The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Multi-Stage Prompting for Next Best Agent Recommendations in Adaptive
Workflows

Prerna Agarwal', Harshit Dave?*, Jayachandu Bandlamudi', Renuka Sindhgatta', Kushal
Mukherjee!

IIBM Research Al
2ABV-IIITM Gwalior India

Abstract

Traditional business processes such as loan processing, or-
der processing, or procurement have a series of steps that are
pre-defined at design time and executed by enterprise sys-
tems. Recent advancements in new-age businesses, however,
focus on having adaptive and ad-hoc processes by stitch-
ing together a set of functions or steps enabled through au-
tonomous agents. Further, to enable business users execute a
flexible set of steps, there have been works on providing a
conversational interface to interact and execute automation.
Often, it is necessary to guide the user through the set of pos-
sible steps in the process (or workflow). Existing work on
recommending the next agent to run relies on historical data.
However, with changing workflows and new automation con-
stantly getting added, it is important to provide recommenda-
tions without historical data. Additionally, hand-crafted rec-
ommendation rules do not scale. The adaptive workflow be-
ing a combination of structured and unstructured information,
makes it harder to mine. Hence, in this work, we leverage
Large Language Models (LLMs) to combine process knowl-
edge with the meta-data of agents to discover NBAs specif-
ically at cold-start. We propose a multi-stage approach that
uses existing process knowledge and agent meta-data infor-
mation to prompt LLM and recommend meaningful next best
agent (NBA) based on user utterances.

Introduction

Traditional business applications rely on prescribed steps
that are prescriptive, codified, and automated using enter-
prise resource planning (ERP) applications or workflow en-
gines. New-age businesses, however, rely on agile and flex-
ible ways of executing tasks. The flexibility is not about
pre-defining all possible ways of running a process, such
as a hospital admission process or a claim handling pro-
cess (Margaria et al. 2012). It is instead about enabling the
business users to freely execute the process tasks with appli-
cable business rules and well-defined goals. Both the tradi-
tional and the adaptive approaches are goal-driven as they
aim to meet a business goal. But, adaptive process does
not have a detailed prescription of how the set of process
steps are to be executed, but only prescribe what has to

“The work was carried out during internship at IBM Research
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

22843

be achieved, which are translated as specific goals by pro-
cess owners (insurance claim needs to be processed, hos-
pital patient needs to be discharged, and so on). The adap-
tive process allows business users a certain degree of free-
dom to stitch a sequence of process tasks to achieve their
goals. These process tasks have been going through the
modernization phase via the use of Application Program-
ming Interfaces (APIs). For example, Salesforce, as a lead-
ing enterprise customer relationship management (CRM)
provider, offers APIs to enable CRM capabilities into a
large number of custom systems (Vukovic et al. 2016).
Additionally, as automation-enabling technologies evolve,
conversational interfaces have been explored to seamlessly
allow business users to perform their tasks (Chakraborti
et al. 2022). Unlike task-oriented dialog systems that deal
with slot filling to perform an action for an intent (Ras-
togi et al. 2020), chat interfaces for executing process tasks
require calling an ordered sequence of APIs. These APIs
are referred to as agents (a common terminology used in
automation (Chakraborti et al. 2022)). Further, a single
agent can be associated with multiple process tasks. For
example, the process task for updating an order would re-
quire two agents {api_get_order, api_save_order}, while
the task of approving an order would require agents
{api_get_order, api_approve_order, api_notify}. Hence,
the next best agent (NBA) recommendation varies in the
context of the process task.

Previous works on recommending the NBA when execut-
ing a process (Rama-Maneiro et al. 2023) differ from our
current approach as they: i) focus on traditional business
processes having predefined sequences of process tasks, and
i) use historical execution data from structured information
and, iii) do not have conversational utterances of the user.
The focus of our approach is a scenario where an enterprise
has an existing process, such as their human resource pro-
curement, or order processing supported by a set of agents
(or API'). Additionally, the users converse in natural lan-
guage to execute process tasks. Our approach utilizes the
meta-data information available in the agent and the pro-
cess knowledge to recommend the next best agent by using
a Large Language Model (LLM). We address the cold-start
problem as new agents continually get added with business

