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Abstract
In the field of finance, the underwriting process is an essential
step in evaluating every loan application. During this stage,
the borrowers’ creditworthiness and ability to repay the loan
are assessed to ultimately decide whether to approve the loan
application. One of the core components of underwriting is
credit scoring, in which the probability of default is estimated.
As such, there has been significant progress in enhancing the
predictive accuracy of credit scoring models through the use
of machine learning, but there still exists a need to ultimately
construct an approval rule that takes into consideration addi-
tional criteria beyond the score itself. This construction pro-
cess is traditionally done manually to ensure that the approval
rule remains interpretable to humans. In this paper, we out-
line an automated system for optimizing a rule-based system
for approving loan applications, which has been deployed at
Hyundai Capital Services (HCS). The main challenge lay in
creating a high-quality rule base that is simultaneously sim-
ple enough to be interpretable by risk analysts as well as cus-
tomers, since the approval decision should be accountable.
We addressed this challenge through principled submodular
optimization. The deployment of our system has led to a 14%
annual growth in the volume of loan services at HCS, while
maintaining the target bad rate, and has resulted in the ap-
proval of customers who might have otherwise been rejected.

Introduction
Finance companies process loan applications by assessing
the customer’s credit score and estimating the risk to de-
cide whether to approve or decline the application. During
this underwriting process, the credit is assessed via various
estimation models such as internal risk scores or external
credit bureau (CB) scores, commonly based on the estimated
probability of default within the next 6 to 12 months. Then,
a cut-off score would be set for approving or declining the
loan application, such as ”deny the loan if the score is under
700.” The loan approval rule is usually comprised of such
binary decision rules that take into account not only the esti-
mate from the credit scoring model but also a wide range of
other credit information.

Korean financial market is known to be relatively strong in
the availability of credit information sources: there are sev-
eral CBs which provide finance companies with not only the
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main CB scores for the general population but also various
sub-CB scores for specific segments (e.g. customers under
a debt workout program), as well as other detailed infor-
mation sources such as credit summaries, alternative sum-
maries, and income estimates. Thus, financial companies in
Korea are thus highly motivated to leverage these sources of
credit information to make more effective decisions on loan
applications, which is especially true for those companies
specialized in the credit finance business in order to gain a
strong competitive edge.

The availability of various credit information has facili-
tated the development of advanced credit scoring models:
while logistic regression has been the conventional model
of choice, more sophisticated machine learning (ML) mod-
els such as XGBoost (Chen and Guestrin 2016) and Light-
GBM (Ke et al. 2017) are now being put to practical use.
However, when it comes down to the final decision whether
to approve or reject loan applications, the analyst would still
prefer manually defining decision rules based on credit risk
analysis for accountability. Thus the ultimate goal is to de-
velop a systematic method for optimizing the loan approval
rule, automating the conventional process involving man-
ual construction and evaluation by analysts. Yet, the deci-
sion rules behind the loan approval rule should remain inter-
pretable in order to comply with various regulations in the
financial market, thus precluding most of the advanced deep
learning models.

In this paper, we detail the development and deployment
of a system at Hyundai Capital Services (HCS) for auto-
matically constructing an interpretable loan approval rule.
Named the HCS Automated Loan Approval Rule Engine,
this system was deployed incrementally, beginning with a
specific customer segment in August 2021 and ultimately
expanding to encompass all of our customers by 2022. Com-
pared to the previously operational approval rule, crafted
by human expert analysts, the system has contributed to a
yearly volume growth of 14% for credit loan service, equiv-
alent to several tens of million USD. The system is now ac-
tively employed in shaping approval rules for credit loan ser-
vices, and expanded to auto loan services. For the purpose
of this paper, we will focus on the credit loan service as our
case study.
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rule # atomic rule # good cases # bad cases estimated
bad rate

1 if (A <457) & (B >340K) then decline 220 37 14.4%
2 else if (C >= 2) & (D >= 0.9) & (F >= 3) then decline 225 29 11.4%
3 else if (G <513) & (H >= 2) then decline 254 26 9.3%
...

Table 1: An example of loan approval rule. Features are anonymized and the numbers are not real.

