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Abstract

Over the past decade, significant advances have been made in
the field of image search for e-commerce applications. Tra-
ditional image-to-image retrieval models, which focus solely
on image details such as texture, tend to overlook useful se-
mantic information contained within the images. As a result,
the retrieved products might possess similar image details,
but fail to fulfil the user’s search goals. Moreover, the use of
image-to-image retrieval models for products containing mul-
tiple images results in significant online product feature stor-
age overhead and complex mapping implementations. In this
paper, we report the design and deployment of the proposed
Multi-modal Item Embedding Model (MIEM) to address these
limitations. It is capable of utilizing both textual informa-
tion and multiple images about a product to construct mean-
ingful product features. By leveraging semantic information
from images, MIEM effectively supplements the image search
process, improving the overall accuracy of retrieval results.
MIEM has become an integral part of the Shopee image search
platform. Since its deployment in March 2023, it has achieved
a remarkable 9.90% increase in terms of clicks per user and a
4.23% boost in terms of orders per user for the image search
feature on the Shopee e-commerce platform.

Introduction
The image search feature on modern e-commerce platforms
has become a convenient and efficient way for users to find
desired products without the need to input keywords. When
a user uploads an image, this feature automatically identi-
fies items within the picture and returns relevant products on
a given e-commerce platform. This functionality not only
saves time and effort for the users, but also enhances their
shopping experience. The image search feature often relies
on an image embedding modeling (Chicco 2021) to extract
features from images. Based on these features, K-nearest
neighbors (KNN) clustering (Fix and Hodges 1989) is of-
ten leveraged to identify similar images within the database.

However, such an single-modal approach has two major
limitations. Firstly, it overemphasizes on visual details. The
image embedding model tends to retrieve products with sim-
ilar image details, but not necessarily belonging to the same
category. For instance, a query for dental floss in Figure 1(a)
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Figure 1: Search results comparison using different mod-
els. The left column displays user queries as images, while
the right column showcases the top 4 retrieved items. Each
item image is accompanied by its respective product name.
Notably, employing Image-to-image (I2I) solely emphasizes
visual details, disregarding semantic information. However,
by integrating MIEM with I2I, these limitations can be effec-
tively addressed.

often results in products with similar packaging (e.g., bat-
tery chargers, cotton swabs) being retrieved. Secondly, it ne-
glects semantic information within the image. The presence
of detection model biases on the product side may intro-
duce noises, leading to erroneous retrievals when multiple
product entities exist within an image. For example, in Fig-
ure 1(b), the latter two retrieved products are a plastic bottle
and a necklace, with the soda can merely serving as a ref-
erence object and not a product itself. Such issues can be
mitigated with multi-modal techniques, which incorporate
both textual and visual information and are robust to noises.

In addition, image embedding poses engineering chal-
lenges. Due to the large number of products in Shopee’s e-
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commerce platform1 and the need for multiple-replications
(Zhang et al. 2018), generating an embedding for each im-
age requires a huge index volume. Furthermore, dealing
with multiple images per product requires mapping and de-
duplication, further increasing engineering complexity.

Technologies that have the potential to mitigate these
challenges have emerged. Vision-language pretrained mod-
els like CLIP (Radford et al. 2021) can align images and
texts in the same feature space, thereby supporting user
image-based product search. However, these solutions fail
to effectively cross-reference information across product im-
ages and texts, resulting in low recall score during recall
phase. Cheng et al. employed concept-aware modality fu-
sion to integrate information from a single image with texts,
but it cannot accommodate multiple images (Cheng et al.
2023). Besides, it reliance on KnnSoftmax (Song et al. 2020)
for training also increases implementation complexity dur-
ing training. A line of previous works (e.g., METER(Dou
et al. 2022) and X-VLM (Zeng, Zhang, and Li 2022)) has ad-
dressed image-to-text ranking a merge/cross attention trans-
former to generate matching scores for pairs of images
and texts. However, these models have limitations in fusing
multi-modal information during the recall phase.

