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Abstract

Recently, transformers have become incredibly popular in
computer vision and vision-language tasks. This notable rise
in their usage can be primarily attributed to the capabilities
offered by attention mechanisms and the outstanding ability
of transformers to adapt and apply themselves to a variety of
tasks and domains. Their versatility and state-of-the-art per-
formance have established them as indispensable tools for a
wide array of applications. However, in the constantly chang-
ing landscape of machine learning, the assurance of the trust-
worthiness of transformers holds utmost importance. This
paper conducts a thorough examination of vision-language
transformers, employing three fundamental principles of re-
sponsible Al: Bias, Robustness, and Interpretability. The pri-
mary objective of this paper is to delve into the intricacies
and complexities associated with the practical use of trans-
formers, with the overarching goal of advancing our compre-
hension of how to enhance their reliability and accountability.

Introduction

Inspired from the performance for language-based tasks
(Vaswani et al. 2017; Devlin et al. 2019), transformers were
proposed for vision-based tasks where they process images
as patch tokens (Dosovitskiy et al. 2021). Even with the
modality change the basic architecture remained the same.
These architectures were further extended to accommodate
both modalities, giving birth to transformer-based vision-
language models (Figure 1). Their self-attention module
makes convolutions unnecessary, with (Park and Kim 2022)
stating that multi-head self-attention acts as low-pass filters
while convolutions act like high-pass filters. Their impres-
sive success has been attributed to their ability to model
long-range dependencies and having weak inductive biases,
leading to better generalization. (Long et al. 2022) dis-
cusses a general architecture for the Vision-Language Pre-
trained Models (VLPMs), breaking the architecture into
four categories, namely, Vision-Language Raw Input Data,
Vision-Language Representation, Vision-Language Interac-
tion Model, and Vision-Language Representation. (Long
et al. 2022; Du et al. 2022; Fields and Kennington 2023)
surveys VLPMs based on their architecture, pre-training
tasks and objectives, and downstream tasks, showcasing that
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Figure 1: An example of vision-language model pre-trained
using Cross-Modal Vision-Language Modeling and fine-
tuned for Visual Question Answering.

VLPMs continue to grow not only in terms of accuracy but
size as well, as the newer models have parameters in bil-
lions and can perform several tasks with human-like accu-
racy. As shown in Figure 2, compared to 2018, there has
been a big surge in articles about “vision-language trans-
former” in 2022, nearly 9.5 times more, and an even larger
increase, nearly 12.5 times more, in 2021. A similar trend
is seen with the term ‘vision transformer,” with roughly 15
times more articles in 2022 compared to 2018 and an as-
tounding approximately 21 times more in 2021. Many of
these models are trained on heavy open-web datasets and
are finetuned for different tasks ranging from classification-
based to generative-based.

(Ross, Katz, and Barbu 2021; Birhane, Prabhu, and Ka-
hembwe 2021; Srinivasan and Bisk 2022) have shown that
these heavy and high-performing models suffer from differ-
ent biases like gender and cultural bias. A detailed review
of one of the vision-language transformers by (Srinivasan
and Bisk 2022) depicts gender bias, with purse being the
preferred term for the female gender while briefcase being
the preferred term for the male gender. Just like bias, cases
can be made for robustness and interpretability, iterating a
need for a proper study of transformer models. Efforts have
been made to study transformers in this light for vision and
language-based models individually, but collectively, there
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Figure 2: Keyword Analysis for research papers pertaining
to two keywords, ‘vision-language transformer’ (red) and
‘vision transformer’ (blue) from 2018 to 2022.

are only a few studies so far. Hence, we present an exten-
sive survey of these VLPMs from a dependability and trust
point-of-view by curating different practices, methods, and
models proposed for VLPMs, first expanding on bias, fol-
lowed by robustness, and finally, interpretability. In the end,
we also discuss open challenges in the field. With this study,
we hope to present the current state of VLPMs regarding
reliability and highlight some research gaps that can help al-
leviate the overall state of VLPMs.

An Overview of VLPMs

In VLPMs, both single and dual architecture models have
emerged as powerful tools. Here, we present a brief
overview of these architectures and various pre-training and
downstream tasks.

