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Abstract

Medical insurance fraud has always been a crucial challenge
in the field of healthcare industry. Existing fraud detection
models mostly focus on offline learning scenes. However,
fraud patterns are constantly evolving, making it difficult
for models trained on past data to detect newly emerging
fraud patterns, posing a severe challenge in medical fraud de-
tection. Moreover, current incremental learning models are
mostly designed to address catastrophic forgetting, but of-
ten exhibit suboptimal performance in fraud detection. To
address this challenge, this paper proposes an innovative
online learning method for medical insurance fraud detec-
tion, named POCL. This method combines contrastive learn-
ing pre-training with online updating strategies. In the pre-
training stage, we leverage contrastive learning pre-training
to learn on historical data, enabling deep feature learning
and obtaining rich risk representations. In the online learning
stage, we adopt a Temporal Memory Aware Synapses online
updating strategy, allowing the model to perform incremen-
tal learning and optimization based on continuously emerg-
ing new data. This ensures timely adaptation to fraud patterns
and reduces forgetting of past knowledge. Our model under-
goes extensive experiments and evaluations on real-world in-
surance fraud datasets. The results demonstrate our model
has significant advantages in accuracy compared to the state-
of-the-art baseline methods, while also exhibiting lower run-
ning time and space consumption. Our sources are released at
https://github.com/finint/POCL.

Introduction
Medical insurance fraud poses a severe detriment to society
and is drawing increasing attention from the public. In 2017,
the United States expended a staggering $3.5 trillion on
healthcare (Sisko et al. 2019), with over 20%, or $720 billion
(Cubanski, Neuman, and Freed 2019), dedicated to med-
ical insurance. Yet, amidst these vast expenditures, fraud-
ulent organizations and individuals have found opportuni-
ties for exploitation. Studies indicated that an alarming 3-
10% of medical insurance funds (Morris 2009), equating to
$21-70 billion, were squandered due to deceitful activities.
Such fraudulent actions not only heighten the operational
costs of the healthcare system, but also burden consumers
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indirectly (NHCAA 2021). The ramifications of these acts
echo throughout society, emphasizing the imperative nature
of combating insurance fraud.

Moreover, medical insurance fraud tactics are constantly
evolving (Thornton et al. 2013). Fraudsters adapt, devising
increasingly clandestine tactics to reduce their exposure to
detection (Timofeyev and Jakovljevic 2022). Such evolv-
ing stratagems exacerbate the challenges in fraud detection.
Contemporary static health insurance fraud detection sys-
tems are not fit for this situation (Thornton et al. 2013), over-
looking many fraudulent activities that cause massive losses.
This underscores the imperative to devise a medical insur-
ance verification system characterized by rapid adaptability
and online learning capabilities.

Fraud detection has a long history, tracing its origins
back to research in the 1980s (McDowell 1987). Traditional
methodologies often pivoted around rule-based approaches
as depicted in (Dua and Bais 2014), or embraced the realm
of machine learning, evidenced by the work of (Fiore et al.
2019). These approaches garnered significant attention due
to their efficacy in fraud detection. Parallelly, as deep learn-
ing method gained traction in the broader scientific commu-
nity, they began to be applied in the fraud detection domain,
ushering in a novel era of sophisticated detection mecha-
nisms, such as (Roy et al. 2018). Pioneering works such
as (Dou et al. 2020; Cheng et al. 2023; Ma et al. 2023;
Gao et al. 2023) highlight the capability of graph neural
networks (GNNs) to learn complex relationships and pat-
terns, thereby signifying the burgeoning potential of this ap-
proach in elevating the state of fraud detection. However,
the models delineated above predominantly cater to the of-
fline learning paradigm. Transposing these methods directly
to online learning contexts frequently results in suboptimal
outcomes. Retraining a complete model to circumvent these
limitations (Lebichot et al. 2020) often introduces significant
challenges, given the substantial computational and tempo-
ral resources required (Wu, Dobriban, and Davidson 2020).

