
TAU: Trajectory Data Augmentation with Uncertainty for Next POI
Recommendation

Zhuang Zhuang1, 2, Tianxin Wei3, Lingbo Liu4, Heng Qi1, 2*, Yanming Shen1, 2, Baocai Yin1, 2

1Dalian University of Technology, China
2Key Laboratory of Social Computing and Cognitive Intelligence (Dalian University of Technology), Ministry of Education,

Dalian, China
3University of Illinois Urbana Champaign, USA

4Pengcheng Laboratory, Shenzhen, China
zhuang97@mail.dlut.edu.cn, {hengqi, shen, ybc}@dlut.edu.cn, twei10@illinois.edu, lingbo.liu@polyu.edu.hk

Abstract

Next Point-of-Interest (POI) recommendation has been
proven effective at utilizing sparse, intricate spatial-temporal
trajectory data to recommend subsequent POIs to users.
While existing methods commonly alleviate the problem of
data sparsity by integrating spatial-temporal context infor-
mation, POI category features, and social relationships, they
largely overlook the fact that the trajectory sequences col-
lected in the datasets are often incomplete. This oversight
limits the model’s potential to fully leverage historical con-
text. In light of this background, we propose Trajectory Data
Augmentation with Uncertainty (TAU) for Next POI Recom-
mendation. TAU is a general graph-based trajectory data aug-
mentation method designed to complete user mobility pat-
terns by marrying uncertainty estimation into the next POI
recommendation task. More precisely, TAU taps into the
global transition pattern graph to identify sets of intermedi-
ate nodes located between every pair of locations, effectively
leveraging edge weights as transition probabilities. During
trajectory sequence construction, TAU selectively prompts
intermediate nodes, chosen based on their likelihood of oc-
currence as pseudo-labels, to establish comprehensive trajec-
tory sequences. Furthermore, to gauge the certainty and im-
pact of pseudo-labels on the target location, we introduce a
novel confidence-aware calibration strategy using evidence
deep learning (EDL) for improved performance and reliabil-
ity. The experimental results clearly indicate that our TAU
method achieves consistent performance improvements over
existing techniques across two real-world datasets, verifying
its effectiveness as the state-of-the-art approach to the task.

Introduction
With the rapid growth of the mobile internet, individuals
are increasingly sharing their experiences and insights on
Location-Based Social Network (LBSN) platforms, such as
Gowalla, Foursquare, or Yelp. This phenomenon has be-
come a pervasive trend, leading to the accumulation of a
substantial volume of spatial-temporal updates (e.g., check-
in records). These updates serve as the foundation for pre-
dicting users’ future movements (Gonzalez, Hidalgo, and
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Figure 1: A simplified example demonstrating the opera-
tional principle of TAU from a temporal perspective. Solid
lines indicate travel trajectories that can be observed in the
dataset, while dashed lines represent potential trajectories
that might be missing from the dataset.

Barabasi 2008; Feng et al. 2017) by comprehending their
preferences. In response to this, the next Point-of-Interest
(POI) recommendation has emerged as a fundamental in-
gredient in smart city applications, encompassing the pre-
diction of a particular user’s next probable POI visit based
on his/her historical trajectories (Xi et al. 2019; Kim et al.
2021; Zhuang et al. 2022; Luo et al. 2023a). It not only en-
hances travel experiences (Gao et al. 2022) by presenting
more delightful options aligned with users’ past preferences
but also empowers businesses to achieve precise advertising
delivery, thus facilitating their promotional efforts.

A user’s trajectory is formed by sequences of check-
ins arranged in chronological order, enabling us to draw a
comparison with word sequences (i.e., sentences) in lan-
guage models for modeling. Existing solutions for model-
ing sequential data commonly include approaches based on
Markov chains, Recurrent Neural Networks (RNNs), and
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attention-based models. Initially, Markov chains were pro-
posed to capture sequential patterns (Cheng et al. 2013).
As computing power grew and data quality improved, deep
learning methods advanced rapidly. This led to the integra-
tion of memory-enhanced RNNs and attention-based mod-
els to effectively capture the long-term periodicity and short
sequential features within user trajectories (Zhu et al. 2017;
Feng et al. 2018; Sun et al. 2020; Luo et al. 2023b). Besides
basic sequential patterns, time intervals or/and geographi-
cal distances between two consecutive visits are also found
with robust predictive capability (Liu et al. 2016; Zhao et al.
2020; Yang et al. 2020; Luo, Liu, and Liu 2021; Wang et al.
2022). Furthermore, techniques like hierarchical grid-based
partitioning and global transition graphs (Lian et al. 2020;
Rao et al. 2022), along with category features (Pang and
Zhang 2017; Yang, Liu, and Zhao 2022), are used to en-
rich the existing features, leading to enhanced overall per-
formance.