Single and Dual Architectures: While VLPMs have their
own different architectures, they can be broadly categorized
into two types of architectures (Figure 3). Single-stream
models fuse both modalities early on with a single trans-
former using joint cross-modality like VisualBERT (Li et al.
2019) and ViLT (Kim, Son, and Kim 2021) transformer
models. Dual-stream models, on the other hand, process the
two modalities separately and are then modeled jointly, like
VIiLBERT (Lu et al. 2019) and LXMERT (Tan and Bansal
2019) models. VLPMs can also be divided on the basis of
visual features extracted from the model, like region fea-
tures, usually pulled from object detectors, used by models
like VILBERT (Lu et al. 2019), grid features used by mod-
els like Pixel-BERT (Huang et al. 2020), or patch projection
used by models like ViLT (Kim, Son, and Kim 2021).

Pre-training Tasks: Pre-training has been found to be
very beneficial for transformers and, by extension, for
VLPMs. The models are pre-trained on large datasets to
solve different pre-training tasks in a supervised or self-
supervised fashion. VLPMs generally use image-caption
pairs for pre-training using paired as well as unpaired open
web datasets, depending on the pre-training task. One of the
most common tasks used for pre-training in the language
models is Cross-Modal Masked Language Modeling, and
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Figure 3: Generic single and dual-stream architecture for
pre-trained vision-language transformer Models, The tokens
represented in the figure are after including the positional
embeddings.

it can be easily mapped for cross-modality in the vision-
language domain as well. The task is generally used in a
self-supervised setting where some tokens are masked ran-
domly, and the goal is to predict the masked tokens. An-
other common task is Cross-Modal Masked Region Model-
ing, where tokens are masked out in the visual sequence.
Cross-modal alignment is a task where the goal is to try
to pair image and text, also known as Image-Text Match-
ing (ITM). Cross-modal contrastive Learning is another pre-
training task quite similar to I'TM but in a contrastive manner
in the way that matched image-text pairs are pushed together
and non-matched pairs are pushed apart using contrastive
loss. The large datasets used for pre-training have been con-
sidered to be a cause of bias (Park and Choi 2022; Radford
et al. 2021).

Downstream Tasks: Once VLPMs are pre-trained, they
are finetuned to perform specific downstream tasks such as
Image Captioning, Visual Question Answering, Image Text
Retrieval, Natural Language for Visual Reasoning, and Vi-
sual Commonsense Reasoning. Broadly, the tasks can be
categorized as generative, classification, and retrieval tasks.
Task-specific datasets are used for finetuning the model,
where the heads of the VLPMs are modified based on the
downstream task. VLPMs have shown impressive accuracy
with these tasks. The learned representation helps finetune
the model for specified tasks quickly, especially with the rich
information flowing between the two modalities.

We can draw two important observations from this
overview of VLPMs:

* The architecture of VLPMs differs significantly from
CNNs. Consequently, it’s crucial to develop methods
specifically tailored to the VLPM architecture rather
than merely extending approaches originally designed
for CNNs. This ensures a more accurate and equitable
evaluation of their performance.

Most recent VLPMs undergo training on datasets derived
from the open web, which is a combination of various
sources. This amalgamation raises concerns about the po-
tential incorporation of biases present in the content from
the open web into the models themselves (Mittal et al.
2023).
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Bias Study Models Under Review Bias Metric

Social Bias (Gender and Race) VILBERT, VisualBERT Grounded SEAT and WEAT
(Ross, Katz, and Barbu 2021) >

Gender Bias (Srinivasan and Bisk 2021) VLBERT Association Scores

Social Bias (Gender and Race)
(Hirota, Nakashima, and Garcia 2022b)

NIC, SAT, Att2In, UpDn,
Transformer, Oscar, NIC+

Leakage in Image Captioning
(LIC)

Social Bias (Zhang, Wang, and Sang 2022)

ALBEF, TCL, ViLT

CounterBias

Stereotypical Bias (Gender, Profession, Race,
and Religion) (Zhou, Lai, and Jiang 2022)

VisualBERT, LXMERT, ViLT,
CLIP, ALBEF, FLAVA

vision-language relevance score
and vision-language bias score

Quantifying bias before and after
finetuning (Ranjit et al. 2023)

ResNet, BiT, CLIP, MoCo, SimCLR

Bias Transfer Score (BTS)

Emotional and Racial Bias (Bakr et al. 2023)

NIC, SAT, Att2In, UpDn,
Transformer, Oscar, NIC+

ImageCaptioner?

