISS) in June 2017. It has been in oper-
ation since then and serves as a critical tool facilitating fun-
damental research of various astronomical events. NICER’s
X-ray Timing Instrument (XTI) consists of 56 different X-
ray concentrator optics (XRC; Okajima et al.), each captur-
ing 0.2 - 12 keV X-ray photons emitted from an approx-
imately 30 arcmin2 region of sky (Markwardt et al. 2023).
Similar to other space-based X-ray detectors (RXTE, XXM-
Newton, NuSTAR, etc.), NICER is subject to background
spectra, which consist of photons not originated from the
actual astrophysical source, associated with each observa-
tion. The presence of background can result in significant
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Figure 1: NICER telescope with 56 X-ray concentrator mir-
rors and sunshades. This figure is from NASA Goddard
Space Flight Center’s official NICER Mission Guide doc-
umentation (Markwardt et al. 2023).

distortions to the source signals, negatively affecting scien-
tific analysis of the true target’s spectral variability. There-
fore, the development of an accurate, reliable background
model is necessary to subtract background photon counts
from raw observations. Unlike detectors that have CCD de-
tectors which allow one to simultaneously separate photons
from the source from those of the background by selecting
the relevant regions on the CCD, NICER does not produce
images (single-pixel detector), so estimating the background
spectra is a non-trivial task.

The background spectra can originate from various
sources, which can be either X-ray (e.g.: Cosmic X-ray
Background) or non-X-ray (e.g.: local environment parti-
cles). Since the environment and cosmic background are
highly variable depending on the spacecraft, space weather,
and detector settings, background spectra can be estimated
by using the information about the ISS environment and
NICER detector itself. For instance, the currently deployed
state-of-the-art background model, the SCORPEON (NASA
2022), estimates the background based on South Atlantic
Anomaly (SAA), Cosmic Rays (COR SAX), Polar and Pre-
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cipitation Electrons, various constants (non-X-ray, cosmic
X-ray background, Halo, and Local Hot Bubble). While hav-
ing high overall performance, this model is relatively simple
and utilizes only a few manually selected variables and pri-
ori constants. As a result, many potentially important vari-
ables, such as ISS’s position, sunlight condition, detector’s
force trigger, and noise rate, remained unused. Furthermore,
these models are either rule-based (3C50 and SpaceWeather;
NASA) or non-deep-learning models (SCORPEON), which
may fail to capture complex non-linear signals from the data.
In fact, despite being state-of-the-art, SCORPEON only per-
forms well for observations with backgrounds with low
counts (≤ 100 photons) and thus is only useful when the
background is low. Given the aforementioned limitation and
current advancements in Deep Learning, Deep Neural Net-
work emerges as a promising approach to model and ex-
tract highly non-linear signals for accurate background esti-
mation. However, there is no existing work proposing Deep
Learning approaches for NICER background spectra estima-
tion. Motivated by this gap and by the limitations of existing
background models, in this paper, we propose BERTground,
a novel Transformer-based Deep Neural Network architec-
ture, for estimating background spectra in NICER observa-
tions based on 46 different parameters. Specifically, BERT-
ground consists of two primary components: (1) BERT mod-
ules (Devlin et al. 2019) with categorical tokenizers and (2) a
novel Tabular Deep Residual Network adapted from Resid-
ual Networks (ResNet; (He et al. 2016)) in Computer Vision.
The proposed model outperforms deployed state-of-the-art
model by a significant margin, especially for observations
with excessive background, showing promises as the next
generation of NICER background. Furthermore, it lays the
foundation for future work on Deep Learning-based back-
ground spectra modeling.

In summary, the contributions of this paper are (1)
the very first work on Deep Neural Networks for mod-
eling background in NICER observations, (2) a novel
Transformer-based architecture that outperforms current
state-of-the-art and other Deep Learning models in most
metrics, (3) a benchmark for future development of NICER
background models, and (4) a new tool to be deployed
on NASA’s HEARSARC Software (HEASoft) packages for
background subtraction in astrophysical research.