Background
In the realm of credit loan services, risk management ana-
lysts construct new loan approval rules on a monthly basis to
ascertain customer eligibility, as well as to establish personal
credit limits for those deemed eligible. These credit limits
are then presented to the customers in conjunction with the
interest rate on the loan. It is important to note that the rules
for determining both the credit limit and the interest rate are
distinct processes, set up separately from one another. These
rules fall outside the purview of this paper, which solely con-
centrates on binary decisions related to approval, based on
the eligibility of the loan application.

Loan approval rules are commonly structured as a list of
if-then conditions, with each atomic rule defining specific
criteria based on credit information. If a customer’s profile
meets any of these conditions, the loan application is de-
clined; if no atomic rules are activated, the application is
approved. An illustrative example of loan approval rule can
be found in Table 1. The atomic rules within the list are or-
ganized by priority, usually determined by the estimated rate
of ’bad’ customers1 that fall under each condition. As a re-
sult, atomic rules associated with higher estimated bad rates
are placed higher in the list, with the exception of those as-
sociated with regulatory compliance (e.g., customers with a
Debt-to-Savings Ratio higher than 100% are ineligible for
a new loan, due to the regulatory requirement imposed by
the Ministry of Finance and Economy), which are positioned
at the top. This standard practice for arranging the order of
atomic rules assists analysts in determining the cut-off point.
Typically, they first construct a sufficiently extensive list and
then select a prefix of atomic rules that aligns with the over-
all operational risk criteria concerning bad rates. The pref-
erence among risk analysts is often for a more succinct rule
(i.e., a shorter list) to facilitate human inspection. Conse-
quently, prioritizing atomic rules with higher estimated bad
rates early in the list is generally helpful, as these rules tend
to reduce the overall bad rate more effectively than others.
The clarity of this model for loan approval also enables the
provision of intuitive and convincing explanations to both
customers and financial authorities, making it a valuable tool
in the accountable lending process.

Our objective was to develop a framework to optimize the
loan approval rule model, aiming to substantially enhance
the underwriting process beyond what could be achieved
through approval rules manually crafted by risk analysts. To

1Throughout this paper, we use the more generic term ’bad,’ as
the term ’default’ carries a stricter definition under Basel (Wagner
2017)

meet this goal, we were tasked with addressing the following
specific business requirements of the framework:
• Accountability: The resulting rule should be readily in-

terpretable, necessitating the use of a white-box model.
This model must comprise fully human-interpretable
atomic rules, each formatted as logical combinations (us-
ing ”and,” ”or”) involving no more than four features
with comparison operators (>, <, ==) to ensure simplic-
ity.

• Monotonicity: The atomic rules must be constructed in
a manner consistent with stakeholder’s domain under-
standing, whether for customers raising complaints or
regulatory auditors. For instance, a rule such as “recent
delinquencies must be two or less” may not suffice in ex-
plaining a rejection if another customer with more delin-
quencies is approved. Therefore, the decision must ad-
here to monotonicity constraints on relevant feature sub-
sets, like “2 or more months of delinquency cases in the
past 3 years & recent credit card limit utilization rate 90%
or more & having loan balances at 3 or more institutions.”

• Conformance: Preferably, the estimated bad rates of
the atomic rules should be arranged in decreasing order,
maintaining alignment with traditional, manually con-
structed loan approval rule. A deviation from this pattern
may render risk analysts uneasy, complicating the final
human inspection phase.

• Analysis Tools: The system must offer user-friendly sim-
ulation toolkits and visualization interfaces, assisting an-
alysts in fine-tuning the approval rule. Specifically, they
should quantify the trade-off between the volume (total
credit limit of approved loans) and the probability of bad
loan. Lowering the target bad rate to minimize risk will
naturally reduce volume by declining more applications,
and vice versa. This trade-off analysis is vital for risk
management-based business decisions. We have also de-
veloped models to predict customer responses and credit
line utilization rates to forecast volume, although a de-
tailed coverage of these additional models is outside the
scope of this paper.

• Automation: The entire process, from data preparation
to the final construction of loan approval rules, must be
automated. This includes the potential for auto-retraining
at regular intervals. Historically, this task depended on
manual analysis by credit risk team members, limiting
the frequency of rule updates, which hinders quickly re-
sponding to internal and external environmental changes.