Table 1: Summarizing research studies that have proposed different bias metrics.

Bias and Fairness

Fairness in Al systems has been primarily viewed as protect-
ing sensitive attributes in a way that no group faces disad-
vantage or biased decision. Biases like gender or racial bias
have proven harmful, especially when they affect humans
in real life (Singh et al. 2022). VLPMs are as vulnerable to
bias as their CNN counterparts. They deal with two modali-
ties and often two-stage training, allowing them to introduce
more biases like pre-training bias or bias against a particular
modality. Literature has shown that VLPMs are heavily in-
fluenced by language modality and can sometimes be harm-
ful. (Kervadec et al. 2021) showed this with reference to the
Visual Question Answering (VQA) task.

Data and Bias

Data has been considered the primary source of bias as it
is a representation of the world that the model is trying
to learn. With VLPMs, this can be an even bigger issue
as pre-training requires large datasets. Many well-known
VLPMs today have been trained on large heavy datasets
crawled from the Internet, giving less control and oversight
during data collection. This can lead the dataset to learn
harmful representations. (Zhao, Wang, and Russakovsky
2021) examines some widely used multimodal datasets for
bias and shows offensive texts and stereotypes embedded
within them. (Bhargava and Forsyth 2019) specifically ex-
amines dataset bias by studying the COCO dataset (Lin et al.
2014), a manually annotated dataset for the image caption-
ing task. The authors not only depict gender and racial bias
but also analyze recent captioning models to see the differ-
ences in the performance from a lens of bias. Some stud-
ies have looked at task-specific datasets as well, as (Hirota,
Nakashima, and Garcia 2022a) analyze five Visual Question
Answering (VQA) datasets for gender and racial bias. (Gar-
cia et al. 2023) focuses on datasets crawled from the Internet
without much oversight from a demographic point-of-view
while also showcasing how societal bias is an issue on vari-
ous tasks and datasets.
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Bias Estimation and Mitigation

(Sudhakar et al. 2021) studies biases present in vision trans-
formers by visualizing self-attention modules, noting en-
coded bias in the query matrix. To study and mitigate these
biases, they further proposed an alignment approach called
TADeT. (Ross, Katz, and Barbu 2021) further measured so-
cial biases in the joint embeddings by proposing Grounded
WEAT and SEAT while also proposing a new dataset for
testing biases in the grounded setting. The study concludes
that bias comes from the language modality, and vision
modality does not help mitigate biases. Moreover, CLIP
(Radford et al. 2021), a heavily used VLPM known for its
zero-shot capabilities, conducted its own bias study, postu-
lating that it may encode social biases owing to the large
open dataset used for its training. The authors tested zero-
shot and linear probe instances of the model to mark the
potential sources of biases and harmful markers. (Zhang,
Wang, and Sang 2022) proposes the CounterBias method
and FairVLP framework to quantify social bias in VLPMs
in a counterfactual manner while proposing a new dataset
to measure gender bias. (Srinivasan and Bisk 2022) studies
gender bias, particularly in the VL-BERT model, by mod-
ifying both language and vision modalities and getting as-
sociation scores. They further create templates for entities to
measure the bias in three instances - pre-training, visual con-
text at inferencing, and language context at inferencing. It is
particularly interesting as investigating the bias at different
stages can not only help dissect the effectiveness of different
modalities but can also allow examination of how VLPMs
can evolve after the modalities integrate, giving a new per-
spective on merging the multiple modalities effectively.

