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Abstract

Due to the significance of its various applications, source lo-
calization has garnered considerable attention as one of the
most important means to confront diffusion hazards. Multi-
source localization from a single-snapshot observation is es-
pecially relevant due to its prevalence. However, the inherent
complexities of this problem, such as limited information, in-
teractions among sources, and dependence on diffusion mod-
els, pose challenges to resolution. Current methods typically
utilize heuristics and greedy selection, and they are usually
bonded with one diffusion model. Consequently, their effec-
tiveness is constrained. To address these limitations, we pro-
pose a simulation-based method termed BOSouL. Bayesian
optimization (BO) is adopted to approximate the results for
its sample efficiency. A surrogate function models uncertainty
from the limited information. It takes sets of nodes as the in-
put instead of individual nodes. BOSouL can incorporate any
diffusion model in the data acquisition process through simu-
lations. Empirical studies demonstrate that its performance is
robust across graph structures and diffusion models. The code
is available at https://github.com/XGraph-Team/BOSouL.

Introduction
In recent decades, the world has become more intercon-
nected thanks to the emergence of various networks. Con-
sequently, we have become more vulnerable to network dif-
fusion risks such as the spread of rumors, influenza-like
viruses, and smart grid failures (Chowdhury, Srinivasan, and
Getoor 2020; Ozili and Arun 2020; Amin and Schewe 2007).
Source localization (SL), the reverse problem of information
diffusion, has attracted significant attention from researchers
as a necessary component of the confrontation against diffu-
sion hazards (Prakash, Vreeken, and Faloutsos 2012; Zang
et al. 2015; Wang et al. 2017; Zhu, Chen, and Ying 2017;
Dong et al. 2019). It holds importance across various ap-
plication domains such as medicine, security, large inter-
connected networks, social networks, and more(Shelke and
Attar 2019; Li, Sun, and Chen 2007). Source localization
can be leveraged to block negative influence (rumors and
viruses), maintain infrastructure (power grid), determine ac-
countability (propagators of rumors), and verify information
reliability. For instance, negative news about an election can-
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Figure 1: The challenges faced by heuristic methods: (a)
Sources and spreads have many-to-many relationships. (b)
Greedy algorithms result in sub-optimal solutions (top). (c)
Different diffusion models (SI at the top and SIR at the bot-
tom) affect source localization results.

didate spread from the opponent’s campaign office is less
credible than one from a neutral third-party press.

The SL problems can be divided into three classes based
on network observation types: complete observation, mon-
itor observation, and snapshot observation (Shelke and At-
tar 2019). Among them, complete observation is rarely pos-
sible, given the massive scale of the real-world networks.
Monitor observation, where part of the nodes are monitored
for whether and when they are infected, is also not always
available, especially for sudden outbreaks of unwanted prop-
agation. Therefore, the most common scenario is single-
snapshot observation, where only information about the net-
work at a specific time is available (i.e., which nodes are
infected at the snapshot). Early approach of single-snapshot
source localization (Prakash, Vreeken, and Faloutsos 2012)
identified single sources of infectious diseases. Later, multi-
source methods were proposed (Wang et al. 2017; Zhu,
Chen, and Ying 2017; Dong et al. 2019) to handle the wide
existence of multiple diffusion sources in reality.