In the subsequent section, we introduce our automated
framework that substantially refines the procedure for op-
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Step # features Selection Criteria

Total 1656

- internal data (scores, loan history,
weblog, legacy rules, etc.)
- All data that can be obtained from
credit bureaus

1st Selection
focus on
predictive power

936

- Remove features with low infor-
mation value (some critical credit
history information is forced to re-
main even if the IV is low due to
small coverage)
- Among high correlated features,
remove the one with low IV

2nd Selection
focus on
explainability

358

- Remove features non-explainable
for rejection (e.g. web/mobile
channel usage)
- Remove features that rely on spe-
cific circumstances (e.g. overseas
credit card usage was not reliable
during pandemic)

Table 2: Feature selection procedure

timizing and analyzing the loan approval rule, while concur-
rently satisfying the previously outlined requirements. Ini-
tially, we delineate the candidate set of atomic rules, en-
suring that they possess both substantial support and ade-
quate discriminative accuracy, defining this collection as the
search space. This search space is constituted by the atomic
rules corresponding to leaf nodes in a decision tree or an
ensemble model trained on pertinent loan data. To maintain
the search space at a manageable size, we employ a com-
binatorial enumeration of features or sample them utilizing
domain expertise. Ultimately, the approval rule is derived by
selecting an optimal subset of atomic rules within the search
space, aligning with the operational objective, whether in
terms of the overall bad rate (e.g., 5%) or the total volume
(e.g., 100 billion KRW).

Methodology
Dataset
We compiled a dataset comprising active customers who
availed the personal loan service with Hyundai Capital Ser-
vices as of August 2020. Each customer was assigned a bi-
nary label, designating them as either ”good” or ”bad” de-
pending on whether their loan was classified as bad within a
12-month period from the start date. Specifically, customers
with a delinquent history of 60 or more days within this 12-
month interval were defined as ”bad,” while the remaining
customers were categorized as ”good.”

However, customers with a delinquency period ranging
between 10 and 59 days presented a challenge as they did
not neatly fall into either the ”good” or ”bad” categories,
potentially weakening discrimination. Consequently, these
customers were excluded as indeterminate. Data points that
were already classified as ”bad” (i.e., having been delinquent
for 60 or more days at the starting date) were likewise ex-
cluded.

In terms of feature selection, we began with an extensive
list of 1,656 candidate features. These encompassed predic-

tions from credit scoring models (such as CB scores and in-
ternal scores), external credit information (including delin-
quency history, loan/repayment history, and credit card us-
age history), and internal behavior information (e.g., loan
history with HCS, delinquency history, weblogs). This ini-
tial set was subsequently refined down to a total of 358 fea-
tures through a rigorous selection process. Features were ini-
tially chosen for their top predictive power, as determined
by information value (IV) with auto-binning, and further fil-
tered to remove those with high correlation. This was done
to ensure appropriate data coverage and to consider the cor-
relative relationships among the variables (as detailed in Ta-
ble 2).

Search Space Builder
The search space comprises a set of useful atomic rules that
serve as candidates for forming the optimized loan approval
rules; these are equivalent to the rules present in each line
of Table 1. These atomic rules are identified by uncovering
frequent patterns within the data, a well-established field of
study within data mining (Agarwal, Srikant et al. 1994; Han
and Pei 2000; Han, Pei, and Yin 2000). In the present study,
we utilized XGBoost (Chen and Guestrin 2016) to populate
the search space with pertinent rules. XGBoost is a widely-
used data mining algorithm that builds an ensemble of deci-
sion trees.

The generation of candidate rules involved training the
ensemble of decision trees repeatedly to predict the binary
labels. We then extracted the logical conditions correspond-
ing to each path from the root node to the leaf nodes. A col-
umn sampling rate constraint was applied as a hyperparam-
eter, enabling the production of diverse trees through repe-
tition. In alignment with the accountability requirement, we
capped the maximum tree depth at four to prevent the for-
mulation of overly complex rules that might hinder human
interpretability.

Below, we describe some noteworthy settings for running
the XGBoost for constructing the search space:

1. Monotonicity: The atomic rules within the search space
must adhere to the monotonicity requirement concern-
ing relevant features. For instance, an increase in the
number of delinquencies is indicative of a negative trait.
Therefore, rules involving this feature must employ the
greater-than condition (>) with a specific value. Con-
versely, the number of days since the last delinquent date
is preferably large, requiring the application of the less-
than condition (<) with a particular value. While XG-
Boost has the capability to manage monotonicity con-
straints, it doesn’t entirely satisfy our requirement: it
merely enforces the monotonic relationship between per-
tinent features and the predicted probability of the label.
As such, we continue to verify the monotonicity con-
straint of each rule during extraction, omitting any that
are violated.