(Hirota, Nakashima, and Garcia 2022b) introduced a new
metric, Leakage for Image Captioning (LIC), to measure
bias towards a particular attribute for the task of image cap-
tioning. The metric requires annotations for the protected
attribute and can also use embeddings that have pre-existing
bias. Furthermore, VLStereoSet (Zhou, Lai, and Jiang 2022)
measured stereotypical biases in VLPMs using probing tasks
by testing their tendency to recognize stereotypical state-
ments for anti-stereotypical images. The stereotype is based
on four categories: gender, profession, race, and religion,
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making the VLPMs select the statements as captions. They
also proposed two metrics called vision-language relevance
score and vision-language bias score, using which they con-
cluded that state-of-the-art VLPMs under consideration not
only encode stereotypical bias but are more complex than
language bias and need to be studied. Several studies have
given mitigation techniques to deal with bias like (Hendricks
et al. 2018; Amend, Wazzan, and Souvenir 2021; Zhao, An-
drews, and Xiang 2023; Wang and Russakovsky 2023). As
can be noticed in these studies, there are different com-
ponents and parts of the entire vision-language processing
pipeline that are put under consideration. Even when look-
ing for societal biases — gender and racial, there is a lack
of commonality, yet none of the observations and results
can be denied as less crucial. We feel that there is a lack of
standard metrics and common protocol in the bias for multi-
modal models so far. In Table 1, we have tried to summarize
some of these studies, detailing the metrics they used and
the models they examined for bias. VLPMs can encode bias
with more opportunities to do so than unimodal models.

Robustness

While accuracy focuses on correctness, robustness focuses
on security by assessing the model for vulnerabilities in
adversarial settings (Singh et al. 2020). Like CNNs, trans-
formers are vulnerable to adversarial attacks. We first dis-
cuss how transformers perform against their CNN counter-
parts. Many have formulated that transformers are more ro-
bust than CNNs, but we believe that architectural differences
were not considered by the adversarial methods used for
these studies. We discuss the robustness of VLPMs exclu-
sively in a separate subsection.

Transformers vs CNNs

Several transformer architectures have performed better than
CNNs, but are they more robust? (Bhojanapalli et al. 2021)
measures the robustness of ViT architectures to answer this
very question and compares them with their ResNet coun-
terparts for the task of image classification. Perturbations
are added to the input using adversarial settings to mea-
sure robustness. The robustness is measured in parts, start-
ing with natural perturbations like blurring, digitizing, and
adding Gaussian noise. It is then measured with respect to
distribution shift and using adversarial attacks. All the com-
parisons are made across varying sizes of ViT and ResNet
architecture, concluding that transformers have a slight edge
compared to ResNets, and with sufficient data, VITs can
outperform their ResNet counterparts. (Shao et al. 2022)
studied the robustness of transformers by exposing them to
white-box and transfer adversarial attacks, concluding that
ViTs are more robust than CNNs. The study also observes
that VITs have spurious correlations and are less sensitive
to high-frequency perturbations. Adding tokens for learning
high-frequency patterns in ViTs improves classification ac-
curacy but reduces the robustness of the architecture.
Hybrid architectures combining ViTs and CNNs can re-
duce the robustness gap between the two architectures. Most
of the studies focus on transfer attacks in lieu of specific
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attacks for transformers. (Bai et al. 2021; Pinto, Torr, and
Dokania 2022) studies the robustness between transformers
and CNNs questioning previous studies (Bhojanapalli et al.
2021; Shao et al. 2022) that show transformers to be more
robust than CNNs claiming unfair settings while comparing
the architectures. The study shows that transformers are not
more robust than CNNs, but on out-of-distribution samples,
transformers outperform CNNs. (Mao et al. 2022) proposed
a Robust Vision Transformer (RVT) after studying the com-
ponents affecting the robustness of the model, proposing a
new patch-wise augmentation and a position-aware atten-
tion scaling (PAAS) to boost the RVT other than modify-
ing damaging elements in the architecture for better robust-
ness. RVT can be used as a backbone or vision encoder for
different VLPMs, just like the Trade-off between Robust-
ness and Accuracy of Vision Transformers (TORA-ViTs)
(Li and Xu 2023) that can combine predictive and robust
features in a trade-off manner. (Mishra, Sachdeva, and Baral
2022) performed a comparative study to measure the robust-
ness of pre-trained transformers on noisy data. The noisy
data is created using poison attacks like label flipping and
has been compared under adversarial filtering augmentation.
They introduced a novel robustness metric called Mean Rate
of change of Accuracy with change in Poisoning (MRAP),
using which they observed that the models are not robust un-
der adversarial filtering. In most of these studies, the com-
parison between CNNs and transformers is drawn from ex-
isting attacks proposed originally for CNNs, but it is impor-
tant to devise attacks that exploit vulnerabilities of the latter,
keeping in mind the critical architecture difference between
the two.