'we use agent for API from here on

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

{
Target Task : subscription_inquiry
Target Agent : subscription-status

Stage 1: Task-Agent Mapping
['membership’, ‘validate-purchase’,
'make-password’,
'subscription-status’, 'enter-details’,
'make-purchase’, 'offer-refund’,
‘send-link’, ‘ask-the-oracle’,]

T
Stage 2 : Task-Specific NBAs
[ask-the-oracle, validate-purchase, |-

membership,]

,,,,,,,,,,,,, . L
(Stage 3: Agent Specific NBA ! subscription-
['send-link’, 'validate-purchase’, ||, status
I'ask-the-oracle', 'verify-identity’, | Status :

1
1

I'enter-details']

,,,,,,,,,,,,,,,,,,,,,,,,,,,

ask-the- | validate-
oracle |purchase| details

Conversational Interface

9 When is my subscription ending?

Next Suggestions

enter- | end-link membership

@

Figure 1: NBA Recommendations in Conversational Ul

process steps continually getting automated and improved.

Using LLMs in enterprise applications comes with chal-
lenges. Most real-world applications require some customi-
sation of the knowledge in the LLM (fine-tuning), which re-
quires data and can get outdated. Prompting has shown great
promise for a personalised, controlled output. Given the lim-
ited prompt size of different LLM models, it is not possible
to describe the full set of agents in a single context. Hence, to
support a collection of potentially hundreds (or thousands)
of changing agents, a staged approach is required to narrow
down the search for the right set of agents.

An illustration of our proposed staged approach is shown
in Figure 1. As shown, based on the user utterance, the far-
get agent and target task for which the NBA needs to be
recommended is identified. In the first stage, a set of agents
possibly required to accomplish the identified process target
task are identified. In the next stage, the top-k task-oriented
NBAs are obtained out of the agents obtained from the first
stage. In case, the user-utterance does not contain the far-
get task information, the global set of top-k NBAs across all
process tasks are identified. Hence, the main contributions
of our paper are as follows:

1. A process-aware prompting approach using LLMs for
Next Best Agent (NBA) Recommendations in Adaptive
Workflows at cold-start based on user utterance.

2. A multi-stage approach architecture to infuse the pro-
cess knowledge with meta-data information of agents in a
process task-oriented manner.

3. A demonstration of the approach providing meaning-
ful NBAs using only the meta-data information surpassing
different baselines.

Background Terminologies

We provide the core terminologies used in our paper:

* Agent: refers to an atomic function corresponding to an
operation of the API. When an agent is invoked in a conver-
sational interface, it receives the required input parameters,
performs the operation and returns the output. An agent def-
inition includes meta-data such as agent description, input-
output signatures, API call type (GET, POST, etc.), and ad-
ditional details required to execute it.

e Process Task: refers to the high-level task (or activ-
ity) of a business process. Usually, multiple agents are se-

22844

quenced together to accomplish a process task. For e.g.:
consider a process task Interview Scheduling for a can-
didate of a Recruitment Process. To accomplish this pro-
cess task, the sequence of agents to be executed are as fol-
lows: map_panel_with_candidate, send_slots_to_candidate,
confirm_slot. Note that, each agent can be used in multiple
process tasks.

* Process Knowledge: Business process knowledge com-
prises the process task descriptions, persona information au-
thorized to perform certain process tasks and business rules
such as A job requisition must be approved before receiving
applications. This knowledge often changes over time.

Proposed NBA System Framework

The overall system framework is shown in Figure 2. First,
the agent specification and the process task specification are
used to derive a mapping between the agents implementing
a specific task. As new agents get added, their specification
is used to update the information of the tasks they can auto-
mate. At run time, the user interacts with the conversational
interface by providing a natural language utterance to ac-
complish a process task. The target task and the target agent
can be identified from the user utterance with the help of
task and intent identification models based on the process
and the agent information available in the agent database and
process repository. As there exists mature work in intent and
slot filling, we assume this is done by existing tools>. Once
the target agent and target task are identified, the task and
agent mapping is used to provide top-k NBA recommenda-
tions that can possibly be sequenced next. Here again, with
the process knowledge, agent meta-data information, and the
specific task and related agents, the LLM gets instructed by
a prompt at different stages of the system. There may be sce-
narios where the user utterance only maps to a farget agent.
In such a scenario, all the tasks associated with the target
agent are identified and the NBAs in the context of multi-
ple relevant process tasks are computed. The prompt at each
stage depicts the objective and a few in-context input-output
example pairs. Our architecture follows a reasoning chain
i.e., the output of one stage goes to the next one leading to-