However, individual mobility often remains unpredictable
(Song et al. 2010) due to data missing and sparsity. As
shown in Figure. 1, due to the voluntary nature of users’
check-in sharing on the platform, User 1 has not shared
his/her check-in record at the restaurant. This leads to the
incompleteness of trajectory data, which can compromise
the model’s ability to capture patterns in the user’s trajec-
tory context (Yang et al. 2020). By analyzing the Gowalla
dataset, we have discovered that the average time interval
between two consecutive check-ins is approximately 51.28
hours. This observation highlights a significant degree of
sparsity in the data. Yet, existing methods for trajectory pre-
diction assume complete data and struggle with this spar-
sity. Furthermore, missing POI identification works (Xi et al.
2019) haven’t a validation of the task’s applicability in en-
hancing downstream POI recommendations. To alleviate the
problem, we propose augmenting incomplete trajectories
with potentially missing check-ins. Nevertheless, designing
the augmentation process in the next POI recommendation
task is not trivial, as it entails addressing the following three
challenges: (1) how to identify potentially missing check-ins
between any two mobile movements in order to complete
the trajectory sequence? (2) how to retain the crucial spa-
tial contextual information after completing the augmented
trajectory sequence? (3) how to ensure that the incorporated
check-ins within the trajectory sequence effectively enhance
the predictive accuracy for the next POI?

Against this background, we proposed TAU, a general
augmentation method designed for modeling incomplete
user mobility trajectory sequences. More precisely, our so-
lution explicitly employs breadth-first search to locate paths
within a specified length that can reach the target nodes; as a
result, expanding the initial input trajectory sequences with
potentially missing check-ins prompts the generation of a
more contextually enriched sequence (w.r.t, challenge (1)).
This enhancement enables the sequence model to directly
benefit from the abundant context. To effectively incorporate
geographical relationship patterns within the completed tra-
jectory, we explicitly utilize spatial context to identify highly
predictive hidden states generated by the self-attention layer
(w.r.t, challenge (2)). It’s worth noting that our TAU has not

modified the self-attention module, allowing it to seamlessly
integrate with self-attention layers. Furthermore, to assess
the impact and certainty of the padded check-ins on pre-
dicting the next target POI, we introduce confidence-aware
uncertainty estimation to enhance the reliability of pseudo-
labels (w.r.t, challenge (3)). We summarize the primary con-
tributions of our work as follows:

• We propose the TAU model based on the self-attention
mechanism for accurate the next POI recommendation.
Our approach adeptly addresses the challenge of incom-
plete trajectory sequences caused by inherent gaps in user
check-in data within the dataset.

• We have developed a novel approach for retrieving in-
termediary nodes between any two target nodes on a
graph to prompt the completion of potentially missing
check-ins. Additionally, we enhance the impact of these
completed check-ins on predicting the next location by
incorporating novelty confidence-aware uncertainty esti-
mation.

• We comprehensively assess the performance of our ap-
proach in comparison to an extensive array of baselines
across two well-known real-world Location-Based So-
cial Networking (LBSN) datasets. The results reveal that
TAU consistently and significantly outperforms existing
state-of-the-art methods.

Related Work
Evidential Deep Learning with Uncertainty
Modeling
Evidence-based deep learning with uncertainty modeling is
an approach that focuses on improving the robustness, reli-
ability, and interpretability of deep neural networks by con-
sidering and quantifying uncertainties in both input data and
model predictions. This framework recognizes the inherent
uncertainty that exists in real-world data and seeks to offer
a more comprehensive comprehension of the behavior ex-
hibited by the model. Uncertainty in input data, stemming
from noise, incompleteness, or ambiguities, can be managed
through modeling, making deep learning models more ro-
bust. Bayesian neural networks (BNN) and dropout (Srivas-
tava et al. 2014) are techniques employed to capture and ac-
count for uncertainties inherent in input data. Recently, evi-
dential deep learning (EDL) has been developed by integrat-
ing evidential theory into deep neural networks (Sensoy, Ka-
plan, and Kandemir 2018; Bao, Yu, and Kong 2021), yield-
ing promising results in classification tasks. In this study, to
the best of our knowledge, we are pioneering the integration
of evidential learning for POI recommendations.