VLPMs and their Robustness

VLPMs are studied under the robustness lens but not as ex-
tensively as unimodal transformers. (Li, Gan, and Liu 2020)
studies VLPMs over linguistic variation, logical reasoning,
visual content manipulation, and answer distribution shift.
These models have already shown better performance in
terms of accuracy. Still, for robustness, the authors propose
an adversarial training strategy called MANGO or Multi-
modal Adversarial Noise Generator to fool the models. Fur-
ther, efforts have been made to devise methods exclusively
for transformers, like the Patch-wise Adversarial Removal
(PAR) method (Shi and Han 2021) that processes each patch
separately to generate adversarial samples in a black-box
setting. The patches are processed based on noise sensitiv-
ity and can be extended to CNNs as well. (Li et al. 2021)
proposed a new benchmark for adversarial robustness on
the task of VQA. (Wei et al. 2022) proposed a dual attack
framework, namely, the Pay No Attention (PNA) method
and PatchOut Attack, to improve the transferability across
transformers that skipped attention gradients in order to cre-
ate adversarial samples. Since the attack framework is sensi-
tive to the transformer architecture, the attacks consider both
patches by perturbing only a subset of them at each iteration
and attention module by skipping some attention gradients.

Other than attacks, (Ma et al. 2022) investigated how
VLPMs perform under data with missing or incomplete
modalities (examining only one modality at a time) in terms
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of accuracy and were improved using different fusion strate-
gies. They concluded that transformers are not only sensitive
to missing modalities but also that there is no optimal fusion
strategy as multimodal fusion affects the robustness of these
models and is dependent on datasets. (Salin et al. 2022) an-
alyzes VLPMs to get a better insight into the multimodal re-
lationship using probing tasks, concluding that concepts like
position and size are difficult for the models under consid-
eration to understand. (Zhao et al. 2023) studies adversar-
ial vulnerability in a black-box setting to perform a realis-
tic adversarial study by manipulating visual inputs. (Schlar-
mann and Hein 2023) on the other hand, studied adversar-
ial robustness for imperceivable attacks on VQA and Im-
age captioning tasks for well-known multimodal foundation
models and (Mao et al. 2023) studies the zero-shot adver-
sarial robustness. The authors proposed a text-guided con-
trastive adversarial training (TeCoA) to be used along with
finetuning to improve the zero-shot adversarial robustness.
All these studies try to examine the robustness by either for-
mulating transformer-specific attacks, proposing new bench-
marks, carefully looking at different architectural compo-
nents, or optimizing training strategies. However, a proper
and common framework can better help compare the vari-
ous VLPMs. The architectural difference alone makes this a
difficult but essential task that needs to be looked at.

Interpretability and Explainability

Irrespective of the architecture, it is imperative that we
can interpret as well as explain the decisions made by the
model. Transformers have relied heavily on attention to pro-
vide that explanation. A few methods originally proposed
for CNNs have been extended for transformers as well,
like GradCAM (Selvaraju et al. 2017). We have catego-
rized the proposed methods into two categories, namely, gra-
dient and visualization-based methods, and probing tasks.
While visualization-based methods usually use inter- and
intra-modality interactions to visually explain the decisions,
probing tasks are specifically designed to explain a particu-
lar aspect or component of the models and can be restrictive.
Finally, we discuss attention and how reliable it is as an ex-
planation.