“https://www.ibm.com/products/watson-assistant

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

¥
Stage 2: Task specific NBAs| [Stage 3: Agent Specifc NBA

Intent
- target_task: desc input sig_nature: in_sig :
a mapped agent: desc output signature: out_sig
N S — ### Input Question ### Input Question
JSON Agent Identification For [+ <target_task> + "], Does the output signature
Database - - <~ ||what are the top k next best || ||of the [* + <target_agent> +
OpenAPl json Stage 1: Task-Agent Mapping Task - Agent|,.|lagents that should be "] is similar to the input
specification target_task: desc Map sequenced after [+ signature of the [+
sources agent: desc <target_agent> + "] ? <agent_id> + "] 2"
Input Question = T :
Does the agent [" + ©OR) J
@ <agent_id> + "] belongs to the 1]
. ‘lask [' + <target_task> +"]?
Repository
Process specification with [) _ target_agent :
task descriptions task; : [agent;, agenty,....] <_I—{P05t Processunq / Guidance [NBA1, NBA,...]

task; : [agents, agentz,....]
task, : [agent;, agents,....]

(target_task, target_agent) :
[NBA1, NBA;....]

Figure 2: Next Best Agent (NBA) Recommendation System Framework using LLMs

wards obtaining NBA recommendations. We now provide
details of each stage.

Offline (Stage 1): Task to Agent Mapping

The agent database can contain hundreds (or thousands) of
agents to support a flexible and adaptive workflow. Due to
the limited prompt size of LLMs, it is not possible to de-
scribe all the agents in the prompt. Hence, the objective of
this stage is to identify a small set of agents |A;| << |A4]
where A; are the set of agents that can possibly be used to
accomplish the rarget task ¢ and |A| is the total number of
agents A in the database. As shown in Figure 2, given a pair
of target task t, an agent a € A and their descriptions, the
prompt is designed to ask the model if agent a maps to the
target task t or not. The task to agent mapping is done for
all tasks t € T where T is the set of all tasks. The name
and description of the task and agent make the LLM aware
of their objective and hence help to identify their alignment.
We provide two in-context examples with input as process
task and agent descriptions and output as yes/no. Figure 1
shows the sample output of this stage. The task and agent
mapping is stored and used for identifying NBA.

Online (Stage 2): Task Specific NBAs

The task to agent mapping could be a many-to-many rela-
tionship i.e., one task can have many agents, and an agent
can be used in many tasks based on the context. First, the tar-
get agent and the target task are identified based on the user
utterance. Next, the NBAs of the target agent corresponding
to the rarget task are obtained. As shown in Figure 2, given
the description of target task, description of all agents A; ob-
tained from fask and agent mapping, the prompt is designed
to ask the model for the top-k next best agents that can be
sequenced after the target agent. We provide two in-context
examples with output as the list of top-k NBAs. Hence, this
stage provides the top-k NBA agents of the rarget agent w.r.t
target task t. Figure 1 shows the sample output at this stage
for a given user utterance. In case, the target task is not iden-
tified from the user utterance, the top-k NBAs of the rarget
agent are obtained w.r.t all tasks ¢t € T, where T, is the set
of tasks where the target agent a.

22845

Online (Stage 3): Agent Specific NBA

This stage is executed when the target task is not obtained
from the user utterance. In this scenario, the objective of this
stage is to obtain top-k NBAs among the top-k NBAs ob-
tained for all tasks ¢ € T, obtained for the target agent. This
is because when the agents are sequenced to accomplish a
process task, the data flows from one agent to the next one.
Therefore, in this stage, we take the top-k agents for all tasks
t € T, and rank them based on whether the output of the
target agent a semantically matches with the input of the
NBA agent to obtain agent-specific top-k NBA agents. As
shown in Figure 2, given a pair of farget agent a;, an agent
a € NBAggents obtained from the previous stage, their de-
scriptions and their input-output signatures, the prompt is
designed to ask the model if the output of agent rarget agent
ay is similar to the input of the agent a or not. We provide
two in-context examples with answer in yes/no.