Next POI Recommendation
The fundamental concept underlying the majority of exist-
ing POI recommendation models is the synergistic incorpo-
ration of spatial-temporal factors into the time-series mod-
ule. STRNN (Liu et al. 2016) is an earlier work that incor-
porates spatial and temporal interval context-parameterized
transition matrices or gates as spatial-temporal factors into
the recurrent hidden states of RNNs. STGN (Zhao et al.
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2020) incorporates the time gate and distance gate to reg-
ulate the updates of short-term and long-term interests, re-
spectively. Flashback (Yang et al. 2020) explicitly employs
spatial-temporal context to search for historical hidden states
that exhibit similar contexts to the current one. However, due
to the sparsity of check-ins and excessively long time in-
tervals between consecutive check-ins, the improvement in
model performance is relatively limited. LSTPM (Sun et al.
2020) proposes to model long-term preferences and short-
term geographical preferences separately using the nonlo-
cal network and geo-dilated RNN, respectively. GETNext
(Yang, Liu, and Zhao 2022) incorporates global transition
patterns and diverse data trends into a transformer model.
Graph-Flashback (Rao et al. 2022) constructs a weighted
POI transition graph based on the learned representations
and incorporates it into the sequential model. However, all
these studies overlook the potential benefits of considering
missing POIs in the trajectory sequences for prediction.

Preliminaries
Notations and Definitions
The user trajectories recorded on location-based service
platforms are represented as a sequence of visit records (i.e.,
check-ins) ordered chronologically. Here, the trajectory in-
formation records the user set, location (POI) set, and times-
tamp set which are represented as U = {u1, u2, ..., u|U |},
L = {l1, l2, ..., l|L|}, and T = {t1, t2, ..., t|T |} respectively,
where |U |, |L| and |T | represent the sizes of their respective
sets and are positive integers.
Definition 1 (Check-in and Trajectory Sequence). The
recorded check-in information consists of a quadruple si =
(u, li, ti, gi). It signifies that user u visited the location li at
time ti, while the geographical coordinates of POI li are
represented by gi = (latitude = αi, longitude = βi).
We can formulate the visiting records as Su = {si =
(u, li, ti, gi)|i = 1, 2, . . . , N} in chronological order. Based
on geographical coordinates, we can easily obtain the spa-
tial intervals ∆sij between any two locations in the trajec-
tory.
Definition 2 (Trajectory Flow Graph). We represent the
global directed transition pattern as a graph G =
(V, E ,A,w). Here, V = {v1, · · · , vN} is a set of N = |V|
vertices representing location (i.e., POI), E ⊆ V ×V is a set
of edges representing the connectivity among vertices. A is
the weighted adjacency matrix of global transition pattern
G. w is the weight of the edge, it represents the transition
possibilities between the two check-ins.

Problem Formalization
Sequential POI recommendation is typically carried out
through the following process: Given a user’s trajectory se-
quence, we leverage the temporal order of contextual rela-
tionships and spatial distance metrics to extract dependen-
cies among POIs. By amalgamating sequential visit patterns
and spatial POI distribution factors, this approach compre-
hensively captures user behavior and inclinations, the sub-
sequent step involves predicting the suitable Top-k recom-
mendation locations offered to the user.

Trajectory Flow Graph
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Figure 2: The overall architecture of TAU. (a) Trajectory
Completion Module. (b) Base Model. (c) Confidence-Aware
Evidential Uncertainty Calibration Module.

Base Model
Embedding Layer. In the embedding mapping stage, we
first obtain an initialized POI embedding matrix M ∈
R|L|×d, and refer to the Graph-Flashback (Rao et al. 2022)
method to enrich the POI representation M

′ ∈ R|L|×d.
Given an input sequence of length n, we apply the look-up
operation from M

′
to form the input presentation sequence

E ∈ Rn×d. Besides, we incorporate a learnable position en-
coding matrix P ∈ Rn×d and sum it with M

′
to obtain the

updated E
′

(i.e., E
′
= E + P ).