Gradient-based and Visualization-based Methods

Among several explanation methods proposed in the litera-
ture, many have been extended to transformer-based mod-
els. We first present the different gradient and visualization-
based methods that are more in line with transformers and
VLPMs. Attention maps are a well-known method for in-
terpreting transformer models. Modifications of these meth-
ods have been proposed in the literature, like the Attention
Rollout (Abnar and Zuidema 2020), which combined lay-
ers to get averaged attention. (Voita et al. 2019) modified
the LRP method specifically for transformers overcoming
the computational barriers. Further, Relevancy Map or Hila-
CAM (Chefer, Gur, and Wolf 2021) uses the self-attention
and co-attention modules considering classification tokens
appended during downstream tasks and associated values
to generate a relevancy map tracking interactions between
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different modalities and backpropagating relevancies. The
method applies to both unimodal and multimodal models.
Apart from these methods, VL-InterpreT (Aflalo et al. 2022)
is more like a tool that gives an interactive interface looking
at interactions between modalities from a bottom-up per-
spective. It uses four modality attention heads: language-
to-vision attention, vision-to-language attention, language-
to-language attention, and vision-to-vision attention, allow-
ing it to look at interactions within and between modalities.
MULTIVIZ (Liang et al. 2022) is another method to ana-
lyze multimodal models interpreting unimodal interactions,
cross-modal interactions, multi-modal representations, and
multimodal prediction. gScoreCAM (Chen et al. 2022) stud-
ied the CLIP (Radford et al. 2021) model specifically to un-
derstand large multimodal models. Using gScoreCAM, ob-
jects can be visualized as seen by the model by linearly com-
bining the highest gradients as attention.

(Pan et al. 2021) proposes interpretability-aware redun-
dancy reduction (IA — RED?) to make transformer cost-
efficient while using human-understandable architecture.
The study (Chefer, Schwartz, and Wolf 2022) manipulates
the relevancy maps to alleviate the model’s robustness.
Lower relevance is assigned to the background pixels, so
the foreground is considered with more confidence. (Qiang
et al. 2022) proposes the AttCAT explanation method that
uses attentive class activation tokens built on encoded fea-
tures, gradients, and attention weights to provide the expla-
nation. B-cos transformers are proposed by (Bohle, Fritz,
and Schiele 2023), which are highly interpretable, providing
holistic explanations. (Nalmpantis et al. 2023) proposes an-
other interpretation method called Vision DiffMask, which
identifies the relevant input part for final prediction using a
gating mechanism. A faithfulness test is also used to show-
case the validity of this post-hoc method, concluding that
there is a lack of faithfulness tests in the literature. (Choi, Jin,
and Han 2023) proposes Adversarial Normalization: I can
Visualize Everything (ICE) to visualize the transformer ar-
chitecture effectively. It uses adversarial normalization and
patch-wise classification for each token, separating back-
ground and foreground pixels. The most common theme in
these methods is exploiting attention weights and gradients
to make the information flow more targeted. Another theme
is to extend available metrics by making them computation-
ally effective.

Probing Tasks

Most of the explanation methods for VLPMs are based on
probing tasks. These tasks are designed to study a partic-
ular aspect of the model and thus are hard to generalize.
VALUE or Vision And Language Understanding Evalua-
tion (Cao et al. 2020) method gives several probing tasks
to understand how pre-training helps the learned representa-
tions. The authors made several important observations: (i)
the pre-trained models attend to language more than vision,
something that has been corroborated throughout the litera-
ture; (ii) there is a set of attention heads that capture cross-
modal interactions; and (iii) plotting attention can depict in-
terpretable visual relations as was corroborated in the pre-
vious section as well, among others. (Dahlgren Lindstrom
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et al. 2020) further proposes three probing tasks for visual-
semantic space, which are relevant for image-caption pairs
and train separate classifiers for probing. The tasks are (i) a
direct probing task designed for the number of objects, (ii)
a direct probing task for object categories, and (iii) a task
for semantic congruence. (Hendricks and Nematzadeh 2021)
furthermore proposes probing tasks for verb understanding
by collecting image-sentence pairs with 421 verbs com-
monly found in the Conceptual Captions dataset (Sharma
et al. 2018). (Salin et al. 2022) proposed a set of probing
tasks to better understand the representations generated by
vision-language models, comparing the representations at
pre-trained and finetuned levels. Further, datasets are de-
signed carefully for multimodal probing, trying to reduce de-
pendency on bias while making predictions. While probing
tasks are helpful and can answer meaningfully with regard
to particular problems, they have to be carefully crafted for
relevant results and are very specific. At times, extra models
or classifiers are required for probing, making the probing
tasks applicable to selected models only.