2. Minimum Precision: The predictive efficacy of a can-
didate atomic rule can be depicted through its precision,
which is the percentage of actual bad instances among
those predicted as bad by a specific leaf node within a
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node condition % total estimated
bad rate monotonicity support precision insert into

search space?
1 (A>= 3) & (C>= 17) & (B>= 1.5) 1.3% 79.6% O O O O
2 (A>= 3) & (C<17) & (D>= 640) 0.6% 55.8% X O O X
...
5 (A>= 3) & (C<17) & (D<640) 1.1% 28.8% O O X X
6 (A<3) & (D>= 640) & (D<15130) 20.3% 21.4% X X O X
7 (A<3) & (D<640) & (A>= 1) 5.1% 15.3% X O O X
8 (A<3) & (D<640) & (A<1) 73.9% 5.5% X X X X

Table 3: Extracting atomic rules corresponding to leaf nodes from a decision tree of depth 3, and checking the condition for
their validity. Features are anonymized.

tree. Our objective here is to ascertain a sufficiently ex-
tensive set of rules that put forth high bad rates for inclu-
sion in the final approval rule. Accordingly, the candidate
atomic rules are limited to those leaf nodes that demon-
strate precision at or above a designated threshold.

3. Adequate Support: An atomic rule’s significance is
contingent on the number of customers it filters falling
within a particular range. For example, an atomic rule
that excludes 0.2 million out of 1 million customers is un-
suitable, as it would result in an excessive rejection rate
due to one sole condition. Conversely, a rule that filters
merely five individuals from 1 million customers would
contribute to erratic rule coverage, fluctuating based on
the time of deployment. Such inconsistency could under-
mine operational stability and complicate the explanation
of the approval rule to stakeholders. Therefore, we have
eliminated from consideration any leaf nodes not meet-
ing the specified minimum/maximum support criteria.

Table 3 provides an illustration of the process by which
rules are extracted from a decision tree, in accordance with
the aforementioned settings. Furthermore, to enhance the di-
versity of the rules within the search space and to augment
their predictive accuracies, we implemented the subsequent
techniques that leverage domain-specific knowledge:

4. Segmentation: In instances where the company has a
strategically targeted customer segment, it is possible to
derive a more specialized approval rule by training the
tree-based model on that particular subset of customers.
For instance, when targeting customers who already pos-
sess loan balances with watch-listed financial companies,
the tree may set a lower threshold on the number of past
delinquencies in comparison to a tree trained on the en-
tire customer data set. We then incorporate this special-
ized rule into the search space, conjoined with the condi-
tion ”Having loan balance at watch-listed financial com-
panies == True,” which defines the particular customer
segment.

5. Feature Dropping: Certain features with pronounced
predictive power (e.g., CB scores and previous delin-
quencies) are prone to being chosen as a node in the ma-
jority of the trees, leading to the possibility that analo-
gous rules may be repeatedly added to the search space.
To mitigate this concern, we selectively excluded some
features that are too highly correlated with the label be-

fore constructing the trees, in order to extract additional
and diversified rules. Moreover, we endeavored to further
diversify the search space by building trees after exclud-
ing all features except those most frequently absent from
the rules.

A simple calculation of combinatorial enumerations of all
the features yields the search space size of

(
358
2

)
+

(
358
3

)
+(

358
4

)
≈ 680 million atomic rules, but using the aforemen-

tioned settings, we ended up with the search space size of
approximately 50,000 atomic rules.

Rule Construction Engine
An ideal loan approval rule should minimize the overall bad
rate of the approved customers while maximizing the vol-
ume (i.e. aggregate credit limit of all approved customers)
which determines sales revenue. Note that these two objec-
tives are conflicting with each other: in order to reduce the
bad rate, the loan approval needs to be conservative by de-
clining more customers, but this would end up reducing the
volume. On the other hand, in order to increase the volume,
we need to approve more customers, but this would increase
the bad rate. We address this trade-off by framing the prob-
lem as a constrained optimization problem: find the set of
rules that would minimize the overall bad rate while making
the volume above a certain threshold.