Related Work
3C50 (Remillard et al. 2022), Space Weather (NASA
2020d), and SCORPEON (NASA 2022) are 3 deployed
background models on NASA’s HEASoft that are currently
being used as background filter for NICER observations.
The 3C50 is a rule-based background model using two pri-
mary parameters: IBG and HREJ. In the context of this
model, IBG is defined as the in-focus event rate at 15-18
keV, which is beyond the effective area of NICER’s optics,
while HREJ is a parameter of the particle event rate at 3-18
keV stems from the outer edges of active silicon and under-
neath the metal collimator. The values of these two parame-
ters are binned into different ranges and divided into differ-
ent corresponding grids (clusters). In stage 1 of the model,
different observations are assigned to different grids based

on their measured IBG and HREJ, and a background spec-
trum is matched and used as the prediction based on each
observation’s assigned grid. The authors also proposed to
use Stage 2 of the model to further subtract soft X-ray back-
ground associated with ISS’s daytime observations, which
is simply done by additively combining spectra from both
stages. In summary, 3C50 relies on two main parameters
(IBG and HREJ), dividing their parameter space into 33 dif-
ferent clusters and then estimating the background by aver-
aging the photon counts of all observations in each cluster.
However, one significant drawback of 3C50 is that if an ob-
servation cannot be matched to any predetermined cluster, it
is ignored and thus no estimation can be made.

An alternative to 3C50 is the Space Weather model avail-
able on HEASoft (NASA 2020d). Space Weather relies on
parameters about the spacecraft environment, including lo-
cal cutoff rigidity (Earth’s magnetic field shielding measure)
and planetary KP index (disturbance of magnetic field), to
model NICER background spectra. One similarity between
3C50 and Space Weather is that they both are relatively sim-
ple rule-based models built upon observations of only 2 to 3
parameters, which limits their capability to capture complex
background variations.

Contrary to 3C50 and Space Weather, SCORPEON is the
very first parameterized model of NICER background. Al-
though this model has not been formally published in con-
ference proceedings or journals, it is considered state-of-the-
art and has been employed extensively by the astrophysics
community. The fundamental approach of SCORPEON is
to separately estimate different background components,
such as constant X-ray / non-X-ray backgrounds and So-
lar Wind Charge Exchange, and then linearly combine them
to produce the final background prediction. One advantage
of SCORPEON is that it is a physics-informed model, ex-
plicitly integrating physical phenomena as the strong priori
estimates for the model. However, since the model is still
limited to only 2 main variables (COR SAX and overshoot
rate), thus its capability is still not fully maximized.

NICER Background Spectra Dataset
To model the background spectra, we train our model on
blank sky regions that are known to contain no astrophys-
ical source. In other words, any X-ray or particle photon
observed in those regions is purely generated by the back-
ground spectra. There are 7 different blank sky regions in
total, designed by NICER as BKGD RXTE {1,2,3,4,5,6,8}.
In this context, RXTE is the Rossi X-ray Timing Ex-
plorer (NASA 2013), a NASA satellite also dedicated to
observations of high-energy X-ray sources. Sky region
BKGD RXTE 7 is excluded from our dataset since it is later
discovered that this region actually contains a bright star,
a soft X-ray source (Remillard et al. 2022). For this rea-
son, BKGD RXTE 7’s spectra are not purely from the back-
ground and thus cannot be used as training targets for back-
ground models.

There are 3,037,654 total seconds of exposure from 7 dif-
ferent background regions, which corresponds to more than
3 million independent 1-second observations. Motivated by
prior works and by the physical dependency of background
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variations on ISS’s local environment and detector configu-
rations, we focus on 46 different MKF parameters (NASA
2020a,b) associated with each observation as the predic-
tors of its background spectrum. The list of MKF vari-
ables is provided in Table 1, and their detailed descriptions
are available in NASA’s HEASoft documentations (NASA
2020a,b,c). The targets are X-ray spectra, each comprising
photon counts in 1180 different energy bands from 0.2 to 12
keV.

In summary, our dataset has a tabular format with
3,037,654 rows, 46 features, and 1180 target columns. In
other words, the background model is f : R46 → R1180.
The dataset was obtained from NICER observations avail-
able in the HEASARC database on the SciServer platform
(NASA 2023a).