Dissecting Attention

As can be seen in this section so far, attention is heavily used
in the methods proposed to explain and interpret VLPMs. In
fact, attention is one of the main reasons why transformers
have been attributed to working so well. However, recently,
attention has been pointed out not to be a reliable parame-
ter for explaining a model’s decision in some studies. For
VLPMs, in particular, fusing the modalities can make it dif-
ficult to interpret how the attention is distributed and how
it should be explained. (Serrano and Smith 2019) evaluated
attention for text classification, concluding that while atten-
tion can be helpful with intermediate components, it is not a
good indicator for a justification. Further, (Jain and Wallace
2019) studied the relationship between attention weights and
the final decision for several NLP tasks and concluded that
attention weights often do not relate to gradient-based meth-
ods for computing feature importance; hence, they do not
provide helpful or meaningful explanations.

While these methods concluded that attention is not re-
liable as a justification tool, the studies have been limited
to language-based tasks and need a proper in-depth analysis
given how heavily current methods rely on the mechanism
to interpret the models. (Park and Choi 2022) computed
a relation between the attention map and input-attribution
method by proposing Input-Attribution and Attention Score
Vector (IAV). It tried to combine attention with attribution-
based methods to utilize both components as a justification
tool. Such methods can help alleviate this mistrust of atten-
tion. (Sahiner et al. 2022) studies attention under convex
duality that can help provide interpretability for the archi-
tecture. (Liu et al. 2022) takes polarity into consideration
along with attention. The authors propose a faithfulness vi-
olation test that can help quantify the quality of different
explanation methods. We believe that attention needs to be
evaluated as an interpretability metric for more vision and
vision-language tasks. Combining the module with other es-
tablished methods, like attribution-based methods, or exam-
ining the methods on controlled benchmarks can help.
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Open Challenges and Opportunities

The previous sections discuss several methods and tech-
niques to make VLPMs fair, robust, explainable, and inter-
pretable. However, they also highlighted a lack of specific
architecture-based methods and standard protocols. Even
with all the progress, there are several open challenges that
require further development and analysis. Here, we discuss
some of the open challenges for improving different aspects
of the trustworthiness of VLPMs.

Trustworthiness of VLPMs: The concept of trustworthi-
ness as a whole is lacking in the current analysis of VLPMs.
A formalized and standardized framework can help set the
baselines for the growing number of transformer architec-
tures. One basic need is to make these models just as trust-
worthy to ensure that their decisions can be trusted and re-
lied upon while staying away from harmful biases like using
faithfulness tests for quantifying the model’s explainability.
As we continue to use these models for security-critical ap-
plications, we need to be able to depend on the models and
their decisions.

Examining Attention: Attention mechanisms are often
used to explain how models make decisions by creating vi-
sual representations that provide reasoning behind these de-
cisions. However, to better understand and interpret atten-
tion, especially in the context of vision and cross-modality,
we need to thoroughly examine attention modules. Analyz-
ing models under adversarial conditions can also help us
gain valuable insights and improve our understanding of at-
tention mechanisms. Additionally, attention is a critical fac-
tor in ensuring the trustworthiness of transformer models.
Therefore, we should examine attention from three differ-
ent angles: its impact on model performance, its role in ex-
plaining decisions, and its role in understanding the model’s
reasoning.

Probing the Vision Modality: The literature has time and
again iterated that for VLPMs, decisions have a stronger in-
fluence from the language modality than the visual modality.
We believe a big gap exists between a systematic review of
how the vision modality affects decisions and how we can
better utilize it to avoid language bias. While tasks like VQA
have recognized language bias, VLPM as a generalized ar-
chitecture has not been explored for this bias as extensively.
Better pre-trained tasks aligning the vision modality along
with cross-modality interactions can be a way forward for
improving the generalization as well as the effect of the vi-
sion modality on the entire model. Moreover, vision plays a
crucial role in understanding object semantics on tasks like
object detection and semantic segmentation, and thus, their
reduced influence in vision-language tasks can be seen as
a disadvantage. Studying the alignment between vision and
text modality can also be a way forward.