Although simulation-based methods seem to be legitimate
to solve the SL problem, evaluating all node sets is infeasi-
ble due to the problem’s combinatorial nature and the #P -
hardness of evaluating each set (Kempe, Kleinberg, and Tar-
dos 2003). Therefore, heuristic methods dominate the prob-
lem of multi-source localization from a single network snap-
shot (Shah and Zaman 2010; Prakash, Vreeken, and Falout-
sos 2012; Zang et al. 2015; Wang et al. 2017; Zhu, Chen, and
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Ying 2017; Dong et al. 2019; Nie and Quinn 2019). How-
ever, this problem faces three major challenges that current
heuristic methods cannot adequately address: (1) Many-to-
many relationship between sources and spreads. Intu-
itively, one source set can result in various snapshots and
vice versa. One snapshot may derive from multiple source
sets with different probabilities. As shown in Figure 1(a),
Source 1 can lead to two totally different spreads, Observa-
tion 1 and 2. At the same time, Observation 2 can initiate
from either Source 1 or Source 2. It is difficult to properly
model the many-to-many relationship using the limited in-
formation from a single snapshot due to the existence of
this uncertainty (Cai, Xie, and Lui 2018). While heuristics
efficiently approximate the localization, they only provide
deterministic solutions without acknowledging the system-
atic uncertainty. (2) Complicated interactions among the
sources. As a set of sources jointly spreads the influence
through the network, considering their interrelationship is
crucial for multi-source localization. Current heuristic meth-
ods approach the multi-source localization problem greed-
ily (Wang et al. 2017; Dong et al. 2019; Nie and Quinn
2019). The highest-scoring nodes are selected as sources
after scoring each node based on corresponding heuristics.
Nevertheless, ignoring the interactions among the sources
has significant consequences. Figure 1(b) illustrates the im-
perfection of localizing sources greedily. Given an infected
sub-graph, nodes selected by a greedy algorithm lie at the
center of the sub-graph (top), while the true sources might
locate at the centers of multiple hidden communities (bot-
tom). (3) Heavy dependence on diffusion models. Diffu-
sion problems involve three key entities: sources, diffusion
model, and spread. Given any two, the third can be inferred.
Therefore, source localization requires a diffusion model as
one of the inputs. The same spread combined with differ-
ent diffusion models will result in different source local-
ization results. As demonstrated in Figure 1(c), the same
observation leads to different results when combined with
SI (top) and SIR (bottom). In the SI model, the sources
must be within the infected sub-graph. However, in SIR,
the sources are likely to have already recovered since they
have a higher recovery possibility than other nodes. Nearly
all heuristic methods are designed for one specific diffusion
model (Prakash, Vreeken, and Faloutsos 2012; Zang et al.
2015). Some claim to be model-free but make assumptions
that implicitly constrain the diffusion model. For instance,
LPSI (Wang et al. 2017) assumes that the sources are cur-
rently infected, indicating the diffusion model is like SI.

To address these issues, we propose a relatively efficient
simulation-based method termed BOSouL. Specifically, we
evaluate the candidate source set’s likelihood of being the
true source set via simulations. Bayesian optimization is em-
ployed for its sample efficiency to reduce the number of sim-
ulations. A surrogate function mimics the relationship be-
tween the candidate set and its likelihood. Sampling through
clustering is conducted to guarantee the sampled instances in
each Bayesian optimization iteration are evenly distributed
in the search space. Our primary contributions include:
• We propose an efficient simulation-based method uti-

lizing Bayesian optimization. BOSouL generates a

Gaussian process that captures the uncertainty in the
relationship between the set of sources and the ob-
served snapshot. Furthermore, the Bayesian optimization
paradigm significantly reduces the number of simula-
tions, making the time cost of the algorithm acceptable.

• The multiple sources are evaluated as a set instead
of individually. Thus, the interrelationship among the
sources is included in BOSouL and its corresponding
model. Comparing the greedy methods, the performance
of BOSouL is more robust across different networks.

• Our method can be combined with any diffusion
model. As long as we have a diffusion model that can
well capture the diffusion pattern, we can adopt that
model in the simulations to build the relationship be-
tween a source set and an observation.

• We provide time complexity analysis. Extensive
empirical experiments are conducted. Real-world
and synthetic datasets are employed to demon-
strate BOSouL’s superior performance. It is also
displayed that BOSouL scales as well as most of the
baselines, and the runtime is reasonably acceptable.