We address the problem as submodular optimization (Fu-
jishige 2005) by defining submodular functions on the set
of rules that reflect the two objectives. Formally, given a fi-
nite set X , a set function f : 2X → ℜ is called submod-
ular if for all subsets A ⊂ B ⊆ X and x ̸∈ A, it holds
that f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B), i.e. it sat-
isfies the ”diminishing returns”. Although finding the opti-
mal set that maximizes f is known to be computationally
intractable, there are many algorithms with simple heuris-
tics that achieve strong approximation bounds (Krause and
Guestrin 2005; Nemhauser, Wolsey, and Fisher 1978; Sviri-
denko 2004).

Given a set R of all atomic rules that comprise the search
space, we first define function f : 2R → ℜ that counts the
number of bad customers in the dataset, correctly filtered
out by the set of atomic rules chosen by the loan approval
rule. Since each atomic rule filters out a potentially overlap-
ping subset of bad customers in the dataset, f is naturally
submodular. By maximizing f , we obtain the optimal set of
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rules that filters out as many bad customers as possible. On
the other hand, we can notice that there is a possibility that
we end up incorrectly filtering out too many good customers
since f only counts bad customers. In practice, this was not
a big problem since the search space was constructed in such
a way that all the rules are of high precision.

At the same time, the loan approval rule should not lose
too much in volume. For this objective, we define function
g : 2R → ℜ that calculates the loss in volume from the
filtered-out customers. Note that customers have different
credit limits, and thus some rules will incur a higher loss
in volume and vice versa, even if they declined the same
number of customers. Again, since each rule filters out a
potentially overlapping subset of customers, g is naturally
submodular.

Using f and g, we obtain submodular cost submodular
cover (SCSC) and submodular cost submodular knapsack
(SCSK) formulations for constructing the optimal rule (Iyer
and Bilmes 2013):

SCSC: min g(X) s.t. f(X) ≥ a

SCSK: max f(X) s.t. g(X) ≤ b,

where the SCSC formulation states that we want to max-
imize the volume while making sure that we don’t ap-
prove too many bad customers, and the SCSK formulation
states that we want to minimize the number of bad cus-
tomers being approved while making sure that the volume
is above a certain threshold. Although these two problems
are computationally intractable, there are a number of prac-
tical algorithms with strong worst-case approximation guar-
antees (Narasimhan and Bilmes 2005; Iyer and Bilmes 2012,
2013).

In this work, we adopted a greedy algorithm that worked
reasonably well on our dataset. The final rule is obtained by
iterating the following steps that explore the search space
and greedily select rules toward the target volume:
1. If there are any atomic rules that must be included to

comply with regulatory requirements, include them as
the initial set of atomic rules.

2. Identify the remaining pool of customers in the training
data that are not filtered out by the current set of rules,
and calculate the support and the precision on the remain-
ing pool for each of the atomic rules in the search space.

3. Select the atomic rule with the highest precision (i.e.
identify the maximum number of bad customers in the
remaining pool) while satisfying the minimum size con-
dition and not exceeding the volume loss constraint. For
robustness, simulate the atomic rule on the validation set,
and if the filtering size and the precision on the valida-
tion set differ more than some threshold, move on to the
second-best atomic rule. Repeat this until an atomic rule
is found, and remove the rule from the search space as it
has now been selected.

4. Terminate if no atomic rule could be found. If not, repeat
the search loop by continuing to step 2.

This algorithm is essentially the greedy algorithm for
SCSK (Iyer and Bilmes 2013), except we use the validation

rule# rule decision

1 Reject criteria due to regulatory policy
(e.g. Debt-to-Service-Ratio >1.0) reject

2 Reject criteria due to internal policy
(e.g. currently delinquent) reject

... reject
99 (X <3) & (D >1) & (Y <300) reject

100 (E >= 1) & (F >= 90) & (Z >= 7.5) reject
(cut-off point)

101 True approve

Table 4: An examplar rule found by our rule construction
engine. Features are anonymized.

set for the robust selection of rules. Although this algorithm
has a very loose worst-case approximate optimality guar-
antee, we found it working reasonably well on our dataset,
significantly surpassing the previous operating approval rule
developed by human-expert risk analysts. Table 4 shows an
example of the loan approval rule found by the greedy al-
gorithm. Interestingly, when we use this greedy algorithm,
rules with higher bad rates appeared at the head of the list in
all of our experiments, thus coinciding with the traditional
practice in manually crafting the loan approval rule where
the atomic rules are ordered by their estimated bad rates.