Self-Attention Aggregation Layer. Motivated by the effec-
tiveness of the self-attention mechanism for modeling long
sequences, we use the sequence encoder by stacking mul-
tiple Transformer (Vaswani et al. 2017) blocks. A Trans-
former block usually consists of two sublayers, which in-
clude a multi-head self-attention layer and a point-wise feed-
forward network. Specifically, the multi-head self-attention
is defined as:

S(F l) = [head1, head2, · · · , headh]WO,

headi = Attention(F lWQ, F lWK , F lWV ),
(1)

where the F l is the input of the l-th layer (F 0=EI ), and the
projection matrix WQ, WK , WV , WO are the learnable pa-
rameters. And, the attention function is as follows:

Attention(F lWQ, F lWK , F lWV )

= softmax(
F lWQ(F lWK)

T√
d/h

)F lWV ,
(2)

where
√
d/h is the scale dot-product operation to help pre-

vent large values that could lead to gradients vanishing or
exploding during training. Subsequently, a point-wise feed-
forward network layer is added, comprising two linear trans-
formations with a ReLU activation in between.

Prediction Layer. To capture the user’s personalized pref-
erences, we designed the user embedding representation eu

and concatenate it with the output ŷt of the aggregation layer
at each time step t and then feed it into a fully connected
layer to generate the final output as follows:

ŷu
t = Wf [ht ⊕ eu], (3)
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where Wf ∈ R|L|×2d is a learnable weight matrix, ⊕ de-
notes the concatenation operation. We use the cross-entropy
function as our loss function.

Loss = −
∑

Su∈S

n∑
i=1

(log σ(ŷu
k ) +

|L|∑
j=1,j ̸=k

log(1− σ(ŷu
j ))),

(4)
where n is the length of the trajectory sequence, σ is the
softmax function. ŷuk ∈ ŷui is the predicted value of label lk,
ŷuj ∈ ŷui is the other POIs lj ̸= lk for current loaction li,
respectively, and σ is the softmax function.

Methods
We present the framework of TAU in Fig. 2. It consists
of a Trajectory Completion Module, a base model, and an
Evidential Uncertainty Calibration Module. The Trajectory
Completion Module uses a potential missing nodes search
strategy to collect potentially missing check-ins between
source and target locations and completes the potentially
missing check-ins along the source input. Then, the base
model explicitly utilizes spatial context to search the hid-
den representations generated by self-attention. Finally, we
employ the Confidence-Aware Evidential Uncertainty Cali-
bration Module for regularization during training.

Trajectory Completion Module
The Trajectory Completion Module converts the raw input
Su (i.e., incomplete trajectory sequence) into a sequence of
trajectories S

′

u that are completed using potential check-ins.
This provides richer contextual information for the subse-
quent modeling of trajectory sequence contextual relation-
ships. Due to space constraints, we have included the pseu-
docode in the supplementary material.

Potential Missing Nodes Search Strategy. We approach
the issue of identifying potentially missing nodes between
two consecutive check-ins (referred to as the source node
and the target node) as a form of local search conducted on
a trajectory flow graph. In Figure 3(a), we illustrate a graph
where, given a source node denoted as U , our objective is to
generate (sample) its set of transition nodes NS(U, T ) lead-
ing to the target node T . In order to proficiently delve into
potentially missed check-ins, we propose to use breadth-first
sampling (BFS) for efficient exploration. Broadly, BFS is
a graph traversal algorithm that commences from the root
node, delving into neighboring nodes at the current depth
before proceeding to nodes at subsequent depth levels. Us-
ing the current node as a starting point, it searches for inter-
mediary nodes leading to the target node. During each sub-
sequent graph traversal layer, we check whether any neigh-
boring nodes contain the target location node. If found, the
node transition path between the starting node and the target
node is recorded in the memory set walks, linked by cor-
responding node pairs. At the same time, considering mem-
ory limitations, we set the search depth to a hyper-parameter
m, which will be studied in the experiments. Additionally,
we calculate the average of all edge weights for the trajec-
tory segments obtained from each search, and these averages
are used as the weights to select the respective segments.
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u=0.14

𝛼 2.0,1.1,1.1
u=0.71

𝛼 20,20,20
u=0.05
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(a) Local search strategy from node U to node T (m=2)

Figure 3: Local Search Strategy and Examples of Probabil-
ity Simplex. In (a), we use the red solid line to indicate valid
potential missing node search paths, and we obtain [S2] and
[S4, S6] as the sets of missing nodes for the prompts be-
tween U and T. In (b,c,d,e), we use 3-class classification as
an example to show how Accuracy and Certainty (AC) are
predicted. A well-calibrated model should give AC predic-
tions or Inaccurate and Uncertain (IU) predictions, while AU
and IC cases need to be reduced.