Related Work
Source localization, which aims to infer the origins of
diffusion processes on networks given the diffused obser-
vation, has significant applications such as identifying ru-
mor sources (Shelke and Attar 2019) and finding ’patient
zero’ in a pandemic (Scarpino and Petri 2019). It has
attracted growing research interest in recent years (Shah
and Zaman 2010; Prakash, Vreeken, and Faloutsos 2012;
Zang et al. 2015; Wang et al. 2017; Zhu, Chen, and
Ying 2017; Dong et al. 2019; Nie and Quinn 2019).
Diffusion studies have presented multiple diffusion mod-
els, such as epidemic models like susceptible-infected
(SI), susceptible-infected-recovered (SIR), and susceptible-
infected-susceptible (SIS) (Brauer et al. 2019) and influence
models like independent cascade (IC) and linear threshold
(LT) (Kempe, Kleinberg, and Tardos 2003). However, early
works focused on locating single sources under prescribed
diffusion models. For instance, a few methods are designed
specifically for SI model (Prakash, Vreeken, and Faloutsos
2012; Shah and Zaman 2010; Nie and Quinn 2019), and
some others are designed for SIR (Zhu, Chen, and Ying
2017). Wang et al. (Wang et al. 2017) proposed a label
propagation method named LPSI to detect multiple sources
without knowing the underlying propagation model. Dong
et al. (Dong et al. 2019) further enhanced LPSI by incorpo-
rating graph neural networks. However, since LPSI and its
variants assume the sources are in the infected sub-graph,
they implicitly suggest an SI-like diffusion model. Gener-
ally speaking, the current methods are bonded with certain
diffusion models and lack generalizability. Also, most of the
methods are simply greedily select sources based on single-
source localization algorithms. The interrelationship among
the sources is overlooked or intentionally ignored.
Bayesian Optimization is an approach for optimizing
black-box functions that are expensive to evaluate. It con-
structs a probabilistic model of the objective function and
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uses this model to determine promising candidates to evalu-
ate next (Frazier 2018). Bayesian optimization was first pro-
posed by Mockus et al. (Mockus 1998) and has since be-
come a popular methodology for hyperparameter tuning and
optimization of complex simulations and models (Snoek,
Larochelle, and Adams 2012). The key idea is to lever-
age Bayesian probability theory to model uncertainty about
the objective function. A prior distribution is placed over
the space of functions, often a Gaussian process, which
is updated as observations are made. An acquisition func-
tion then uses this model to determine the next evaluation
point by balancing exploration and exploitation. Some com-
mon acquisition functions include expected improvement,
knowledge gradient, and upper confidence bound (Shahriari
et al. 2015). There has been much work extending Bayesian
optimization to handle constraints (Gelbart, Snoek, and
Adams 2014), parallel evaluations (González et al. 2016),
and high dimensions (de Freitas and Wang 2013). Over-
all, Bayesian optimization provides an elegant and princi-
pled approach to sample-efficient optimization of black-box
functions. Bayesian optimization over a graph search space
has emerged in the past decades. However, most of the works
focus on node-level tasks and thus develop specific ker-
nels for node smoothing (Ng, Colombo, and Silva 2018; Oh
et al. 2019; Walker and Glocker 2019; Opolka and Liò 2020;
Borovitskiy et al. 2021; Opolka et al. 2022). These works,
while related, deal with a different task and the methods can-
not be applied on our problem.

Method
We propose a Bayesian Optimization for Source Localiza-
tion (BOSouL) approach that combines the Bayesian opti-
mization paradigm with simulations to enable more precise
inference of source sets from single-snapshot observations.
Problem Formulation
Definition 1 (Single-snapshot Multi-Source Localization).
Given (1) a size-N graph G(V,E) where V and E rep-

resent vertices and edges, respectively. (2) one single ob-
servation of propagation snapshot represented by a vector
o∗ = {0, 1}N , where 1 means the node is infected and 0
means otherwise, (3) the underlying diffusion model d, and
(4) the source s = {0, 1}N with its cardinality |s| > 1. Note
that any source node is not in the neighborhood of any other
source node. The objective is to find the optimal s that max-
imizes its conditional probability P:

s = argmax
s

P(s|o∗, G, d), (1)

where P is a conditional probability of s given o∗, G and d.

The difficulty presented by the aforementioned task is that
the true source node set is unknown and cannot be retrieved
during the source localization procedure. Therefore, it is
impossible to compute the distance between the predicted
and actual sources during the learning procedure. Extending
Equation 1 with Bayes rule, we have:

P(s|o∗, G, d) =
P(o∗|s,G, d)P(s)

P(o∗)
∼ P(o∗|s,G, d),

since no assumption is applied for P (o) and P (s), which
will be set to uniform distribution as the prior probability.
Then the task is changed to

s = argmax
s

P(o∗|s,G, d).

The probability of a candidate source set s is evaluated with
the similarity between its simulated propagation spread o
and the observed snapshot o∗. So the estimated source is:

ŝ = argmax
s

P(o∗|s,G, d) ∼ argmax
s

SIM(o, o∗;G, d). (2)
where o is the simulation result of s on G with d. SIM de-
notes a similarity metric between a pair of observations.

The Proposed Method: BOSouL
Overview. As shown in Figure 2, we propose a Bayesian
optimization-based learning framework for one-shot multi-
source localization. First, a kernel for the Gaussian Pro-
cess (GP) is devised to measure the distance between source
nodes, and then its validity is proven through theoretical
analysis. Using the kernel, the output of the GP model is
derived as a surrogate to predict the probability of a given
source node set. Next, we initialize GP with multiple actual
simulations and select sites with expected improvement (EI)
iteratively. Ultimately, the optimal solution is determined by
traversing all candidates within the designated range.