To the best of our knowledge, employing submodular op-
timization to build rules for loan approvals has not appeared
in the literature, which highlights the novelty as well as the
practicality of our approach.

Simulation Toolkit
Finally, it was very important that the results from the rule
construction algorithm were clearly communicated to the
risk analysts and the business decision makers. For this, we
needed to conform to the conventional way of consolidating
the final loan approval rule by human experts. Traditionally,
the risk analysts manually crafted the list of atomic rules or-
dered by their importance (i.e. precision), and determine the
cut-off point where the rules below are removed from the
list. By moving the cut-off point up or down, the analysts
simulate the trade-off between the overall bad rate and the
volume, and the final cut-off point is determined based on
the nature of the financial product or the situation surround-
ing the company or the market.

We thus developed an interactive simulation toolkit that
visualizes the trade-off, and let the human expert determine
the cut-off point, shown in Figure 1. To create the simula-
tion plot, we first constructed a sufficiently large rule list by
running the greedy algorithm without the volume constraint
and took each position as a potential cut-off point to gen-
erate data for the graph. Once the human expert determines
the final cut-off point, the greedy algorithm for SCSK in the
previous subsection was run once again to further optimize
on the overall bad rate.

Results
In order to compare the performance of the loan approval
rule from our system against that of the operational base-
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% Ineligible Precision Recall Accuracy F1-score Explainability
SUBMOD 10.5 3.5 66.2 90.2 6.6 Y
BASE 10.4 2.7 52.2 89.9 5.2 Y
LR 10.5 3.1 58.6 90.0 5.8 Y
XGB 10.3 3.5 65.7 90.4 6.7 N
DNN 10.3 3.6 66.3 90.5 6.8 N

(unit for numbers : %)

Table 5: Performance comparison of loan approval rules on our personal loan services data.

Figure 1: The simulation plot of the # bad booked vs. the
volume

line rule built by an expert analyst, we compare these two
rules on the real personal loan service data: we set up both
rules to reject 10% of applicants as being ineligible, result-
ing to approve the remaining 90% of them as eligible for
financing. To compare the performances of the previously
operational rule (BASE) vs. the optimized rule (SUBMOD),
we applied them to samples not included in the population
used for training (out-of-time test data). In addition to these
two strategies, we also tested three credit scoring models,
namely logistic regression (LR), XGBoost (XGB), and deep
neural network (DNN)2 with the same conditions. In order to
assess how well the model was able to filter out (i.e. reject)
customers who are likely to go into delinquency, we calcu-
lated the precision, recall, accuracy, and F1-score metrics
commonly used for evaluation in binary classification tasks
using the ground-truth label indicating whether the customer
actually went into bad over the following 12 months. As
shown in Table 5, the SUBMOD showed significantly better
performance than other strategies across all of the metrics,
and on a comparable level with the much more complex en-
semble model from XGB. Its precision jumped approx. 29%

2Note that DNN cannot be employed in practice due to inter-
nal and external strict regulatory requirements on interpretability.
Similarly, XGB, although an interpretable white-box model, can-
not be used as well since it tends to build very complex unreadable
rules from ensembles. On the other hand, the Decision Tree with an
equivalent maximum depth of 4 would inevitably show very poor
performance due to limited representational capacity.