Methodology
Our model directly maps the predictor variables to the pho-
ton counts in all 1180 energy bins (0.2 to 12 keV) for each
1-second observation. The architecture consists of two pri-
mary novelties: (1) Group Tokenizers and (2) Tabular Deep
Residual Network with dense skip connections. The Group
Tokenizers summarize physically-related groups of features
into tokens and feed them into BERT encoders (Devlin et al.
2019). Tabular Deep Residual Network is introduced to re-
place Multi-Layer Perceptron (MLP) in Transformer archi-
tecture, exploiting raw features for background estimation.

Feature Group MKF Variables

ISS’s location
& pointing angle

ROLL; ANG DIST; XTI PNT JITTER;
SAT LAT; SAT LON; SAT ALT;
ATT ANG AZ; ATT ANG EL;
RAM ANGLE; EAST ANGLE;
ANG DIST X; ANG DIST Y

Solar’s position
SUNSHINE; TIME SINCE SUNSET;

SUN ANGLE; BETA ANGLE;
LOCAL TIME; MOON ANGLE

Geomagnetic

SAA; SAA TIME; COR ASCA;
COR SAX; MCILWAIN L;

MAGFIELD; MAGFIELD MIN;
MAG ANGLE; AP8MIN;

AE8MIN; KP; SOLAR PHI;
COR NYM; ELV; BR EARTH

NICER’s noise

FPM RATIO REJ COUNT;
FPM FT COUNT;

FPM NOISE25 COUNT;
FPM TRUMP SEL 1500 1800;

FPM RATIO REJ 300 1800;
FPM SLOW LLD;

MPU NOISE20 COUNT;
MPU NOISE25 COUNT

NICER’s
overshoots

& undershoots

FPM OVERONLY COUNT;
FPM UNDERONLY COUNT;

FPM DOUBLE COUNT;
MPU OVERONLY COUNT;

MPU UNDERONLY COUNT

Table 1: The list of features in each group. Variables are
grouped based on their physical relatedness to each other.

Feature Group Tokenizers
Feature Group Tokenizers map a group of input features
into more meaningful tokens, which are then fed into Trans-
former modules for contextualization of the space conditions
and detector’s configurations. Our design of Transformer to-
kenizers is based on FT-Transformer (Gorishniy et al. 2021),
an adapted Transformer architecture for tabular data. How-
ever, instead of outputting a token for every single numerical
feature, we group the features based on their physical relat-
edness and then produce a single token for each group. The
benefits of group tokenizers are two-fold: first, they model
the relationships between relevant variables to produce more
meaningful representations; second, compared to the single-
feature tokenizer in Gorishniy et al., group tokenizers allow
feature summarization and reduce redundant tokens, result-
ing in decreased model size, training time, and hardware re-
quirements. Another key novelty is the introduction of Sig-
moid activations into the tokenization process. Specifically,
instead of linearly mapping numerical features to tokens,
we enforce each element in the token to take a probabilis-
tic value between 0 and 1. The intuition is to simulate the
behaviors of decision trees, where each token can be viewed
as a categorical embedding of a feature group.

Formally, suppose XG ∈ Rb×m is the group G of m fea-
tures in b observations, d is the token size, then the feature
group tokenizer is defined as T : Rb×m → Rb×d. Accord-
ingly, the tokens of feature group G is:

[token]G = T (XG) = σ(WG ·XG + bG) ∈ RN×d (1)

where σ(x) = 1
1+e−x ; WG, bG are the linear weights and

biases, respectively, of the tokenizer for feature group G.
Although different groups have varied numbers of features
(Rm), their tokens share similar dimensions (Rd). Informa-
tion about feature groups is described in Table 1.

Tabular Deep Residual Network (ResNet)
In Transformer architectures, MLP is the final predictor fol-
lowing Transformer modules. This approach performs well
for most domains, including Natural Language Processing
and Computer Vision, because the raw data representations
are sparse and are not meaningful by themselves. However,
for tabular data, the information is dense and can be used
to perform prediction directly. As a result, introducing skip
connections between the input layer and hidden layers can
be particularly useful to reuse such information. Further-
more, skip connections between layers can resolve the ex-
ploding / vanishing gradients problem (He et al. 2016), al-
lowing us to construct deeper predictors with higher expres-
sive power. Motivated by these observations and by the suc-
cesses of Residual Network (ResNet) in Computer Vision
(He et al. 2016), we adapt ResNet to tabular data as the tab-
ular deep residual network. The architecture of ResNet is
shown in Figure 2.

