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Abstract

The current analysis of federated optimization algorithms for
training deep neural networks assumes that the data is non-
sequential (e.g., images), which incurs a smooth loss objec-
tive. In contrast, edge devices generate lots of sequential data
every day, where these sequences exhibit significant sequen-
tial correlation at different time stamps (e.g., text messages).
In order to learn from such sequential data, people typically
use a class of neural networks that is inherently nonsmooth,
with a potentially unbounded smoothness parameter. Exam-
ples include recurrent neural networks, long-short-term mem-
ory networks, and transformers. It remains unclear how to
design provably efficient algorithms for training these neural
networks to learn from sequential data. My goal is to lay the
algorithmic foundation of federated learning with sequential
data, which contributes novel algorithms for learning from
a range of real-world sequential data (e.g., natural language,
electronic health record, transportation, time series, etc.) us-
ing state-of-the-art deep neural networks.

In this talk, I will first motivate the problem by showing
that the transformer, which is widely used for sequential data
learning, has an unbounded smooth landscape. Then, I will
introduce provably efficient federated deep learning algo-
rithms in the presence of unbounded smoothness. In partic-
ular, I will introduce a few efficient algorithms for various
settings of federated learning, including homogeneous data,
heterogeneous data, and partial client participation. The main
result is twofold. First, we show that the designed algorithms
provably small computational and communication complexi-
ties. Second, we establish fundamental hardness results in the
unbounded smoothness setting. Ultimately, I will discuss the
future challenges of extending our research framework from
medium-scale neural networks to large language models.

Federated Learning with Sequential Data. This talk in-
volves the line of work (Liu et al. 2022; Crawshaw, Bao,
and Liu 2023a,b), which focus on federated optimization al-
gorithms for autoregressive models. These models, includ-
ing transformer, are shown to have unbounded smoothness
parameter (Crawshaw et al. 2022).
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