vs. the baseline strategy (2.7% to 3.5%) while the ineligible
rates were set to be similar at 10%, suggesting that the SUB-
MOD was better at rejecting bad customers, thus achieving
higher efficiency in loan approvals. This performance gain
over BASE is mostly due to the fact that our rule engine
automatically generates diverse atomic rules in the search
space builder, going beyond the limitation of manual prepa-
ration by human experts. Thus, we were able to find the
optimal point at much higher precision. This directly im-
plies higher profitability for the company which can now
reject individuals more likely to go into delinquency and in-
stead approve better quality customers. On the other hand,
the ensemble model from XGB showed slightly higher per-
formance but cannot provide a transparent explanation to
customers, and is therefore unsuitable for deployment. The
SUBMOD rule, on the other hand, is clearly explainable
yet shows just as high performance as XGB. Based on this
result, the management at the company decided to replace
the previously operational rule (BASE) built by risk ana-
lysts with the optimized rule (SUBMOD) constructed by our
rule engine. In addition, we can obtain a plot of the F1-score
versus the percentage of customers rejected by moving the
cut-off point in the list, thus providing a comparative anal-
ysis against the human baseline strategy and other models
(Figure 2). This is similar to the Receiver-Operating Charac-
teristic (ROC) curve analysis, but provides a more intuitive
picture for business decision makers since the control pa-
rameter is given in terms of operational condition (i.e. how
many customers are we willing to reject, and thus reduce the
volume?)

Lastly, using our rule engine, we uncovered insights about
alternative features not previously considered by risk ana-
lysts. For example, certain features like consistent payment
of insurance fees or a recent car purchase were overlooked
by analysts due to their lack of intuitive explanation in iso-
lation. Yet, when paired with commonly known negative
credit features (e.g., delinquency history and multi-debt in-
formation), these attributes proved valuable in identifying
good customers who might otherwise be rejected.

Application Use
Once we observed promising performance of the optimized
rule by back-testing with the initial dataset gathered for de-
velopment, we tested the optimized rule for 3-month period
in Aug-Oct, 2021 by deploying it as an override. Here, the
override refers to a policy of maintaining the current baseline
rule for operation, while providing financing opportunities
to customers who had been rejected by the baseline rule but
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Figure 2: Performance comparison of SUBMOD (solid
curve) against human expert baseline strategy (square dot)
and logistic regression (CB score, dotted curve)

predicted
bad rate

actual
bad rate

BASE 3.86% 3.83%
SUBMOD override 2.54% 2.58%
Overall 3.71% 3.70%

Table 6: The live-test performance comparison of predicted
and actual bad rates.

found to be eligible by the optimized rule. We then followed
up this entire active customer base to see if the approved loan
actually became bad or not (bad within 12 months) . The ac-
tual bad rate for that customers was similar to the estimated
bad rate, shown in Table 6, which was the objective for the
override test, while volume grew by 14%, live-validating the
effectiveness of the optimized rule.

In addition to the performance upsides such as volume
growth and reduced risk for the company, our system also
offered substantial benefits in terms of internal operational
structure efficiency. The company was able to move much
more nimbly to address the rapidly changing market, by re-
placing the manual rule construction pipeline and updating
the loan approval rule as often as needed. Also, it was easy
to incorporate new source of information on credit score due
to the automatic rule construction engine. The clarity of the
rules eased the burden of cross-checking and reviewing to
identify potential risks that would have been difficult to ad-
dress pre-emptively with a black-box model, and allows risk
analysts who are unfamiliar with machine learning to have
a full control on the rule. It also offered a significant advan-
tage in terms of consumer rights protection, since the deci-
sion can be explained in a transparent manner to customers.

We have also broadened the use of our rule construction
engine to refine debt collection strategies, classifying delin-
quent customers for specific recovery actions. Our primary
objective is to enhance collection rates by adjusting action
intensity to each customer’s recovery likelihood. Employ-
ing the same submodular optimization approach, our engine

crafts allocation rules. These rules prioritize in-person visits
for those deemed highest risk, human calls for intermediate
risk, and call-bot interactions for those at the lowest risk.
Over the past 9 months, this methodology has proven ef-
fective, safeguarding delinquent balances of several million
USD.

Deployment and Maintenance
Since initial deployment in Aug 2021, the optimized loan
approval rule has now been applied to across all customer
segments in Nov 2022, so pre-approval is being solely con-
ducted by the optimized rule. The performance results are
gathered on a monthly basis, which runs through fully auto-
mated processes on the internal MLOps system (Figure 3).
The debt collection allocation uses the same rule optimiza-
tion pipeline since Oct 2022.

Since its initial deployment, the loan approval rule has
been regularly revised to account for the evolving profiles
of incoming customers due to economic shifts. To achieve
this, we first implemented a soft-retraining process every 3
months: while retaining the existing search space, we update
the training data to identify an optimized rule. This entails
automatically collecting training data via the MLOps sys-
tem, running the rule construction engine, and subsequently
back-testing and simulating the performance of the new rule
set. This allows us to determine if the current approval rule
requires replacement. When fresh insights emerged from ex-
ploring features beyond credit information, we conducted
full re-training either semi-annually or annually. This in-
volved updating the search space with the most recent data
to incorporate these new features.