BERTground
Our proposed BERTground architecture combines Feature
Group Tokenizers with the Tabular Deep Residual Network
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Figure 2: Tabular Deep Residual Network architecture with
skip connections from the input layer. ReLU is used in the
output layer since the photon counts are non-negative.

- a simple yet highly effective reconstruction of the BERT ar-
chitecture (Devlin et al. 2019) specifically for NICER back-
ground estimation. The Transformer modules are the origi-
nal BERT modules, which prepend the [CLS] token to the
token stack. This token captures the contextual summariza-
tion for background estimation in each observation using the
self-attention between different groups of physical proper-
ties explicitly defined in feature group tokenizers. Figure 3
outlines the algorithmic flow of BERTground.

Loss Function and Model Initialization
Background prediction is a multi-target problem: each spec-
trum consists of photon counts from 1180 energy channels
(0.2 to 12 keV; 0.01 keV per channel). Therefore, the pre-
diction accuracy depends on both the spectra intensity (total
photon counts) and the spectra shape (distribution of pho-
ton counts). We employ Mean Squared Log Error (MSLE)
in our objective function for model optimization. Suppose
f : R46 → R1180 is the model, yi is the ground-truth, and
ŷi = f(Xi) ∈ R1180 is the estimated background spectra for
NICER observation ith. Accordingly, let si =

∑12keV
e=0.2 yei ∈

R and ŝi =
∑12keV

e=0.2 ŷei ∈ R be the total photon counts

across all energy channels for observation ith in ground-
truth and predicted spectra, respectively. In this context, yei
is the photon counts in energy channel e in observation ith’s
background spectrum. The loss function is defined as:

L = λ1Lspectra + λ2Lintensity (2)

where:

Lspectra = Lsoft + LmidSoft + LmidHard + Lhard (3)

and

Lintensity =
1

N

N∑
i

|| log ŝi − log si||2 (4)

In Eq. 3, we separate loss for each energy range to avoid
optimization bias to energy level(s) with higher photon
counts, implicitly optimizing spectra shape accuracy. The
formal definition of the loss function for each energy level is
(step interval = 0.01 keV ):

Lsoft =
1

N × 101

N∑
i

2.2keV∑
e=0.2

|| log ŷei − log yei ||2

LmidSoft =
1

N × 129

N∑
i

3.5∑
e=2.21

|| log ŷei − log yei ||2

LmidHard =
1

N × 500

N∑
i

8.5keV∑
e=3.51

|| log ŷei − log yei ||2

Lhard =
1

N × 450

N∑
i

12keV∑
e=8.51

|| log ŷei − log yei ||2

For the total loss in Eq. 2, we use λ1 = 1 and λ2 = 0.05 in
our experiments. Lastly, we employ Uniform Xavier (Glorot
and Bengio 2010) as the weight initializer.

Experimental Results
Train, Validation, and Test Split
In deployment, background models are used on sky regions
with actual astrophysical sources, thus the model must be
generalizable to sky regions that it was not trained on. To
evaluate model robustness to unseen sky regions, we use sky
regions 4 and 5 (RXTE BKGD 4 and RXTE BKGD 5) ob-
servations as validation and test set, while the training set
contains samples from all remaining sky regions. This split
strategy resulted in 2,665,710 (81.14%), 247,580 (7.54%),
and 371,944 (11.32%) observations in train, validation, and
test set, respectively.

Model Training Details
Our model was implemented with PyTorch (Paszke et al.
2019) and trained by minimizing the loss function specified
in Equation 2. We used Adam optimizer (Kingma and Ba
2015) with initial learning of 10−3 and batch size of 512.
The training batches are randomly re-shuffled after each
training epoch. To avoid oscillations around local minima,
we periodically decay the learning rate by a factor of 10 ev-
ery 250 training epochs, helping the model to capture com-
plex patterns from the data and to avoid overfitting to the
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Figure 3: BERTground architecture with Feature Group Tokenizers for different feature subsets, grouped by their physical
affinity (for e.g: NICER pointing conditions, Solar positions, Geomagnetic activities, X-ray noises, and telescope’s conditions).
4 Transformer Encoders were used, each with 8 attention heads. Transformer Decoder blocks are not employed in BERTground.