This stage is not required if the target task is present in
the user utterance. This is because, in adaptive workflows, at
run-time, a user may jump to a new agent altogether without
worrying about the data flow (similar to web page surfing).
Hence, determining the ranking between the task-specific
top-k NBAs is not required. However, such ranking becomes
essential to obtain the global top-k NBAs from a bunch of
top-k task-specific NBAs.

Grounding LLM Output

LLMs can hallucinate while generating the output, and
hence grounding becomes extremely important. Grounding
is the process of using LLMs with relevant information to
enable domain-specific and accurate responses. We employ
2 different techniques to ground the output: (1) Guidance
based controlled generation (2) Post-processing.

Guidance based Controlled Generation: We use guid-
ance® language by Microsoft for controlled text generation
in LLM. This language can be used with decoder-only mod-
els. A simple syntax is used to structure the output with mul-
tiple generations, selections, conditionals, etc. The output
guidance rule used at each stage is shown below:

*https://github.com/microsoft/guidance

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Stage 1 Output: {select "answer" options=
options}. This rule selects the answer among the options
provided i.e., yes/no. for this stage.

Stage 2 Output {~ gen "answer" max_toke
ns=200 stop="\n"}. This rule generates the answer
maximum upto 200 tokens until \n is not encountered. It
follows the generation observed in in-context examples and
performs controlled generation.

Stage 3 Output {select "answer" logprob
s=‘logprobs’ options options}. This rule se-
lects the answer among the options provided i.e., yes/no
for this stage, along with the log-probability. The log-
probability then helps to choose the top-k agents whose log-
probability for a class “yes” is the highest.

Post-Processing: To ground the answers generated by
encoder-decoder models, we process the output using BERT.

Stage 1 & Stage 3 We perform basic preprocessing on the
generated answer i.e., remove punctuation, extra spaces, and
check whether the text contains yes or no, ignoring the letter
cases to ground the response.

Stage 2 We ground the generated answers to agent
database based on agent similarity calculated using Sen-
tence Transformers* all-MiniLM-L6-v2 model as fol-
lows: (1) the extra text apart from the agent name is fil-
tered out (2) each agent name is validated against the agent
database. For the agents whose names do not exist in the
agent database, we replace it with the most similar agent (if
similarity exceeds 0.95) otherwise, that agent is discarded.
Additionally, if the number of agents mapped to a process
task (target task) exceeds the prompt token limit of the LLM,
we calculate the maximum number of agents m that can be
added in the prompt as follows: We compute the average
number of tokens required by (1) agent description (2) pro-
cess task description (3) two in-context examples (4) ques-
tion. We then calculate the log probability of each (task,
agent) pair mapping for both yes and no class (in stage 1),
and pick the top-m agents whose mapping log-probability
for yes class is the highest.

Experimental Setup
Baselines

To the best of our knowledge, this is the first system to ad-
dress NBA recommendations at cold-start. Hence, there are
no publicly available baselines present. Therefore, we create
a baseline NBA using BERT that uses meta-data informa-
tion of agents. Additionally, we use two baselines that are
information retrieval-based search indices to find relevant
top-k agents. Search baselines are evaluated in two steps:
1) The search index is created using all descriptions from
agents’ meta-data 2) The search index is queried to identify
top-k relevant agents using the farget_agent description. We
use two popular choices for the search i.e; Keyword based
search using Elastic search (Gormley and Tong 2015) and
Semantic search using ChromaDB? as the baselines.

*https://www.sbert.net/
>https://github.com/chroma-core/chroma

22846

* NBA using BERT: For this baseline, we follow a 2-
step approach: (1) We assign the agents to each process task
based on the cosine similarity calculated between the sen-
tence embeddings of their respective descriptions, (2) For
a given farget_agent and target_task, we then compute the
cosine similarity and match the inputs-output signatures be-
tween the agents assigned to farget_task in step 1 and the
target_agent to provide top-k NBAs using the sentence em-
beddings from deepset/sentence_bert model.

* ChromaDB based semantic search: ChromaDB is a
vector DB that supports semantic search on documents.
For this baseline, we first obtain the sentence embed-
ding for all agent descriptions using Sentence Transformers
all-MiniLM-L6-v2 model and create a search index us-
ing the sentence embedding as features. We retrieve top-k
similar agents ranked on the cosine similarity of the embed-
ding of rarget_agent and all agents.