The process comprehensively identifies the potential miss-
ing check-ins for subsequent processing.

Once we have the set walks of possible transition nodes
between any pair of nodes, we can consider inserting them
into the trajectory by randomly sampling them according to
their weights. Thus, a sequence of trajectories with richer
contextual information can be obtained. The pseudo-code of
the search algorithm is shown in Appendix A.

Spatial-Aware Hidden State Weighting Module
In order to more effectively consider spatial factors, inspired
by Flashback (Yang et al. 2020), We explicitly use the spatial
context distance as a similarity function ω, which responds
to the spatial relationship between the historical hidden state
hj and the current one hi (j < i). As we found through
our ablation experiments in the Flashback method that time
intervals did not play a decisive role in the model’s perfor-
mance, we chose to concentrate solely on modeling spatial
context relationships. Accordingly, we use a distance expo-
nential decay weight as the similarity function:

ω(∆di,j) = e−η∆Di,j , (5)

where ∆Di,j is the spatial interval between the coordinates
of POIs li and lj , η represents the spatial decay weight, con-
trolling how fast the weights decrease according to ∆Di,j .
Subsequently, this module incorporates the similarity func-
tion ω(·) and the historical hidden state hj (j < i) into cur-
rent one at each time step i as follows:

ĥi =

∑i
j=0 ωj ∗ hj∑i

j=0 ωj

, (6)

where ωj denotes the similarity function ω(∆di,j).
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Confidence-Aware Evidential Uncertainty
Calibration Module
While the spatial-aware aggregation layer effectively cap-
tures spatiotemporal periodic patterns, the supplemented
missing nodes carry substantial uncertainty, making it chal-
lenging to ensure their consistently positive impact on con-
text modeling. Therefore, we incorporate uncertainty cali-
bration to quantify the value of the supplemented nodes for
trajectory context modeling. To address this problem, we in-
troduce a calibration of the relationship between the accu-
racy and uncertainty of the missing check-ins for predict-
ing the target location. We encourage the model to learn a
skewed and sharp Dirichlet simplex for accurate prediction
(Figure. 3(b)) and to provide an unskewed and flat Dirichlet
simplex for incorrect prediction (Figure. 3(e)). Therefore if
a padded check-in is assigned a high level of uncertainty, it
implies that it could be incorrect, thus identifying valueless
padding.

Background of Evidential Deep Learning. Since the soft-
max layer outputs scores that are point estimates of the pre-
dictive distribution and tends to be overconfident about false
predictions. We are motivated by the principles of uncer-
tainty modeling in evidential deep learning (EDL) (i.e., de-
rived from the evidence framework of Dempster-Shafer The-
ory (DST) and subjective logic (SL)) and assume that class
probability follows a prior Dirichlet distribution. Here, we
use the evidence function (i.e., ReLU function) g instead of
the softmax layer to get non-negative evidence ek = g(F l).
The predictive uncertainty u is determined by u = K/S,
where K is the number of class, and S =

∑K
k=1 αk denotes

the total strength of a Dirichlet distribution Dir(p|αk =
ek + 1).

Evidential Uncertainty Calibration. In particular, we pro-
pose an Evidential Uncertainty Calibration (UC) method to
constrain the relationship between confidence pi and uncer-
tainty ui:

LUC = −λt

∑
i∈{

Λ
yi=yi}

pi log(1− ui)

− (1− λt)
∑

i∈{
Λ
yi ̸=yi}

(1− pi) log(ui),
(7)

where pi is the maximum class probability of the next check-
in in raw trajectory and ui is the associated uncertainty,
λt = min(t/T , 1) is the annealing factor. The motiva-
tion for setting the annealing factor is that the accuracy of
the prediction is different at different periods of training.
Specifically, We expect the first term to obtain a low uncer-
tainty (ui → 0) when the model gives accurate predictions

(
Λ
yi = yi, pi → 1), while the second term gives a high uncer-

tainty (ui → 1) when the model gives inaccurate predictions

(
Λ
yi ̸= yi, pi → 0).