Better Generalized Methods: There is a need for better
generalized methods that can evaluate not only between
CNNs and transformers but also between different archi-
tecture formats within transformers. Also, with increasing
hybrid architectures, such methods can help create a better
comparison framework, providing effective baselines for fu-
ture studies. Some studies (Gui et al. 2022; Tang et al. 2023)
have used one modality to guide the other while training or
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used one modality to train the multimodal models, which
can allow correcting for bias or adversarial vulnerabilities.
Cross-modality and Universal Weights: Transformer
models are known for their similar architecture, even when
processing different modalities. However, the pre-trained
weights are not as easily adapted between the modalities,
and alignment remains an open challenge. Aligning the two
modalities can help improve the representations for VLPMs
and better project the two modalities in a similar projection
space. A universal model that can represent both modalities
similarly can help with performance as well as robustness,
however, there is still a gap in getting universal pre-trained
weights that can adapt to different modalities and require
further research.

Strategic Pre-training: Pre-training has been demonstrated
to be beneficial for transformers, but it is costly. It can be a
tedious process that requires large datasets and pre-training
tasks that utilize heavy computing power. We have also seen
how these large datasets can be a potential source of bias.
With better and more focused pre-training strategies (Zhou
et al. 2020), the training cost can be reduced while improv-
ing task-aware performance. With proper strategies in place,
bias at the pre-training stage can be mitigated or avoided
during finetuning.

Interplay of VLPMs with Audio Models: In several mul-
timedia applications ranging from audio-visual scene com-
prehension to speech-driven image recognition and immer-
sive human-computer interactions, the fusion of vision, lan-
guage, and audio plays a pivotal role. Consequently, it be-
comes imperative to explore the interplay between audio
models and VLPMs to enhance our capabilities in percep-
tion, understanding, and communication, thereby offering
more enriched and immersive experiences.

Responsible ML Datasets: The trustworthiness of VLPMs
and transformer models is intricately tied to their training
data. These algorithms learn patterns from the data they are
exposed to, which may inadvertently incorporate any inher-
ent flaws present in the data, thereby influencing their be-
havior. Therefore, it is important to understand the crucial
role of Responsible Machine Learning Datasets (Mittal et al.
2023), encompassing aspects such as privacy (Chhabra et al.
2018) and adherence to regulatory standards. In addition,
machine unlearning concepts should be explored to ensure
these systems can adapt and comply with evolving regula-
tory norms.

Discussion

Despite the remarkable human-like performance demon-
strated by Vision-Language Pre-trained Models (VLPMs)
and Vision Transformers, it is of paramount importance not
to underestimate the crucial dimension of trustworthiness.
As VLPMs continue to gain widespread adoption on a global
scale, a rigorous examination becomes imperative. This pa-
per presents a comprehensive analysis of VLPMs, address-
ing three essential dimensions: bias/fairness, robustness, and
explainability/interpretability. Firstly, we scrutinize biases
within VLPMs, recognizing that while datasets often serve
as the primary source of bias, biases can also seep into the
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models and algorithms themselves. Addressing this issue re-
quires a thorough evaluation and mitigation study, a chal-
lenge further complicated by VLPMs’ multidimensional na-
ture encompassing both vision and language. Establishing a
robust framework is essential to conduct bias assessments
tailored to these complex models effectively. Next, we dis-
cuss about the robustness of VLPMs. While VLPMs have
been extensively compared to their CNN counterparts, a no-
ticeable gap exists when it comes to architecture-specific
studies that explore vulnerabilities unique to VLPMs. Fi-
nally, we explore VLPMs using visualization-based and
probing methods, which, although limited in availability,
provide valuable insights to enhance our comprehension
of VLPMs’ inner workings. We also highlighted some of
the open challenges confronting VLPMs. We hope that this
study serves as a foundation for researchers to identify gaps
and work towards enhancing both the performance and trust-
worthiness of these models.
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