To tackle these issues comprehensively, we propose the
Multi-modal Item Embedding Model (MIEM). In this paper,
we present the design and deployment experience of MIEM
in the Shopee e-commerce platform. MIEM takes multiple
images and product titles as the input, and leverages a Merge
Attention Transformer Module (Dou et al. 2022) to fuse in-
formation from both images and texts, thereby producing an
embedding for a given product. The incorporation of prod-
uct titles injects explicit semantic information into the em-
bedding, effectively alleviating the issue of the image em-
bedding model excessively focusing on image details. MIEM
has been deployed in the Shopee e-commerce platform since
March 2023 to power its image search business. Compared
to the previous adopted solution, MIEM has led to a remark-
able 9.90% increase in clicks per user and a 4.23% boost in
the orders per user metric.

Application Description

User Request

Search Results
Product 

Detection

I2I Recall

MIEM Recall

Ranking

Figure 2: An overview of the Shopee Image Search Engine.

The overall workflow of the Shopee Image Search Engine
is depicted in Figure 2. The system takes a user’s request
(i.e., an uploaded image) as the input, and outputs a list of
products it deems to be relevant. Upon receiving the user’s
request, the system performs the following steps:

1https://shopee.sg/

1. It executes a product detection model to obtain the
bounding boxes for the products in the image.

2. The cropped images from the bounding boxes are then
passed through two recall models: 1) Image-to-Image
(I2I) recall, and 2) MIEM recall.

3. The recalled products are sent to the ranking model,
where they are sorted in descending order of their ranking
scores, producing the final list of recommended products.

The integration of MIEM into the Shopee Image Search
Engine is based on the framework shown in Figure 3, con-
sisting of the online and the offline components. The online
component performs the following steps to retrieve the prod-
ucts using MIEM:

1. Upon receiving a user request, the request handler per-
forms the initial task of parsing the request from various
sources, such as webpages or different versions of the
mobile app, and transforms it into a unified format. Once
the request has been standardized, it is subsequently for-
warded to the search server for further processing.

2. The search server invokes the feature service module,
which then calls the detection service module to obtain
the bounding boxes for the products in the image.

3. The cropped query image is used to invoke both the I2I
model and the MIEM model services to obtain embed-
dings for the products.

4. The search proxy uses these embeddings to perform
approximate nearest neighbor (ANN) search using the
HNSW method (Malkov and Yashunin 2018) in two in-
dex databases: 1) the I2I index and 2) the MIEM index.
For the I2I index, the corresponding product IDs are ob-
tained for the top-K retrieved images, and then subjected
to de-duplication (i.e., products with same IDs will only
pertain one in the recalled list). For MIEM, the prod-
uct IDs can be directly returned. Then, the search proxy
merges the two sets of retrieved product IDs and sends
them back to the search server.

5. The search server forwards the retrieved product list to
the rank service, which scores each product based on rel-
evance, popularity and other factors. The products are
then sorted in descending order of their scores and re-
turned as the final output list.

6. The log dumping service records and stores various user-
related activities, including user requests, impressions,
and interactions with the search results (e.g., click, add-
to-cart, order). This helps to facilitate data analysis as
well as model improvements to enhance the overall user
experience.

The offline component is responsible for building and
updating the product indices, and operates as a scheduled
task. For the I2I embedding pre-calculation task, the system
first perform product detection on the product images, and
subsequently passes the cropped products to the I2I model
to obtain the embeddings. For the MIEM embedding pre-
calculation task, the system directly inputs the associated
product images and titles into the model to obtain the em-
beddings. The embeddings from both tasks are added to their
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Figure 3: The integration of MIEM into the Shopee Image Search Engine. The arrows indicate the request triggering process.

respective index database using the index service. In addi-
tion, the index service manages the removal of indices cor-
responding to unavailable products.

Use of AI Technology
The proposed MIEM approach primarily utilizes user queries
and their corresponding clicked products as the training data.
In this section, we introduce the model design of MIEM and
how to train this model.

The Design of MIEM
MIEM, as depicted in Figure 4, adopts a dual-tower structure
comprising two distinct components: the query tower and
the item tower. The query tower takes the customer’s up-
loaded query image as input and generates the correspond-
ing query embedding as output. On the other hand, the item
tower processes text and multiple product images as in-
put and produces the item embedding. Notably, the image
encoder is shared between the query and the item towers,
thereby reducing the number of parameters required and im-
proving the recall score. The details of the model design are
as follows:

1. Image Encoder: the Swin Transformer (Liu et al. 2021b)
is adopted to build the image encoder. It is a novel vision
transformer model that employs hierarchical feature rep-
resentations with linear computational complexity rela-
tive to input image size. Compared to the previous Vision
Transformer (ViT) (Dosovitskiy et al. 2020), Swin Trans-
former has achieved state-of-the-art results in ImageNet
classification, COCO object detection and semantic seg-
mentation tasks. The Swin Transformer base is used in
MIEM to strike a balance between accuracy and speed.