« Elastic Search based keyword search: Elastic search
(Gormley and Tong 2015) supports Keyword based
search. In this baseline, we first obtain features using
BM25(Robertson and Zaragoza 2009) method for all the
agent descriptions, and the search index is created using the
BM25 features. This search index is queried using a similar
approach as above for semantic search.

Datasets

There exists no open-source dataset of agents with ground
truth NBA recommendations. Hence, we experiment with
one open-source dataset and transform it to evaluate NBA.
Additionally, we use an IBM internal dataset for evaluation:

¢ Action Based Conversational Dataset (ABCD)(Chen
et al. 2021): This dataset provides goal-oriented dialogue
data with sequences of actions to achieve a task. We leverage
only the meta-data of tasks and actions. We further transform
each action in the format of the agent manually. The number
of agents and tasks in this dataset are 30 and 10, respectively.

¢ Recruitment Process(RP): This is an IBM proprietary
customer dataset that consists of process tasks and agents
to accomplish various tasks of the recruitment process, such
as opening of job positions, shortlisting candidates, inter-
view onboarding, etc. The number of agents and tasks in this
dataset are 43 and 24, respectively.

Models

Among the set of open-source LLM models, we choose the
following models for our experimentation:

e Flan-T5-XXL-11B (Chung et al. 2022): It is an
encoder-decoder model from Google. It is fine-tuned with
instructions for better zero-shot and few-shot performance.
The prompt limit of this model is 512 tokens.

¢ OpenLlaMA-13B (Touvron et al. 2023): It is one of
the finest open-sourced decoder-only model from Meta with
prompt limit of 2048 tokens.

e MPT-7B (Team 2023): It is a decoder-only model from
MosaicML that use a modified transformer architecture op-
timized for efficient training and inference. The prompt limit
of this model is 2048 tokens.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Models | Agent Dataset| NBA Agent
List Acc.% | R %
ABCD | 0.5125 | 0.844
Flan-T5 | Stage1 | pp 0393 | 0556
Ground | ABCD | 0.6875 | 0.844
Truth RP 0369 | 0.611
HE ABCD | 0.1 0.111
Models | Dataset| Avg. | Avg. ABCD | 0475 0.6
R P % Open Stage 1 | pp 0.464 | 0.694 Models | Datasetf] NBA | Agent
— (‘;7039 — LlaMA [Ground | ABCD | 04875 | 0.6 — 6A§c1-;/o ORZ/ril
BCD | 0.7 ! Truth RP 0.357 | 0.583 . .
Flan-T5 | Rp 0.695 | 0.548 HE ABCD 0.1 0.133 Flan-T5 | pp 0.286 | 0.418
Open ABCD | 0.908] 0.431 MPT Stage | | ABCD [05125 | 0.622 Open | ABCD | 0.287 | 0.4705
LlaMA | RP 0.84 | 0.288 tage RP 0.464 | 0.583 LlaMA | RP 0.321 | 0.226
MPT ABCD | 0.912[0.3875 Ground | ABCD | 0.6875 | 0.778 MpT | ABCD [0.2887[0.705
RP 0.86 | 0.316 Truth RP 0.524 | 0.667 RP 0.345 | 0.488
HE ABCD | 0.289] 0.6245 HE ABCD [0.1125 | 0.133

(a) Stage 1 - Task to Agent Mapping

(b) Stage 2 - Task specific NBAs

(c) Stage 3 - Input Output Flow
Matching (Optional)

Table 1: Results of each stage of proposed NBA recommendation framework

Baselines Dataset NBA Acc.% | Agent R%
NBA using ABCD 0.183 0.269
BERT Recruitment 0.25 0.417
ABCD 0.243 0.384
ChromaDB | e ryitment 0.369 0.583
Elastic Search AB.C D 0.097 0.269
Recruitment 0.4047 0.583
Our ABCD 0.5125 0.844
Framework Recruitment 0.464 0.694

Table 2: Comparison with baselines

Evaluation Metrics

Stage 1 We report precision (P) and recall (R) to evaluate
this stage. However, the aim of this stage is to provide a
small subset of agents to choose NBAs; hence, we use recall
as our primary metric.