Gaussian Process Design. Consider a graph with N
nodes. Node sets are typically associated with a binary vec-
tor, labeled as 1 if they are sources and 0 otherwise. This
vector is represented with s = {0, 1}N . With k sources, the
total possible source configurations is

(
N
k

)
. Recognizing that

not all nodes are equally significant in diffusion, like major
cities in transport networks or key influencers in social net-
works, we focus on the top a nodes by degree. This reduces
potential source combinations to

(
a
k

)
where a ≪ N .

Meanwhile, s is only a one-hot vector and lacks graph
structure information. To illustrate, consider two 3-node
sets: one original and the other formed by shifting each
node by one hop based on the original one. Although the
final observations are anticipated to be similar for these two
sets, their similarity with the binary representations is quite
low (0 in this case). This binary representation inadequately
characterizes the similarity between two sets of nodes and
violates the smoothness assumption imposed by the Gaus-
sian process. Previous work for graph kernels prioritizes
structural comparisons, often ignoring attributes over the
graphs (Vishwanathan et al. 2010; Kriege, Johansson, and
Morris 2020; Nikolentzos, Siglidis, and Vazirgiannis 2021;
Siglidis et al. 2020). To overcome this constraint, we pro-
pose the introduction of a novel kernel that effectively com-
bines structure information with theoretical validity. First,
the source vector s) is transformed into its Fourier counter-
part s̃ such that:

s̃ = U⊤s, s̃(i) =
n

Σ
i=1

siU
⊤(i), (3)

where U⊤ is the inverse eigenvectors of the graph Lapla-
cian and serves a graph Fourier transformer. Combining the
graph Fourier transform and RBF kernel, we have a new ker-
nel termed as graph spectral Gaussian (GSG) kernel:

K(x, x′; l) = exp(−||U
⊤x− U⊤x′||2

2l2
), (4)

where l is a hyperparameter corresponding to the length-
scale of the RBF kernel. Mercer kernels are essential for
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Figure 2: Illustration of the proposed BOSouL. Based on their graph Fourier representations, all possible candidates for source
node sets are clustered in the bottom half of this figure. As training sets for GP, the model samples instances from each group
utilizing GSS. In the upper half, one optimal instance is chosen by the surrogate GP (Max), and its likelihood of being a
genuine source is determined through simulation. Sampling and training will be performed iteratively, and in each iteration, the
GP model will be updated from a prior to a posterior (for example, from 1 to 2 on the upper left).

Gaussian Processes (GPs) as they ensure valid covari-
ance matrices and enable implicit high-dimensional data
mapping. Additionally, they offer computational benefits
through the “kernel trick” in expansive spaces. Therefore,
we analyze if the proposed kernel is a valid Mercer kernel.

Theorem. GSG is a valid Mercer Kernel for GP.

Proof. The kernel in Equation 4 can be transformed as follows:

K(x, x′; l)

= exp(−||U
⊤x− U⊤x′||2

2l2
)

= exp(− [(U⊤x)⊤U⊤x+ (U⊤x′)⊤U⊤x′ − 2(U⊤x)⊤U⊤x′]

2l2
)

= exp(− [x⊤x+ x′⊤x′ − 2x⊤x′]

2l2
) = exp(−||x− x′||2

2l2
).

Hence,K(x, x′; l) can be considered equivalent to the RBF kernel,
which is widely recognized as a valid Mercer kernel.

Next, we set up a Gaussian process (GP) with GSG kernel
to realize Equation 2. This GP aims to estimate the existence
probability of the provided source by evaluating the similar-
ity between its corresponding and real observation.

GP : s→ τ(o, o∗), (5)

where o is one observation by simulation from s.
Data acquisition. The surrogate GP needs to be initial-
ized and trained iteratively, which both resort to sampling
techniques. Initialization requires sampling multiple data
points, while each iteration selects another data point from
a new set of samples by maximizing an acquisition func-
tion, which uses the GP posterior to balance exploration
and exploitation. Due to the discrete property of the graph

data, traditional sampling methods, such as the Sobol se-
quence (Sobol’ 1967), do not fit the source localization prob-
lem. As a replacement, we propose a graph stratified sam-
pling (GSS), which clusters the candidate and sample uni-
formly from each group. Specifically, GSS performs cluster-
ing over graph Fourier signals of candidate sources (Equa-
tion 3), and samples equal-size candidates from each cluster.
Theorem. GSS has lower variance than random sampling.
Proof. Simple random sampling randomly draws m sam-
ples from the entire population. The variance of its mean
estimator is:

Var(Ȳrs) = Var
(∑m

i=1 Yi

m

)
=

1

m2
Var

(
m∑
i=1

Yi

)
=

σ2

m
,

where σ2 = Var(Yi) is the population variance. To set up
GSS, we divide all candidates into κ non-overlapping equal-
sized groups based on similarity. N is the population, and
Ni is the population in i-th group. From the ith group, mi

samples are drawn, with a total of m = m1+m2+ · · ·+mκ

samples. The variance of this GSS mean estimator is given
by: Var(Ȳgss) = Var

(∑κ
i=i Ȳi

)
=
∑κ

i=1

(
Ni

N

)2 σ2
i

mi
, where

σi is the sample mean of the ith group. To demonstrate
the variance reduction of GSS compared to simple random
sampling, we compare Var(Ȳgss) and Var(Ȳrs). Note that the
within-group similarity exists, so the variances within each
group are smaller than the overall population variance, i.e.,
∀i, σ2 ≥ σ2

i . In addition, the sample size of each group is the
same (i.e., m1 = m2 = . . . = mc = m̃, and κ · m̃ = m),
the size of each group is the same ( N

Ni
= κ). So:

Var(Ȳgss) =
κ∑

i=1

(
1

κ

)2
σ2
i

m̃
≤

κ∑
i=1

(
1

κ

)2
σ2

m̃
= Var(Ȳrs).
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GSS clusters similar items within each group, thereby re-
ducing within-group variance and, consequently, the estima-
tor’s overall variance. This would aid Bayesian Optimization
in minimizing overall variance and drawing precise conclu-
sions about actual sources. Note that the expected sample
mean by GSS is identical to the sample mean by random
sampling, which is the population mean. Consequently, a de-
crease in variance reduces inference errors.

Expected improvement (EI) is used to estimate the poten-
tial improvement of samples over the current best observa-
tion. Suppose the model clusters all candidates into b groups
C = {c1, c2, . . . , cb}, γ sets are sampled from each group
such that {sij}γj=1 ∼ ci. We optimize EI over the sample set
[s11, s12, ..., sbγ ] such that:

s̃∗ = argmax
s̃ij∈[s̃11,s̃12,...,s̃bγ ]

EI(s̃ij) = argmax
s̃ij

E[δ(sij , s+)·I(sij)],

where s+ is the best set so far, sij is the node set that
corresponds to the graph Fourier transform signal s̃, and
δ(s, s+) = f(s; o∗)−f(s+; o∗). I(sij) is an indicator func-
tion that equals to 1 when f(sij ; o

∗) > f(s+; o∗) and 0
when otherwise. Although the search space in our problem
is finite, enumerating all node sets in each iteration violates
our principle of efficiency. Thus, we strategically sample a
few sets with GSS and use EI to pick the maximizer.

For the initial node sets and the one node set in each itera-
tion, we need to query the true value of the objective function
τ(o, o∗). The evaluation is achieved by simulations based on
the given diffusion models, such as SI, SIS, or SIR. The pro-
posed method BOSouL does not require the diffusion step
as one of the inputs. Instead, our algorithm finds a simulation
step t that maximizes the similarity between the diffusion
spread from s and the given observation o∗ in each simula-
tion round. The similarity SIM, an integer evaluated by the
Hamming distance between the two vectors, keeps updat-
ing as the time step grows. We expect the similarity to grow
first as diffusion time step t grows. It peaks after a few steps
and starts to decrease. On the one hand, with diffusion mod-
els like SI, the similarity decreases as the simulated spread
suppresses the observed snapshot. On the other hand, with
diffusion models like SIR and SIS, the similarity decreases
when the diffusion waves of the simulation stagger the in-
fected sub-graph of the observation. The simulation stops
when the similarity shows a monotonically decreasing pat-
tern and SIM is set to its historically high. After multiple
rounds of simulations, we have:

τ(o, o∗) = E[max
t

SIM(ot, o
∗;G, d, t, s)]. (6)

Algorithm
BOSouL is demonstrated in Algorithm 1. Initiated with
graph G with n source nodes, one-shot observation o∗, given
diffusion model d, budget k, and sample size γ, it aims to
produce an n-sized node set s that approximates the true dif-
fusion source. The algorithm selects the top a nodes as the
candidate pool based on degree centrality. A graph Fourier
transform is applied on all n-sized subsets of spool (lines 3-
7). These transformed sets are clustered into c groups for