Our real-world application faced certain challenges since
the deployment. While the overall delinquency rates im-
proved, we noticed a 2-percentage point increase among
customers with credit scores below 700. This metric has
traditionally been used to monitor customer profile portfo-
lios. Such outcomes made it challenging to secure full sup-
port from internal risk analysts and organizational stake-
holders. To address this, we’ve adopted a hybrid operational
approach. This model merges optimized rules from distinct
search processes, some of which include primary score de-
terminants from the traditional human-driven strategy. This
combined approach not only simplified internal communi-
cation but also ensured a seamless transition.

Related Work
Optimizing loan approval rules comprises two primary
tasks: estimating the bad rate, often referred to as credit scor-
ing models, and constructing a decision rule to finalize loan
application outcomes as approved or declined.

Historically, the bulk of research has concentrated on
leveraging machine learning to refine credit scoring mod-
els, while simpler decision rules, such as thresholding based
on predicted scores, were commonly employed. Extensive
literature exists on this subject (see, for example (Dastile,
Celik, and Potsane 2020)). It encompasses a diverse ar-
ray of machine learning models, ranging from logistic re-
gression (Cramer 2002) and decision trees (Quinlan 1986;
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Figure 3: A schematic overview of the HCS loan approval rule engine.

Kruppa et al. 2013), to nsemble models like extreme gradi-
ent boosting (XGBoost) (Chen and Guestrin 2016), and even
deep neural networks (Babaev et al. 2019).

When it comes to constructing decision rules, Dumitrescu
et al. (2022) introduced the penalized logistic tree regression
(PLTR). This method generates covariates for the logistic
regression model by extracting logical formulas from leaf
nodes in decision trees. While this facilitates the creation of
a sophisticated scorecard model from data, its primary util-
ity lies in predicting credit scores. A nuanced challenge is its
limited application in overall underwriting, especially when
balancing the trade-off between bad rate and volume. Chen
et al. (Chen et al. 2018) put forward a 2-layer neural network
reminiscent of traditional subscale models. Yet again, its
strength is primarily in forecasting credit scores. Of signifi-
cant relevance to our work is the falling rule list (Wang and
Rudin 2015; Chen and Rudin 2018). This model shares sim-
ilarities with our underwriting strategy, presenting decision
rules ordered by the estimated probability of a specific out-
come. However, while the falling rule list emphasizes find-
ing optimal solutions via a Monte-Carlo search, it struggles
with scalability on datasets of our magnitude. Moreover, its
learning objective requires expansion to cater to multiple ob-
jectives, i.e. bad rate and volume. Despite these challenges,
the falling rule list remains a promising framework. In fu-
ture endeavors, we plan to consider extending and integrat-
ing this model for constructing loan approval rules.

While enhancing the predictive accuracy of credit scor-
ing models using advanced machine learning and extensive
data is feasible, model explainability remains crucial. In the-
ory, techniques like LIME (Ribeiro, Singh, and Guestrin
2016) and SHAP (Lundberg and Lee 2017) can elucidate

intricate machine learning models. However, in our view,
these methods fall short in highly regulated industries like
finance (Rudin 2019). Their explanations often failed to pro-
vide an accurate representation of the model’s internal pro-
cesses.

Conclusion
In this paper, we introduced the Automated Loan Approval
Rule Engine, a system deployed at HCS. This practical
framework streamlines the creation of loan approval rules
for financial services. While advanced machine learning
models have substantially improved credit scoring, they
pose challenges in interpretability and accountability when
used directly for underwriting. As a result, many have not
been adopted, leaving risk analysts to manually design loan
approval rules. Our system overcomes this limitation, au-
tomating the construction of optimized, yet comprehensible
rules through machine learning (specifically, XGBoost) and
principled optimization techniques by submodular optimiza-
tion. Since its initial live test with a subset of personal loan
customers in August 2021, our system has supplanted the
manual rule-making process. By 2022, it managed all cus-
tomer applications and has now been expanded to tasks such
as debt collection allocation.
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