Stage 2 & 3 We define 2 evaluation metrics here: (1)
NBA Accuracy: the fraction of total number of NBAs pre-
dicted correctly out of the total number of NBAs present in
the Ground Truth (GT) across all agents (2) Agent Recall:
the fraction of number of agents for which atleast 1 NBA
was predicted correctly in top-k. Our goal is to provide
atleast 1 NBA correctly to each user request, hence, we use
Agent Recall as our primary metric for these stage(s).

Results

The evaluation results of each stage of our proposed frame-
work (for £ = 5) on both ABCD and Recruitment datasets
are shown in Table 1. The ABCD dataset is designed for
goal-oriented dialogues, therefore, we also ask the Human
Evaluators (HE) to manually label task to agent mappings
and task-specific NBAs for each agent given the meta-data
and process knowledge. We compare this manual labelling
(denoted by HE) with the ground truth provided in the
dataset and report the metrics in Table 1a and Table 1b.

As shown in Table 1a, the average recall of task to agent
mapping for MPT is the highest (0.912, 0.86), followed by
OpenLlaMA (0.908, 0.84) and then Flan-T5-XXL (0.739,
0.695) for both ABCD and Recruitment dataset respectively.

22847

We observe precision v/s recall trade-off, and hence, we see
the reverse order of performance for average precision. As
expected, the average precision of HE is the highest, whereas
the average recall is the lowest. To re-iterate, we focus on
average recall as the primary metric for this stage.

For Stage 2, we perform ablation study using different
sources of task to agent mappings (denoted by Agent List) as
shown in Table 1b, i.e. Agent List obtained from: (1) Stage
1 (2) Ground Truth provided in the dataset (3) HEs.

e Stage 1: ABCD Dataset: NBA Accuracy and Agent Re-
call % are the highest for MPT. This is followed by Flan-T5-
XXL and OpenL1laMA. RP Dataset: NBA accuracy is higher
for OpenLlaMA and MPT followed by Flan-T5-XXL.

e Ground Truth: ABCD Dataset: both NBA Accuracy
% and Agent Recall % is the highest for MPT and Flan-
T5-XXL followed by OpenLlaMA. RP dataset: Accuracy
is highest for MPT followed by Flan-T5-XXL and Open-
LlaMA for the Recruitment dataset. We observe only a
marginal improvement in the metrics as compared to the
mappings obtained from Stage 1 which denotes that Stage
1 mappings are more or less complete.

* HE: NBA Accuracy and Agent Recall % is the high-
est for MPT followed by OpenLlaMA and Flan-T5-XXL for
ABCD dataset. The overall performance with mappings ob-
tained from HE is very less as compared to the mappings
from Stage 1 and Ground Truth. This could be because HEs
tend to mark the task to agent mappings only where they are
absolutely sure. This also results in low recall at Stage 1 and
justifies why we choose high recall as the primary metric.

For Stage 3, as shown in Table 1c, both NBA Accuracy
% and Agent Recall % are the highest for MPT, followed
by OpenLlaMA and Flan-T5-XXL. Overall, NBA Accuracy
and Agent Recall % decreases as compared to Stage 2 be-
cause the NBAs obtained in this stage are global i.e., across
all tasks. Figure 3 shows the qualitative comparison of the
LLM models. Overall, we obtained the best results using
MPT followed by OpenLlaMA and Flan-T5-XXL model for
all three stages. Figure 3a, 3b, and 3c shows a sample ex-
ample where we demonstrate the output obtained from all 3

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

-
MPT-7B |,

| Does the sub-task [update-order] belongs to the task [product-defect]?|

:[Outgut :- "MIM :-] Output :- :

| Does the sub-task [membership] belongs to the task [order-issue]? |

Output : - Output :- Output :-

| |
C]

(a) Stage 1

Target Task : 'order_issue'
Target Agent : 'shipping-status’

Flan-T5-XXL | OpenLIaMA-13B| MPT-7B |
For [order_issue], what are the top 5 next best agents that should be |
sequenced after [shipping-status] ? :
['make-purchase’, |
|

|

|

|

'try-again’,

(b) Stage 2

[Flan-T5-XXL | OpenLlaMA-13B |

‘try-again’,

['make-password'

Target ‘enter-details’,

Agent :
‘validate
Fpurchase'

['try-again’,
‘enter-details’

['make-purchase’,
'notify-team’, 'ask-the-
oracle','validate-
purchase’,

Target

Agent :

‘update
-account’

(c) Stage 3

Figure 3: Comparison of LLM Models on different Stages
of the pipeline (Best viewed in color)

models, keeping the input prompt to be the same. The output
highlighted in red indicates the wrong answer, and the ones
highlighted in green indicates the correct answer.