Figure 4: Predicted Background Intensity accuracy between
SCORPEON (left) and BERTground (right). Background in-
tensity is total photon counts with energy ranging from 0.2
to 12 keV per second. Most observed backgrounds have low
to medium intensity (≤ 100 photons), while few have ex-
treme intensity (≥ 1,000 photons).

noises (You et al. 2019). Early stopping was also used if val-
idation loss stopped decreasing in 60 epochs. It took approx-
imately 820 epochs and 23.4 hours to train BERTground us-
ing a single NVIDIA Tesla A100-PCIe-80GB in a Jupyter
environment with 540 GB of Virtual Memory.

Results and Discussion
To evaluate the performance of our model, we qualita-
tively compare background predictions of BERTground and
SCORPEON to the testing ground-truth spectra. First, we
investigate whether the predicted background intensity is
close to the actual intensity. Background intensity is for-
mally defined as si and ŝi in Equation 4. In simple terms,
background intensity is the total photon counts aggregated
over all energy channels (0.2 to 12 keV) in a particular ob-
servation. The intensity analysis illustrates whether there is
background over-subtraction or under-subtraction problems
when we apply the model to astrophysical observations.

Over-subtraction results in distortion and information loss
within the source spectra, while under-subtraction leaves
background photon influx unfiltered, hindering meaningful
scientific interpretation from the observation. The intensity
of BERTground and SCORPEON’s estimations versus the
ground truths is shown in Figure 4. The scatter plots show
that BERTground outperforms SCORPEON by a significant
margin, yielding a R2 score of 0.99 compared to SCOR-
PEON’s R2 score of 0.03. The primary problem with SCOR-
PEON is that it fails to accurately estimate excessive back-
grounds with more than 1000 photon counts. SCORPEON’s
accuracy on low-count backgrounds is also less accurate, as
demonstrated by large deviations from the best-fit line.

Intensity alone does not suffice as a comprehensive anal-
ysis of the model performance since it does not account
for the spectra shape, which is critical for many scientific
analyses. Therefore, following the analysis done in (Remil-
lard et al. 2022), we also include the analysis of Normal-
ized Spectra of Good Time Interval (GTI). In the context of
our paper, a normalized spectrum of a time interval refers
to photon counts averaged along the time axis for each en-
ergy bin. The mapping function of the normalization pro-
cess is f : RT×E → RE , where T is the number of time
steps in the interval and E is the number of energy chan-
nels. Furthermore, Good Time Intervals (GTIs) are inter-
vals during which observations are sufficiently high-quality,
and there must be no gap of more than 5 seconds between
any two consecutive observations. We also impose a restric-
tion that each GTI must have at least 120 seconds of ex-
posure. In total, we have 730 GTIs with an average expo-
sure of 510.33 seconds. The comparative Normalized Spec-
tra and Light Curves of SCORPEON and BERTground for
2 sample GTIs are shown in Figure 5. Compared to SCOR-
PEON’s predictions, both the normalized spectra shape and
light curves of BERTground better fit ground-truth observa-
tions. Despite being slightly noisier, the normalized spectra
of BERTground still resemble the overall ground-truth spec-
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Background model Overall
(all cases)

Extreme background
(≥ 1000 photons)

High background
(100− 1000 photons)

Medium background
(10− 100 photons)

Low background
(< 10 photons)

SCORPEON 2.9337 36.6201 0.6313 0.1585 0.0586
Linear Regression 2.8229 35.2262 0.7291 0.1765 0.0658

MLP 2.2678 28.288 0.6313 0.1834 0.0548 *
ResNet 2.0868 26.0278 0.6247 0.1621 0.0552

BERTground 2.0061 * 25.0204 * 0.5528 * 0.1572 * 0.0582

Table 2: Quantitative comparison between different models on the test set (sky region RXTE BKDG 5). The performance
is measured in terms of Root Mean Squared Error (RMSE). Observations are split into sub-cases based on the background
intensity, which is the total photon counts in all X-ray channels (0.2 to 1.2 keV). In this table, cells in bold indicate better
performance compared to SCORPEON model, while the * notation denotes the best-performing model.