Algorithm 1: BOSouL
Input: Graph G, source number n, observed snapshot o∗, diffusion
model d, budget k, sample size γ
Output: A n-sized node set ŝ
1: set S̃ ← ∅, set Φ← ∅, simulation step t← 0
2: spool← top a nodes by degree centrality
3: S ← all n-size node sets ⊂ spool

4: for s ∈ S do
5: s̃← U⊤s as in Eq. 3
6: S̃ ← S̃ + s̃
7: end for
8: cluster S̃ into b groups: C = {c1, c2, . . . , cb}
9: sample 1 sets from each set group, {s̃i}bi=1 ∼ ci

10: for s̃i ∈ [s̃1, s̃2, ..., s̃b] do
11: si ← S[loc(s̃i)] where loc(·) is the index of · in S̃
12: ot ← simulate d on G with si and increasing t
13: τi ← E[maxt SIM(o∗, ot)] as in Eq. 6
14: Φ← Φ+ (s̃i, τi)
15: end for
16: train GP (as surrogate) with Φ: s̃ GP−−→ τ
17: while z ̸=0 (z = k − b) do
18: sample γ sets from each set group, {s̃ij}γj=1 ∼ cb
19: s̃∗ ← argmaxs̃ij EI(s̃ij), and s̃ij ∈ [s̃11, s̃12, ..., s̃bγ ]
20: s∗ ← S[loc(s̃∗)]
21: ot ← simulate d on G with s and increasing t
22: τ∗ ← E[maxt SIM(o∗, ot)]
23: Φ← Φ+ (s̃∗, τ∗) and re-train GP with Φ
24: z ← z − 1
25: end while
26: Evaluate S with GP: ŝ = argmaxs∈S GP(s)

later stratified sampling (line 8). One graph Fourier trans-
form signal is randomly sampled from each cluster and eval-
uated by the peak similarity between the diffusion spread
and the observation achieved during the simulations as dis-
cussed in the data acquisition section (line 12). The c pairs
of Fourier representation of sources and similarities are used
to train the GP model as an initialization (line 9-16). In each
following iteration, a new group of data points is sampled by
GSS, and one of them is picked by the EI acquisition func-
tion. After evaluation, the GP model is updated with the new
signal-similarity pair, and the process repeats until conver-
gence or the iteration budget is used up (line 17-25). After
that, all candidate sets are evaluated with the model, and the
maximizer is the estimated source set ŝ (line 26).

Time complexity
We analyze the time complexity of BOSouL based on Al-
gorithm 1 and compare it with popular multi-source local-
ization methods. Selecting a nodes with the highest degree
centralities (line 2) is O(|V | + |E|) = O(N2) using BFS
traversal. This complexity can be further reduced to O(N)
for sparse graphs. Calculating the graph Fourier transform
operator is O(N3) (Merris 1994). Generating all n-sized
node sets from s (line 3) requires O(an). Looping through
all combinations has a time complexity of O(an), and the
operations inside the loop are multiplications between 1 ∗N
vectors and N ∗ N matrices, which are O(N2). Thus, the
time complexity for the whole block (line 4-7) is O(anN2).
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Methods Jordan Centrality LPSI NetSleuth LISN BOSI prep BOSI opti
Time Complexity O(N3) O(N3) O(|VI |+ |EI |+ |E|) O(N3) O(N3) O(k4)

Table 1: Time complexities of BOSouL and other popular alternatives.

Clustering the graph Fourier signals is O(an). The opera-
tions above are the preparations for the GP training and have
a combined time complexity of

O(N2 +N3 + an + anN2 + an) = O(N3), (7)
when a ≪ N and n is a very small integer.

Breaking down the GP training process and the final pre-
diction (line 9 - 26), we get all the operations carried out.
There are (b + bγ(k − b)) samplings from the cluster, k
simulations to evaluate the true similarity between the simu-
lated spread and the true observation, (k − b + 1) rounds
of GP model training, and 1 evaluation for each candi-
date node sets using the trained GP. Assuming each sim-
ulation takes a long but constant time, the time complexi-
ties of sampling, simulation, GP training, and evaluation are
O(1),O(1),O(|Φ|3), and O(1) (Rasmussen, Williams et al.
2006), respectively. Thus, the time complexity for the whole
training and predicting period is
O(b+ bkγ − b2γ + k + (k − b+ 1)|Φ|3 + an) = O(k4) (8)

since |Φ| ≤ k, b and g are constants, and an is ignorable
compared to the problem size N . The overall time complex-
ity of BOSouL is O(N3 + k4) where N is the graph size
and k is the evaluation budget. This complexity is compared
with other methods in Table 1. We can see that NetSleuth,
proposed as an efficient algorithm, still has a better scala-
bility. But BOSouL, as a simulation-based method, has the
same time complexity as the other heuristics when the bud-
get is relatively small. Also, note that the only operation
bonded with the O(N3), namely the eigendecomposition of
the Laplacian matrix, runs only once in BOSouL; we expect
its running time to grow slower than the other baselines.