Confidence-Aware Evidential Uncertainty Calibration. To
enhance the model’s effectiveness in optimizing the uncer-
tainty of potential missing check-ins, we specifically intro-
duced a confidence-aware threshold. This signifies that we
optimize only the hidden states of potential missing check-

Dataset Gowalla Foursquare

#users 52,979 46,065
#locations 121,851 69,005
#check-ins 3,300,986 9,450,342

#Average time between 51.28 hours 58.59 hours
Successive check-ins 2.13 days 2.44 days

Table 1: Basic dataset statistics.

ins with relatively lower uncertainty (i.e., higher confidence
levels). Then, the confidence-aware uncertainty calibration
on potential missing check-ins is defined as:

LCUC = −λt

∑
i∈{Λyi=yi}

I(max(ui) < γ)pi log(1− ui)

− (1− λt)
∑

i∈{Λyi ̸=yi}

I(max(ui) > (1− γ))(1− pi) log(ui),

(8)
where I(max(pi) ≥ γ) is an indicator function that yields 1
if max(pi) ≥ γ is satisfied, and outputs 0 otherwise in the
first term. 0 < γ < 1 is a predefined threshold.

Compared with uncertainty calibration, the biggest advan-
tage of LCUC is that it only considers ”highly confident”
potential missing check-ins in the first term and ”highly un-
confident” potential missing check-ins in the second term.
And they are determined by threshold γ in optimization.
This mechanism helps reduce potential training noise by
filtering out potential missing check-ins with less apparent
uncertainty, thereby further enhancing the practical perfor-
mance of the model. Combining Loss and LCUC with a
hyper-parameter λ, the ultimate loss function for model op-
timization is formulated as follows:

L = Loss+ λ× LCUC , (9)

Experiments
Datasets
We evaluate our TAU on two real-world LBSN datasets:
Gowalla 1, Foursquare 2. The user check-in data collected
from the Gowalla dataset spans from February 2009 to Oc-
tober 2010, while the Foursquare dataset was collected from
April 2012 to January 2014. Each check-in record com-
prises userID, POIID, latitude, longitude, and timestamp.
The number of users, locations, check-ins, collection period,
and average time interval are shown in Table 1. To ensure
the quality of the datasets, we discarded inactive users with
fewer than 100 check-ins and sorted the check-ins for each
remaining user in order of increasing timestamps. During
the partition of datasets, we use the first 80% check-ins of
each user as a training set. In order to align the length of
the input data sequence, each user’s check-in sequence is di-
vided into multiple sequences of equal length (e.g., typically

1https://snap.stanford.edu/data/loc-gowalla.html
2https://sites.google.com/site/yangdingqi/home
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Model
Gowalla Foursquare

Acc@1 Acc@5 Acc@10 MRR Acc@1 Acc@5 Acc@10 MRR
PRME 0.0740 0.2146 0.2899 0.1503 0.0982 0.3167 0.4064 0.2040

STRNN 0.0900 0.2120 0.2730 0.1508 0.2290 0.4310 0.5050 0.3248
DeepMove 0.0625 0.1304 0.1594 0.0982 0.2400 0.4319 0.4742 0.3270

STGN 0.0624 0.1586 0.2104 0.1125 0.2094 0.4734 0.5470 0.3283
SASRec 0.0787 0.1817 0.2511 0.1434 0.2399 0.4557 0.5479 0.3246
LSTPM 0.0721 0.1843 0.2327 0.1306 0.2484 0.4489 0.5018 0.3365

Flashback 0.1158 0.2754 0.3479 0.1925 0.2496 0.5399 0.6236 0.3805
STAN 0.0891 0.2096 0.2763 0.1523 0.2265 0.4515 0.5310 0.3420

GETNext 0.1343 0.3238 0.4039 0.2237 0.2667 0.5601 0.6382 0.3977
Graph-Flashback 0.1495 0.3399 0.4242 0.2401 0.2786 0.5733 0.6501 0.4109

TAU 0.1604 0.3672 0.4568 0.2571 0.2931 0.6174 0.6992 0.4410

Table 2: Performance on Baseline Datasets.

set at 20). And the remaining 20% is used as a testing set.
In addition, potential check-in sequences are searched on a
trajectory flow graph composed of the training set data.