2. Title Encoder: following (Zeng, Zhang, and Li 2022), we
design the title encoder based on the multilingual BERT
base (Devlin et al. 2018).

3. The Fusion Module: the fusion module consists of 6 lay-
ers of merge attention networks (Dou et al. 2022). It
concatenates patch-level embeddings from images and
token-level embeddings from texts, and feeds them into a
vanilla transformer model. Empirical investigations show

that this structure achieves better performance than using
6 layers of cross attention (which is commonly used in
image-text pretrained models). While cross attention is
suitable for ranking tasks, merge attention can better pre-
serve information from both modalities, leading to im-
proved recall scores in modality fusion.

4. Projection Layer: a single fully connected (FC) layer is
used as the project layer. For image encoder projection,
the average of patch-level embeddings is used as the in-
put. For fusion encoder projection, the embedding of the
[CLS] token is used as the input, thereby generating the
final 128-dimensional feature.

In the training phase, we utilize search click logs to train
the model. User queries are directed to the query tower, and
the text and images of the clicked product are inputted into
the item tower. To jointly train both towers, we employ the
proposed loss functions and training methods, which will be
described in detail below.

In the inference phase, the item tower computes the item
embedding offline, while the query tower computes the
query embedding in real-time during online queries. This
setup enables image-to-product recall through vector-based
approximate nearest neighbor (ANN) retrieval.

The Training Process of MIEM
A MIEM is trained separately for each country/region using
PyTorch, and the training process involves three major steps.
Following previous works (Zeng, Zhang, and Li 2022; Li
et al. 2021, 2022, 2023), we use AdamW (Loshchilov and
Hutter 2019) as the optimizer for all three steps.

Training the Image-Text Embedding Model In this step
of training, the fusion module is not involved. The projected
query embedding and the projected text embedding are di-
rectly aligned. The widely adopted InfoNCE loss approach
(Oord, Li, and Vinyals 2018) is used for this alignment:

L′(Q,T ) = −Ei∈[0,N ]

[
log

es(Qi,Ti)∑
j∈[0,N ] e

s(Qi,Tj)

]
. (1)

Here, Qi denotes the query image embedding. Ti represents
the item title embedding. S(Qi, Ti) is the cosine similarity
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Figure 4: The system architecture of the AI Engine (MIEM). The yellow components are the trainable parts of the entire
framework. The gray components are the training data.

between Qi and Ti. N is the batch size.
Inspired by Cosface (Wang et al. 2018), we propose

AM-InfoNCE to further enhance the model capability. AM-
InfoNCE employs two hyperparameters, γ and m, to opti-
mizing the decision boundary in the angular space by mini-
mizing intra-class variance and maximizing inter-class vari-
ance. γ controls the overall size of the logits, while m con-
troling the margin between classes.

L(Q,T ) = −Ei∈[0,N ][

log
eγ(s(Qi,Ti)−m)

eγ(s(Qi,Ti)−m) +
∑

j∈[0,N ],j ̸=i e
γs(Qi,Tj)

].

(2)

It is important to note that this loss is different from Cos-
face (Wang et al. 2018). Cosface adopts a classification loss,
computing the similarity between samples in a batch and the
weights of each class (product) to obtain the loss. In con-
trast, AM-InfoNCE uses the query as a positive sample with
clicked item titles and other items in the batch as negative
samples to calculate the similarity.

Training with the Fusion Module In this step, the fu-
sion module is involved in the training process. Only a sin-
gle item image is used for training the entire model. Class-
based sampling and Cross Batch Memory (XBM) (Wang
et al. 2020) are used to improve performance. Class-based
sampling ensures that each minibatch contains products of
the same class, providing more hard negative samples to
improve model performance over random sampling. XBM
(Wang et al. 2020) is a mechanism that remembers embed-
dings from past iterations, thereby allowing the model to
collect sufficient hard negative sample pairs across multi-
ple batches. By connecting each anchor in the current batch
with the closest embeddings in the nearest minibatch, XBM
provides a large number of hard negative samples. Although
XBM effectively mines hard negative samples, it is still lim-
ited by the small batch size training (Wang et al. 2020).
Thus, we avoid direct training with multiple item images.