Baseline Comparison: Table 2 shows the comparison of our
proposed framework with the baselines. For both datasets,
our framework significantly outperforms all the baselines.
Among the baselines, ChromaDB performed the best. For
the Recruitment dataset, we observe Elastic Search base-
line performs the best because the agent descriptions in this
dataset contain high keyword overlap.

Deployment and Impact

We implement our system in python using the Langchain®
framework. Langchain enables the use of any available
LLM. Further, helps in our staged pipeline of propagating
the output from one stage to the other. We use the models
available on Huggingface and perform model inference on
A100 GPUs. As shown in Figure 2, we expect the agents
to follow standard OpenAPI specification format with stan-
dard 3.0 version compliant meta-data fields. The current
pipeline is in the process of integration with IBM Watson

®https://python.langchain.com/

22848

Orchestrate’ offering. A sample interface of how NBA rec-
ommendations are given to the user is shown in Figure 1. Till
date, the product has over 600 APIs wrapped up as agents.
We have evaluated our approach on the Recruitment pro-
cess, however, the product offers support for several busi-
ness agents with a conversational interface enabled. These
services include Asana, Box, Oracle HC, Salesforce, Servi-
ceNow, SAP SuccessFactors, Jira, Slack, Gmail, etc. We aim
to provide seamless agent sequencing by providing mean-
ingful NBAs at even cold-start that most of the systems do
not provide. Even though the NBAs may not be highly ac-
curate, the expectation is to provide user-relevant recom-
mendation to invoke NBA. Choosing the right NBA among
these hundreds of agents is otherwise a manual and time-
consuming effort for a user. Hence, even a modest improve-
ment in NBAs would be significant.

Related Work

Existing work on business process monitoring has recom-
mendations of next best action recommendation models that
learn from historical logs (Branchi et al. 2022; Weinzierl,
Dunzer et al. 2020). These works, however, are applica-
ble only to static workflows and not to adaptive workflows
where there can be multiple ways of executing a task. Recent
work (Yaeli et al. 2022) provides the next best agent rec-
ommendation approach to support more flexible and ad-hoc
workflows. However, this work relies on the historical usage
of agents and further provides recommendations at cold-start
using deterministic rules. These rules can get outdated for
large or rapidly evolving workflows.

Recent developments in LLMs have shown promising
results on various downstream tasks, including tools us-
age, and API calls. With the recently introduced Toolformer
(Schick et al. 2023), GPT-4 (OpenAl 2023) and Gorilla
(Patil et al. 2023), the importance of using LLMs for in-
voking API calls has been recognized, encouraging studies
in employing API calls. Some of these studies augment the
pre-trained LLMs by prompting, and others instruction fine-
tune the model. However, existing work does not focus on
recommending the next best API (or agent) leading to a user
accomplishing a task or a goal.

Conclusion and Future Work

In this paper, we propose a first of a kind framework to pro-
vide next best agent (NBA) recommendations using meta-
data and process knowledge for cold-start using Large Lan-
guage Models (LLMs). Given the limited prompt size of
LLMs, we present a staged approach that prompts the LLM
at different stages and provides both process task-oriented
NBAs and global NBAs based on user utterance. We show
that our proposed approach significantly outperforms the
baselines. We believe that the recommendations can be fur-
ther improved with few-shot historical data points as and
when available. Further, we plan to collect user feedback
for current NBA recommendations and improve prompt en-
gineering and hence, the pipeline.

"https://www.ibm.com/products/watson-orchestrate

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Branchi, S.; Di Francescomarino, C.; Ghidini, C.; Massimo,
D.; Ricci, F.; and Ronzani, M. 2022. Learning to Act: A
Reinforcement Learning Approach to Recommend the Best
Next Activities. In Di Ciccio, C.; Dijkman, R.; del Rio Or-
tega, A.; and Rinderle-Ma, S., eds., Business Process Man-
agement Forum, 137-154. Cham: Springer International
Publishing. ISBN 978-3-031-16171-1.