Figure 5: Comparisons: BERTground and SCORPEON.
Normalized Spectra are the time-average photon counts per
energy channel, while the Light Curve is the total photon
counts across all channels per second (intensity).

tra shapes while fitting better into the background’s spectra.
We quantitatively compare BERTground to SCOR-

PEON and other parameterized ML models, including Lin-
ear Regression, Multi-Layer Perceptron, and ResNet on
different scenarios: Overall (all observations), extreme-
background, high-background, medium-background, and
low-background cases. The comparative performance, mea-

sured using RMSE, is reported in Table 2. Quantitative re-
sults indicate that BERTground outperforms all other mod-
els to a significant degree in most scenarios, most notably in
cases with extreme and high background intensity. Although
it is not the best-performing model for low-count obser-
vations, BERTground has more competitive accuracy than
SCORPEON. Finally, all Deep Learning models have lower
overall prediction errors compared to SCORPEON, demon-
strating the effectiveness of Deep Learning approaches for
modeling NICER background spectra.

Conclusion and Future Work
In this paper, we introduce the very first Deep Neural
Network-based approach as a tool to model background
spectra on NICER. In particular, our proposed model,
BERTground, consistently outperforms the state-of-the-art
scientific model (SCORPEON) and other deep learning
models (MLP and ResNet) in most scenarios, especially
for observations with very high background intensity. Fur-
thermore, this work is proof of concept that Deep Learn-
ing can efficiently estimate background spectra using MKF
variables, serving as foundational work for the future devel-
opment of Deep Learning-based background models. In fu-
ture work, we will introduce temporal inductive bias into the
model by training Transformer or LSTM-based architectures
on a sequence of observations. This inductive bias is help-
ful to capture naturally time-dependent background compo-
nents, including but not limited to emission-line components
in Non-X-ray Background (NXB) spectra (Tawa et al. 2008).

Path to Deployment
BERTground shows potential as a robust background fil-
ter for analyzing high-energy X-ray sources like Neu-
tron Stars, X-ray binaries, and supermassive black holes
in AGN. We plan to deploy BERTground as a new
background model in future versions of NASA’s HEA-
Soft (heasarc.gsfc.nasa.gov/docs/software/heasoft (NASA
2023b)). Dr. Abderahmen Zoghbi is an astrophysicist and
HEASARC key staff at NASA Goddard Space Flight Center,
leading the technical development of NASA astrophysics’s
cloud science platform, including HEASoft’s software envi-
ronment, data storage, and official documentation. Together
with the NICER team, he will guide BERTground’s integra-
tion into HEASoft, aligning it with astrophysicists’ needs.
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L.; Desmaison, A.; Köpf, A.; Yang, E. Z.; DeVito, Z.; Rai-
son, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.;
Bai, J.; and Chintala, S. 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. CoRR,
abs/1912.01703.
Remillard, R. A.; Loewenstein, M.; Steiner, J. F.; Prigozhin,
G. Y.; LaMarr, B.; Enoto, T.; Gendreau, K. C.; Arzouma-
nian, Z.; Markwardt, C.; Basak, A.; Stevens, A. L.; Ray,
P. S.; Altamirano, D.; and Buisson, D. J. K. 2022. An Em-
pirical Background Model for the NICER X-Ray Timing In-
strument. The Astronomical Journal, 163(3): 130.
Tawa, N.; Hayashida, K.; Nagai, M.; Nakamoto, H.;
Tsunemi, H.; Yamaguchi, H.; Ishisaki, Y.; Miller, E. D.;
Mizuno, T.; Dotani, T.; Ozaki, M.; and Katayama, H. 2008.
Reproducibility of Non-X-Ray Background for the X-Ray
Imaging Spectrometer aboard Suzaku. Publications of the
Astronomical Society of Japan, 60(sp1): S11–S24.
You, K.; Long, M.; Jordan, M. I.; and Wang, J. 2019. Learn-
ing Stages: Phenomenon, Root Cause, Mechanism Hypoth-
esis, and Implications. CoRR, abs/1908.01878.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22961