Baselines
To evaluate the effectiveness of TAU, we compare it with
the following state-of-the-art methods in the experiments:
(1) PRME (Feng et al. 2015): An embedding method, which
explores the sequential transition patterns by modeling user
and POI embeddings. (2) STRNN (Liu et al. 2016): An
invariant RNN model, which incorporates spatial-temporal
factors between consecutive check-ins. (3) Deepmove (Feng
et al. 2018): It uses RNN to model long-range dependen-
cies and a historical attention module to capture the pe-
riodicity. (4) STGN (Zhao et al. 2020): Enhancing long-
short term memory network by introducing spatial-temporal
gates. (5) SASRec (Kang and McAuley 2018): An attention-
based method that identifies the most relevant informa-
tion from historical sequences and uses them to predict the
next target. (6) LSTPM (Sun et al. 2020): A LSTM-based
method, which uses a nonlocal network and a geo-dilated
RNN for long-term preference and short-term preference,
respectively. (7) Flashback (Yang et al. 2020): A RNN-
based model, which uses spatial-temporal interval features
to search for hidden states in historical information that
have similar contexts to the current one. (8) STAN (Luo,
Liu, and Liu 2021): An attention-based model, which ex-
plicitly incorporates spatial-temporal interval information
to explore the effects between non-adjacent check-ins in
historical sequences. (9) GETNext (Yang, Liu, and Zhao
2022): A transformer-based model, which incorporates the
global transition patterns, spatial-temporal context, and cat-
egory embeddings together into the model. (10) Graph-
Flashback (Rao et al. 2022): A RNN-based model, which
incorporates the weighted POI transition graph to capture
the sequential transition patterns.

Model Settings. We implemented TAU on the Py-
Torch framework 1.10.1 and conducted all experiments
on a Linux server with 128GB RAM, 16-core Intel i9-
12900K@5.2GHz CPU, and Nvidia RTX 3090 GPU. The

key hyperparameters used in our model are listed below. We
set the dimensions of POI embedding and user embedding
to 10, and the self-attention aggregation module dimension
is also 10. For the trajectory completion module, the depth
m of BFS is 3. For the self-attention aggregation module,
we stacked two encoder layers and the number of attention
heads is 3 in the multi-headed attention module. The hyper-
parameter λ is 100. Moreover, we employed the Adam opti-
mizer with a 1e− 2 learning rate, and the temporal and spa-
tial decay factors are set up the same as (Yang et al. 2020).

Evaluation Metrics. To verify the performance of our
method, we use two widely used metrics in the experi-
ments: (1) Accuracy@K (Acc@K), (2) Mean Reciprocal
Rank (MRR). Acc@K represents the proportion of correctly
predicted positive samples within the top-K predicted posi-
tive samples. And, we present the performance of the model
in terms of recommendations at k = 1, 5, 10. MRR mea-
sures the average rank of the first correct prediction in a list
of predictions.

Performance Comparison
Table. 2 shows the recommendation performance of TAU
and baselines on the two datasets. The results in bold indi-
cate the best performance, while the underlined results rep-
resent the second best. Based on the results of the baseline
models and our proposed model, the following findings can
be observed: (1) In predicting the next location, both tem-
poral periodicity and spatial dependencies play an essen-
tial role in improving the model’s performance. (2) Mod-
eling the hidden states by incorporating the temporal-spatial
gaps between non-adjacent check-ins, represented as Graph-
Flashback, STAN, Flashback, tends to outperform the ap-
proach represented by STGN and STRNN, which relies
on modeling continuous time intervals between consecutive
check-ins. And, the improved performance of LSTPM when
utilizing geo-dilated POI sequences can also be interpreted
as a strategy to account for non-continuous spatial infor-
mation in check-ins. (3) TAU attainment of optimal perfor-
mance can be predominantly attributed to its incorporation
of check-in completion, which results in a more comprehen-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22570



Model
Gowalla

Acc@1 Acc@5 Acc@10 MRR
w/o UCM 0.1487 0.3564 0.4477 0.2474

w/o confidence 0.1576 0.3656 0.4531 0.2564
w/o TCM 0.1536 0.3527 0.4442 0.2447
w/o SAM 0.1541 0.3559 0.4471 0.2492

w/o initialize 0.1415 0.3253 0.4027 0.2258
TAU 0.1604 0.3672 0.4568 0.2571

Table 3: Effectiveness of different modules in TAU.