To ensure the preservation of alignment between the im-
age and text feature space, we propose the modality balance
loss. Under this loss, the fusion embedding without the item
image and texts is separately aligned with the query embed-
ding. In this way, the model can learn more robust feature
information from individual modalities. The modality bal-
ance loss is computed as follows:

Lbalance(Q, I, T ) = L(Q,F (Idef, T )) + L(Q,F (I, T def))

+ L(F (Idef, T ), Q) + L(F (I, T def), Q)
(3)

where F is the fusion module. Idef and T def are default
item images and title embedding. Their corresponding to-
kens have all-zero attention values within the fusion module.

The final loss is the sum of modality balance loss (Eq. 3),
AM-InfoNCE (Eq. 2) and XBM-enhanced AM-InfoNCE
loss:

Lfinal(Q, I, T ) =L(Q,F (I, T )) + L(F (I, T ), Q)

+ Lbalance(Q, I, T )

+ L(Q,Fm) + L(F (I, T ), Qm),

(4)

where Fm is the fusion embedding in the XBM and Qm is
query embedding in XBM (Wang et al. 2020).

Training with Multiple Item Images In this step, the en-
tire model is trained with multiple item images. The loss
function and training techniques used in Step 2 are main-
tained during this process. To facilitate batch training and in-
ference, we set a fixed number of item images to K (K > 1).
For items with an image count below K, we provide empty
images to reach the required number of K. Conversely, for
items with an image count exceeding K, we truncate the im-
ages to match the fixed number K.

After conducting experiments, we determined that setting
K = 4 strikes a balance between inference speed and recall
accuracy. This choice allows us to efficiently process batches
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during training and inference while still achieving satisfac-
tory recall performance, resulting in a practical and effective
configuration for the model.

Acquisition of Training Data
We leverage user click logs to train MIEM. Each log entry
is represented as a triplet ⟨query image, clicked item title,
clicked item image list⟩. Here, the clicked item title and
clicked item image list correspond to the titles and images
of the products that users clicked after using the query im-
age for search. While theoretically, users may click on com-
pletely unrelated products, through manual reviewing and
analysis, we found that approximately 45% of the triplets
consist of query-item pairs that are identical, 50% are on
similar items, and less than 5% are on unrelated noisy prod-
ucts. Thus, the dataset is useful for our purpose.

We conjecture that MIEM should be able to learn even
from the similar item triplets. The reasons are as follows:

1. From the perspective of the entire system, these similar
items are products of interest to users. Even if they are
not identical, they should be retrieved in the recall stage.

2. From a learning perspective, although similar item
triplets do not all perfectly match, often the (query im-
age, clicked item title) pairs correspond correctly, with
only differences in images. Thus, the model can still learn
useful associations between the queries and the products
from these examples.

Thus, we retain this portion of the data containing similar
item triplets. As for the 5% of completely unrelated data, we
have not conducted specific cleansing for them at present.
This could be a potential point for future extension.

Application Development and Deployment
MIEM has been deployed in the Shopee Image Search En-
gine, serving customers from Southeast Asia, Taiwan and
Brazil since March, 2023. The deployment follows the pro-
cess described in Figure 3. Throughout the development and
deployment process, a collection of technologies has been
developed to meet practical requirements.

Online Query Feature Extraction
To improve the online service delivery efficiency, the image
encoder (a PyTorch (Paszke et al. 2019) model) is converted
into a TensorRT (Vanholder 2016) model and integrated into
the online feature extraction service. This service takes im-
ages and bounding boxes predicted by the detection service
as inputs, processes the images using the TensorRT model,
and outputs the projected image embeddings. TensorRT op-
timizes the neural networks based on the GPU, leading to
reduced service latency.

Offline Item Feature Extraction
Similarly, the item tower service is built on a TensorRT
model. In this case, the item images no longer require
bounding boxes. In addition, the service takes the item ti-
tles as inputs and outputs the projected item embeddings.