Chakraborti, T.; Rizk, Y.; Isahagian, V.; Aksar, B.; and Fug-
gitti, F. 2022. From Natural Language to Workflows: To-
wards Emergent Intelligence in Robotic Process Automa-
tion. In Business Process Management: Blockchain, RPA,
and and CEE Forum, 2022, Proceedings, volume 459 of
LNBIP, 123-137.

Chen, D.; Chen, H.; Yang, Y.; Lin, A.; and Yu, Z. 2021.
Action-Based Conversations Dataset: A Corpus for Build-
ing More In-Depth Task-Oriented Dialogue Systems. In
Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, 3002—
3017. Online: Association for Computational Linguistics.

Chung, H. W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.; Fe-
dus, W,; Li, Y.; Wang, X.; Dehghani, M.; Brahma, S.; Web-
son, A.; Gu, S. S.; Dai, Z.; Suzgun, M.; Chen, X.; Chowd-
hery, A.; Castro-Ros, A.; Pellat, M.; Robinson, K.; Val-
ter, D.; Narang, S.; Mishra, G.; Yu, A.; Zhao, V.; Huang,
Y.; Dai, A.; Yu, H.; Petrov, S.; Chi, E. H.; Dean, J.; De-
vlin, J.; Roberts, A.; Zhou, D.; Le, Q. V.; and Wei, J.
2022. Scaling Instruction-Finetuned Language Models.
arXiv:2210.11416.

Gormley, C.; and Tong, Z. 2015. Elasticsearch: The Defini-
tive Guide. O’Reilly Media, Inc., 1st edition. ISBN
1449358543.

Margaria, T.; BoBBelmann, S.; Doedt, M.; Floyd, B. D.; and
Steffen, B. 2012. Customer-Oriented Business Process Man-
agement: Vision and Obstacles. In Conquering Complexity,
407-429. Springer.

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.

Patil, S. G.; Zhang, T.; Wang, X.; and Gonzalez, J. E. 2023.
Gorilla: Large Language Model Connected with Massive
APIs. arXiv:2305.15334.

Rama-Maneiro, E.; et al. 2023. Deep Learning for Predic-
tive Business Process Monitoring: Review and Benchmark.
IEEE Trans. Serv. Comput., 16(1): 739-756.

Rastogi, A.; Zang, X.; Sunkara, S.; Gupta, R.; and Khai-
tan, P. 2020. Towards scalable multi-domain conversational
agents: The schema-guided dialogue dataset. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, 8689-8696.

Robertson, S.; and Zaragoza, H. 2009. The Probabilistic
Relevance Framework: BM25 and Beyond. Foundations
and Trends in Information Retrieval, 3: 333-389.

Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.

Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv:2302.04761.

22849

Team, M. N. 2023. Introducing MPT-7B: A New Standard
for Open-Source, Commercially Usable LLMs. Accessed:
2023-05-05.

Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Roziere, B.; Goyal, N.; Hambro, E.;
Azhar, F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lample,
G. 2023. LLaMA: Open and Efficient Foundation Language
Models. arXiv preprint arXiv:2302.13971.

Vukovic, M.; Laredo, J.; Muthusamy, V.; et al. 2016. Riding
and thriving on the API hype cycle. Commun. ACM, 59(3):
35-37.

Weinzierl, S.; Dunzer, S.; et al. 2020. Prescriptive business
process monitoring for recommending next best actions. In
International Conference on Business Process Management,
193-209. Springer.

Yaeli, A.; Shlomov, S.; Oved, A.; Zeltyn, S.; and Mashkif,
N. 2022. Recommending Next Best Skill in Conversa-
tional Robotic Process Automation. In Marrella, A.; Mat-
ulevicius, R.; Gabryelczyk, R.; Axmann, B.; Bosilj VukSié,
V.; Gaaloul, W.; Indihar §temberger, M.; K8, A.;and Lu, Q.,
eds., Business Process Management: Blockchain, Robotic
Process Automation, and Central and Eastern Europe Fo-
rum, 215-230. Cham: Springer International Publishing.
ISBN 978-3-031-16168-1.