Experiment
The experiments are carried out with 32 AMD EPYC 7302P
16-Core processors and 32GB RAM. Simulations are per-
formed by NDLib (Rossetti, Milli, and Rinzivillo 2018), an
open-source toolkit for diffusion dynamics. The baselines
are realized by Cosasi (McCabe 2022), a Python package
for graph diffusion source localization. The Bayesian opti-
mization paradigm is implemented by BOTorch (Balandat
et al. 2020) and gPyTorch (Gardner et al. 2018).

Configurations
We adopt SI, SIR, SIS, and IC as diffusion models. The in-
fection rate is set to be 0.1 in the epidemic models, and the
recovery rate in SIR and SIS is set to be 0.1. Each candi-
date source set is evaluated by an average of 100 simulation
rounds. The Bayesian optimization paradigm includes 50 it-
erations to train the final model. Datasets: Three real-world
datasets, namely Cora, CiteSeer, and PubMed (Yang, Cohen,
and Salakhudinov 2016), reproduce the complex social net-
work structure. Since the source localization problem is tra-
ditionally studied on connected graphs, we take the largest
connected component of these graphs as the studied net-
work. Two synthetic graphs are generated using NetworkX
to represent pseudo social networks. They include connected

Watts-Strogatz small-world graphs (SW) (Watts and Stro-
gatz 1998) and Erdős–Rényi random graphs (ER) (Gilbert
1959). Each synthetic graph has 1, 000 nodes for effective-
ness evaluation, and the average degree is around 10. We
use SW graphs with sizes ranging from 1, 000 to 5, 000 for
runtime analysis. Baselines: BOSouL is compared to three
popular baselines. (1) Jordan centrality (JC) (Shah and Za-
man 2010) greedily selects the nodes with the smallest max-
imum distances to other nodes in the infected sub-graph.
(2) NetSleuth (Net) (Prakash, Vreeken, and Faloutsos 2012)
is a highly efficient algorithm to identify the number and
the location of sources under the SI model. (3) LISN (Nie
and Quinn 2019) scores nodes based on shortest distance
and maximum likelihood and selects nodes with the highest
scores. Metrics: The result is evaluated by its distance from
the true sources. In our experiment, the identified and true
source sets are the same size. Thus, the distance between
the two sets is calculated by D{a, b} = min{Σi∆(ai, b̂i)},
where ∆(ai, b̂i) represents the shortest distance between the
nodes ai and bi, and b̂ stands for a permutation of list b.

Results
The empirical study includes (1) Performance: the effective-
ness of BOSouL is compared against the baselines; (2) Run-
time Analysis: the time cost of BOSouL and the baselines
are demonstrated to verify the time complexity analysis; and
(3) Ablation Test: we compare BOSouL with two variants
to evaluate the utility of our proposed GSG and GSS.
Performance. To demonstrate the compatibility
of BOSouL, we test it along with the baselines with
two significantly different diffusion models, SIR and SI.
The infection rate for both models is 0.1, and the recovery
rate for SIR is 0.1. For BOSouL, the budget of simulation
is 70. The number of candidate nodes is 50, thus there are(
50
3

)
= 19, 600 candidate sets. They are clustered into 20

groups. Each method runs 10 times on each graph with
different true source sets of size 3. The mean and standard
deviation are reported as the final results. In SIR models
where the source nodes might already recover and do not
distinguish from the nodes that have never been infected,
identifying the source nodes is much more challenging.
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Figure 3: The distance toward the true source set with SIR.
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Figure 4: The distance toward the true source set with SI.