To enhance online service efficiency, we pre-calculate the
embeddings for items in the database. To handle the vast size
of the product database and the high number of daily addi-
tion/removal of items, we design the following pipeline (as
shown in Figure 5). We maintain a full-feature Hive table for
all items, partitioned by day. Eventually, the features are in-
putted into the MIEM Elasticsearch (ES) (Gormley and Tong
2015) Index. This process is executed daily as follows:

1. The full-feature partition from the previous day is first
copied into the current day partition. Deleted items and
items with changed information (e.g., images, titles) are
not copied. This is achieved by comparing the upstream
product information table with the full-feature table from
the previous day.

2. The information of newly added or updated items is col-
lected and sent to a PySpark (Drabas and Lee 2017) task.
This task efficiently obtains embeddings through gRPC
calls (Wang, Zhao, and Zhu 1993) to the item embedding
service, and writes them into the current day partition.
Items with unreadable images or titles containing only
punctuation marks or spaces are not written into the par-
tition.

3. We generate commands to update the ES index by com-
paring the current day and previous day full-feature item
tables. We define two actions: delete and update. The
delete action removes items that exist in the previous day
partition, but not in the current day partition. The update
action includes newly added or updated items for which
the service successfully obtained features. These com-
mands are sent to the Index service to update the ES in-
dex (Gormley and Tong 2015).

It is worth noting that although the full-feature Hive ta-
ble appears redundant with the ES index, it is essential for
two reasons. Firstly, we cannot view item features in the ES
index, making debugging difficult. Secondly, due to limita-
tions of the HNSW algorithm, the ES index requires periodic
reconstruction. Otherwise, the recall score declines with the
increasing number of updated items. Maintaining the full-
feature Hive table facilitates the reconstruction process.

Online Same Item Rate Analysis
To analyze the online same item rate, we periodically use
outsourced annotation to detect changes in the same item
rate. The annotation task provides a query image, the top
5 product images from the search results, and the product

Item Info Hive 
Table

Copy Available 
Item Feature

PySpark Task on 
Updated Items

Generate ES 
instruction

Item Embedding 
Service (TensorRT)

Full-Feature Hive 
Table

MIEM Index

copy
write

read diff

updatecall

Figure 5: MIEM item embedding pre-calculation.
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titles. The annotators determine whether the query and the
products are the same, similar or dissimilar. To facilitate an-
notation, we use a machine translation model to translate
the product titles into the native languages of the annota-
tors, along with the original titles. “Same” indicates that the
query and the product are the same, while “similar” means
that they belong to the same category (e.g., both are sweaters
or dresses). Since user queries may include products that
do not exist in the Shopee product catalog, evaluating the
number of similar items allows us to assess whether the sys-
tem includes similar products in search results when iden-
tical items are not available, thereby better satisfying users’
search needs.

Application Use and Payoff
Offline Evaluation
Offline evaluation serves as a useful evidence collection step
to help Shopee management make the decision to replace
the previous item embedding model with MIEM. To evaluate
the performance of MIEM at this stage, a dataset based on
real-world user queries collected from the Indonesia mar-
ket was constructed, containing user query images on 3 mil-
lion Shopee products. Since some products may have iden-
tical items (same physical products with different IDs), a
same item merging strategy was employed. For each product
image a, the top-K product images b were obtained using
an ANN approach. An MLP model was used to determine
whether a and b are the same item. This MLP model takes
the concatenation of the features of a and b as the input, and
outputs the probability of them being the same item. The
training data for the MLP model was annotated by external
annotators. Moreover, since the products the users click on
are not necessarily the same items, the features of the user
queries in the 3 million product database were retrieved us-
ing I2I and MIEM. These features were then annotated by ex-
ternal annotators to obtain accurate same item information to
improve the accuracy of evaluation. A total of 9, 000 query
images were retained after removing different-item queries.

Two metrics were used in the offline evaluation:
• Recall@k: commonly used in deep metric learning re-

lated papers (Liu et al. 2021a; Sun et al. 2020; Wang et al.
2019; Cakir et al. 2019; Qian et al. 2019; Ibrahimi et al.
2022) to determine whether the correct results are in-
cluded in the top-K retrieved results, Recall@k directly
reflects model performance in terms of same item rate.