Base Model
Gowalla

Acc@1 Acc@5 Acc@10 MRR
SASRec 0.0787 0.1817 0.2511 0.1434

TAU SASRec 0.1041 0.2660 0.3463 0.1827
Flashback 0.1158 0.2754 0.3479 0.1925

TAU Flashback 0.1415 0.3253 0.4027 0.2258
STAN 0.0891 0.2096 0.2763 0.1523

TAU STAN 0.1241 0.2933 0.3677 0.2043

Table 4: Performance on Other Base Model.

sive context modeling. Further experiments are performed in
Appendix B to validate the ability of the proposed TAU to
accurately complete trajectory sequences.

Ablation Study
To analyze the effects of these components in our model, we
conduct an ablation study, and the results on the Gowalla
dataset are shown in Table. 3. We denote the based model as
TAU and drop different components to form variants as fol-
lows: (1) w/o Uncertainty Calibration Module (w/o UCM):
we removed the Uncertainty Calibration Module and re-
tained only the effect of trajectory completion on the model.
(2) w/o Confidence-Aware Uncertainty Calibration Module
(w/o confidence): we remove the effect of confidence thresh-
olds in the modeling uncertainty calibration process. (3) w/o
Trajectory Completion Module (w/o TCM): we remove the
Trajectory Completion Module and use only the raw trajec-
tory sequence as input to the model. (4) w/o self-attention
mechanism (w/o SAM): we substitute the spatial-aware self-
attention module with the spatial-temporal LSTM in Graph-
Flashback. (5) w/o initialize: we remove the initialized rep-
resentation of POI embedding by trajectory flow graph and
use only random initialization with spatial-temporal LSTM.

From Table. 3, we have made the following findings: (1)
The sequence of complemented potential check-in trajecto-
ries contributes to the modeling effect, which is mainly be-
cause the complemented trajectories contain rich contexts
to help model the sequence contextual relationship. Despite
the existence of noise sampling in the completed trajectory
based on random sampling, it can still contribute to per-
formance improvement. (2) Setting the confidence thresh-
old contributes to model optimization. (3) The self-attention
mechanism is superior to LSTM in our task scenario. (4)
Modeling with only completed trajectory sequences per-

(a) The impact of the walk depth of BFS m (b) The impact of the confidence threshold 𝛾

Figure 4: The performance comparison about the number of
the walk depth m of BFS and the confidence threshold γ.

forms slightly worse than the method of initializing POI
embeddings using transition graphs, but it still outperforms
conventional methods (e.g., Flashback) by a significant mar-
gin.

Parameter Sensitivity Analysis
We implemented parameter sensitivity experiments on BFS
walk depth m and confidence threshold γ to find the optimal
parameter values on the Gowalla dataset. We vary the depth
of BFS walk m from 2 to 5. And, we experiment with a se-
ries of the number of confidence-aware uncertainty thresh-
old γ from 0.1 to 0.5. Figure. 4 shows the m = 3 is the best
depth, and γ = 0.2 is the optimality threshold.

The Performance on Other Base Model
To validate the generalization and versatility of our model,
we also employed various alternative models to replace the
base model and analyzed their corresponding effects on the
Gowalla dataset, and the results are shown in Table. 4. It is
evident that utilizing uncertainty-guided completion of po-
tential missing check-ins can significantly enhance the per-
formance of each baseline model. This highlights that our
approach can better enable context-aware modeling meth-
ods to capture contextual relationships more effectively.

Conclusion
In this work, we proposed TAU, a general attention architec-
ture designed for modeling incomplete user mobility trajec-
tory sequence by augmenting potential missing check-ins.
Specifically, we utilize a global transition pattern graph to
prompt potential missing nodes between source and target
locations. Then, we incorporate the prompt memory set into
the sequence by employing a weight-based random sam-
pling approach, generating newly completed trajectory se-
quences. Simultaneously, to ensure the credibility of padded
potential missing check-ins, we subject them to confidence-
aware uncertainty calibration. Furthermore, we utilize spa-
tial context to search for high-predictive hidden states within
the completed trajectory. We perform comprehensive abla-
tion experiments, parameter sensitivity analysis, and the per-
formance of other base models in the experimental section.
Comparative experiments with baseline models unequivo-
cally demonstrate the superiority of our model, surpassing
state-of-the-art approaches.
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