Figure 3 clearly illustrates the superiority of BOSouL when
solving multi-source localization problems with the SIR
model. It achieves the lowest localization error on all five
datasets, demonstrating its effectiveness and diffusion
model adaptability. Compared to other methods, the per-
formance advance is most significant on SW, CiteSeer, and
PubMed, with an enhancement of up to 29%. Understand-
ably, the baseline methods do not perform well enough with
the SIR model since they explicitly or implicitly assume
the SI model. Thus, they only select nodes in the infected
sub-graph. Figure 4 demonstrates that BOSouL also
achieves competitive performance on all five graphs with
the SI model. It outperforms the other four methods on
four datasets. On CiteSeer, NetSleuth is the best performer
but only leads BOSouL by 0.4. Additional experiments
show that BOSouL surpasses all baselines across all five
graphs under the IC model and outperforms baselines on
four datasets except for Cora with the SIS model.
Runtime Analysis. As expected, BOSouL has longer
running times than the baseline methods on SW graphs with
increasing sizes due to the time spent on simulations. This
difference is most significant when graph size N = 1, 000.
BOSouL takes 396.69 seconds, about six times slower than
the slowest baseline LISN. Comparatively, Jordan centrality
only takes 28.10 seconds, and NetSleuth needs 40.42 sec-
onds. Those are 7.08% and 10.19% of BOSouL’s running
time, respectively. But this difference shrinks as the graph
size grows. BOSouL almost scales linearly in the empirical
experiment, evidenced by the steady increase in mean run-
time. Jordan centrality spends the most time on eigendecom-
position, which is part of BOSouL. Thus, it shows a simi-
lar pattern with a slightly higher rate of increase. NetSleuth,
despite its lower time complexity, consistently takes more
time than Jordan centrality as the graph size grows from
1, 000 to 5, 000. Also, it has a relatively large variance due to
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Figure 5: Runtime analysis on SW graph.

SW ER Cora CiteSeer PubMed
raw 7.4±0.6 6.0±1.2 8.6±2.3 7.6±2.5 7.6±2.3
(GSG) -10.8% -3.3% -23.2% -18.4% 0%
half 6.6±1.5 5.8±0.5 6.6±1.1 6.2±1.8 7.6±2.2
(GSS) -2.7% -3.3% -2.4% -10.5% -5.2%
full 6.4±0.9 5.6±0.9 6.4±1.7 5.4±2.7 7.2±2.6

Table 2: Ablation tests with SIR model.

the term representing the size of the infected subgraph in its
time complexity. Lastly, LISN’s running time grows fastest
as the problem size scales because it involves several ma-
trix multiplications. On a size-5, 000 connected small-world
graph, BOSouL takes 2, 018.98 seconds, while LISN takes
1, 989.67 seconds. We can expect that on a larger graph, the
running time of the latter will surpass that of the former. The
running times for Jordan centrality and NetSleuth are 580.86
seconds and 704.72 seconds, respectively. The percentages
compared to BOSouL raise to 28.77% and 34.90%. This
trend is illustrated in Figure 5. Overall, BOSouL shows a
stable scalability. The adaptation of Bayesian optimization
makes the simulation-based approach tractable. Although its
running time is longer than the faster baseline methods like
Jordan centrality and NetSleuth, it remains competitive due
to its superior performance. At the same time, the efficiency
gap shrinks as the problem size grows.

Ablation Study. Table 2 compares the performance of our
proposed BOSouL method (full) against two ablated ver-
sions: using random sampling (RS) instead of GSS for data
acquisition and using an RBF kernel instead of the proposed
GSG kernel. Column (GSG) shows the percentage decrease
in localization error after substituting the RBF kernel with
the GSG kernel. And Column (GSS) demonstrates the fur-
ther performance increase brought by GSS. We can observe
that RS+GSG (half) always performs at least as well as
RS+RBF (raw). More specifically, except for PubMed, GSG
brings performance enhancement ranging from 0.2 to 2.0,
which is a 3.3% − 23.2% decrease in the localization error.
This shows the benefits of the graph spectral Gaussian ker-
nel for effective adaptation to the graph-structured data and
the source localization problem. It is also demonstrated that
GSS+GSG (full) outperforms RS+GSG on all five datasets.
This shows the benefits of graph stratified sampling for uni-
form data acquisition. It explores the search space better
than random sampling. In sum, our ablation study verifies
the proposed components each provides significant gains
over variants without those techniques. GSG kernel con-
sistently assists in graph-structured data adaptation, fulfill-
ing the smoothness assumption. Graph stratified sampling is
crucial for handling more complex search spaces.

Conclusion
This study presents a simulation-based method BOSouL for
multi-source localization from a one-shot observation.
Bayesian optimization is adopted to foster efficiency and re-
veal a relationship between the node set and the observation.
We theoretically prove that GSG, a graph-level kernel for the
Gaussian process, is a valid Mercer kernel, and GSS, a strat-
ified sampling method based on graph clustering, reduces
variance better than random sampling.
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