• Category Accuracy: evaluates whether the most common
category among the top 10 results matches the correct
product category.
MIEM was compared against the following models:

• I2I: Shopee’s previously used image representation
model, based on the ViT base. To handle the issue of mul-
tiple images per product, the KNNs of the images were
obtained with the duplicates removed, ensuring that only
the most relevant image was kept as the representative of
the product.

• I2T: A CLIP (Radford et al. 2021) model that performs
image-to-text retrieval. It is the output of the first step in

MIEM training, without the fusion encoder.

The following variants of MIEM were involved in offline
evaluation:

• MIEM (1 emb/img): An embedding is generated for each
⟨image, text⟩ pair about a product. This is a fair compar-
ison with I2I. However, this strategy did not achieve the
desired storage reduction.

• MIEM+I2I: Both models were used for multi-modal re-
call, and the scores were fused as (I2I score + weight ×
MIEM score), with the weight adjustable based on perfor-
mance on the test set.

The retrieval scores are reported in Table 1. Compared
to I2I, I2T slightly improved category accuracy with sig-
nificantly reduced recall score. This is due to the ambigu-
ity of text descriptions, making it difficult to accurately de-
scribe product textures, patterns and styles. MIEM achieved
slightly lower Recall@1 than I2I, but outperformed it un-
der Recall@5 and beyond. In the context of recall stage, the
slight drop in Recall@1 is acceptable. MIEM (1 emb/img)
achieved more significant improvements in Recall@5 and
beyond compared to MIEM, with comparable Recall@1 to
I2I. It also achieved the highest category accuracy among
all comparison approaches. However, since this strategy did
not achieve the desired storage savings, it was not even-
tually selected for online deployment. Using both I2I and
MIEM for multi-modal recall yielded the best results across
the board, demonstrating that I2I and MIEM have comple-
mentary strengths. Combining both models maximized the
same item rate improvement. Based on these results, the de-
cision on deploying MIEM+I2I in the Shopee Image Search
Engine was eventually made.

Online Evaluation
Since its deployment in March 2023, A/B testing was con-
ducted at Shopee’s Indonesia and Brazil e-commerce mar-
ketplaces. In the online evaluation, four types of metrics
were utilized:

• Same & Similar Item Recall@4: This metric determines
whether the correct results are present among the top-4
retrieved items. The determination of whether an item is
considered the same or similar to the query is made by
annotators, rather than relying on ground truth data used
in offline evaluation. The top-4 items were assessed be-
cause, in the Shopee App, the first page of search results
displays these top 4 items.

• Top4 Irrelevant Item Rate: This metric evaluates the rate
of irrelevant items found in the top 4 search results. An-
notators are responsible for determining the relevance of
items. Any items that are neither considered the same nor
similar to the query are classified as irrelevant.

• Clicks/User: This metric measures the number of items
clicked per user within the search results. It provides in-
sights into user engagement with the presented search re-
sults.

• Orders/User: This metric measures the number of orders
placed per user within the image search. It helps assess
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Model Category Accuracy Recall@1 Recall@5 Recall@10 Recall@50 Recall@100
I2I 0.874 0.820 0.922 0.951 0.979 0.985
I2T 0.876 0.395 0.632 0.714 0.856 0.896
MIEM 0.881 0.812 0.927 0.952 0.984 0.988
MIEM (1 emb/img) 0.894 0.819 0.939 0.964 0.988 0.990
MIEM+I2I 0.879 0.872 0.953 0.969 0.984 0.985

Table 1: The offline evaluation results on a Shopee product test set with 3 million items. The latest proposed solution of
combining I2I with MIEM achieved the best performance.

A/B Test Group Clicks/User ∆Clicks/User Orders/User ∆Orders/User
Period

Shopee 31/03/2023 I2I 3.84 0.0804
Indonesia –10/04/2023 MIEM+I2I 4.22 +9.90% 0.0838 +4.23%
Shopee 20/04/2023 I2I 4.00 0.0364
Brazil –05/05/2023 MIEM+I2I 4.24 +6.00% 0.0382 +4.95%

Table 2: A/B test results of the Shopee Image Search Engine in Indonesia and Brazil. ∆ refers to the relative improvements
achieved by MIEM+I2I compared to I2I.

Model
Same
Item
Recall@4

Similar
Item
Recall@4

Top 4
Irrelevant
Rate

I2I 50.55% 93.26% 13.58%
MIEM+I2I 53.66% 95.60% 10.71%

Table 3: A/B test results on Same & Similar Item Recall@4
and Irrelevant Rate for the top 4 products from Shopee In-
donesia.

the effectiveness of the image search in driving user pur-
chases.

The results are shown in Table 2. It can be observed that
the new I2I+MIEM solution for multi-modal image search
recall significantly increased clicks per user and orders per
user compared to the previous deployed solution of using
I2I alone. Meanwhile, according to the online similarity rate
analysis method, we collected 3,000 queries from Shopee
Indonesia, and evaluated the top4 same and similarity item
rates. The evaluation results in Table 3 show that MIEM
significantly increases the same and similarity item rates,
whiling reducing the proportion of the top4 irrelevant prod-
ucts. Furthermore, when compared to the image embed-
ding model, MIEM significantly reduces the storage space
requirements. In particular, for the online ES index, MIEM
only requires a approximately 61.17% less storage space
compared to the previously adopted I2I index.

Qualitative Analysis
Figure 6 illustrates examples of the top 4 online cases. In
the first example, the query is for Indonesian traditional at-
tire. The I2I model mistakenly returns results for protective
clothing. However, after deploying MIEM, this issue is sig-
nificantly improved, and more relevant results are obtained.
In the second example, the query is for a body spray. The I2I
model returns results that resemble boxes of cakes. MIEM,

focusing not only on image details but also on semantic in-
formation, accurately identifies the correct product, resulting
in more precise search results. In the third case, the query
is for a speaker. MIEM successfully delivers top 4 results
that match the appearance of the query image. In the last
example, without the multi-modal approach, the I2I model
retrieves an irrelevant product (the third item), mistaking the
cake box for the actual product which is bottled water. The
multi-modal capability of MIEM helps resolve such issues
by considering both text and image information, leading to
more accurate and contextually relevant recommendations.

Lessons Learned During Development,
Deployment, and Maintenance

Throughout the development and deployment process, sev-
eral lessons were learned:
1. Some products are challenging for MIEM to handle. Prod-

ucts with many SKUs (e.g., phone cases with different
patterns) may be difficult to cover with a single embed-
ding. One potential solution is to create multiple embed-
dings for such products based on the number of SKUs or
the degree of variation in the product images. Methods
like softtriple (Qian et al. 2019) are promising solutions.

2. In terms of deployment, achieving a balance between
speed and accuracy requires the use of TensorRT. How-
ever, attention should also be paid to the pre-processing
speed. In addition, the overall system outputs should be
consist with the offline evaluation results.

3. In terms of model maintenance, there are a large number
of new products added to the Shopee database daily. The
previously adoped I2I may be less affected by new prod-
ucts due to its focus on image details alone. In contrast,
MIEM, which focuses on both the semantic information
and the images, may struggle to establish relationships
between texts and images for products not seen during
training (e.g., newly released iPhones). Regularly retrain-
ing the model can help mitigate this issue. Nevertheless,
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Figure 6: Qualitative comparison of top4 search results using different queries under MIEM+I2I vs. I2I.

the improvement has been deemed to outweigh the main-
tenance overhead incurred.

Conclusions and Future Work
The proposed Multi-modal Item Embedding Model (MIEM)
complements Shopee’s image search by providing seman-
tic information for both images and product texts. By con-
sidering both images and text for a product and extract-
ing valuable information, MIEM constructs more context-
aware feature representations for products. Compared to
the previously deployed single modal image search model,
MIEM achieves higher the recall score while requiring signif-
icantly less feature storage space compared to using Image-
to-image only. The model has become an essential part of
the Shopee Image Search Engine. Since its deployment in
March 2023, it has help the Shopee e-commerce platform
achieve 9.90% higher clicks per user and a 4.23% higher
orders per user, thereby bringing significant benefits to its
businesses.

In subsequent research, we will explore how to enhance
MIEM from the perspective of data privacy preservation via
federated learning (Yang et al. 2020; Goebel et al. 2023) to
further improve user experience.
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