Fortunately, in recent years, various of fraud detection
models employing incremental or online learning have
emerged. Notably, in specific dynamic settings, these mod-
els have demonstrated commendable efficacy. For instance,
(Sadreddin and Sadaoui 2022) leverages an innovative adap-
tive learning approach, melding transfer learning with in-
cremental learning. (Anowar and Sadaoui 2021) introduces
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a block-based incremental learning framework tailored to
combat auction fraud, while (Bayram, Köroğlu, and Gönen
2020) employs gradient boosted trees, addressing the dy-
namic nuances of credit card fraud. Nevertheless, these
methods still have limitations. Firstly, current techniques of-
ten overlook the intricate structural and temporal nuances
inherent to fraud patterns. Secondly, given the stringent data
storage restrictions posed by financial contexts, historical
data becomes infeasible.

To address these challenges, in this study, we propose Pre-
trained Online Contrastive Learning model (POCL), an in-
novative online learning graph neural network tailored for
medical insurance fraud detection. Firstly, we divide the
historical dataset into positive and negative medical node
graphs. We pre-train an upstream model by contrasting the
difference between these two types of graphs. As illumi-
nated in (Le-Khac, Healy, and Smeaton 2020), contrastive
learning serves as a powerful tool in discovering complex
patterns, subsequently improving the precision of fraud de-
tection. Simultaneously, our empirical observations suggest
that the model proficiently projects evolving fraud charac-
teristics into congruent spaces, which can reduce the diffi-
culty of updates and decrease the likelihood of forgetting.
Next, we introduce a downstream fraud detection network
and combine it with the pre-trained model to create an end-
to-end fraud detection model. In the online learning sce-
nario, we use a novel Temporal Memory Aware Synapses
(MAS) (Aljundi et al. 2018) method to update the model.
This method incorporates temporal features and calculates
the importance weights of parameters for each update. By
using the momentum technique to integrate the historical
importance weights, this approach determines the extent of
forgetting and retaining parameters during updates without
storing any historical data. In summary, our work has the
following contributions:

• To the best of our knowledge, this is the first work to
introduce an online learning model within the domain
of insurance fraud detection. This model adeptly amal-
gamates structural features, continually adapting to the
evolving paradigms of fraud patterns.

• We propose a novel online learning GNN model based
on contrastive learning pre-training. This model, when
paired with the Temporal MAS method, accurately iden-
tifying fraudulent claims and significantly attenuates the
occurrence of forgetting previously learned knowledge.

• Through extensive experimentation on a real-world med-
ical insurance fraud dataset, we demonstrate evidence of
our model’s impressive accuracy during protracted on-
line updates. Moreover, our model consistently exhibits
lower time and space complexity.

Related Work
Fraud Detection
In recent years, the realm of fraud detection has expanded its
influence across various sectors, prominently within credit
card operations (Varmedja et al. 2019), the broader finan-
cial sphere (Ashtiani and Raahemi 2021), and the insur-

ance domain (Aslam et al. 2022). Machine learning algo-
rithms have proven instrumental in stymieing fraudulent en-
deavors. In the pursuit of fraud detection, three salient deep
learning methodologies emerge. Foremost, Deep Structure
Embedding, facilitated by the FraudNE algorithm (Zheng
et al. 2018), stands out for its adeptness in retaining intri-
cate, nonlinear structural nuances, offering the capability
to embed heterogeneous vertex types into a congruent la-
tent space. Next, GNNs, typified by the PCGNN (Liu et al.
2021), CAREGNN (Dou et al. 2020) and GTAN (Xiang
et al. 2023), exhibit robustness when confronted with un-
structured datasets. Finally, the deployment of Long Short-
Term Memory Networks (LSTM) (Choi et al. 2016; Haque
and Tozal 2022; Wiese and Omlin 2009; Jurgovsky et al.
2018) emerges as an effective approach for sequential data
interpretation. Notably, these fraud detection techniques are
within offline learning paradigms. Consequently, shift in
fraud patterns results in diminished accuracy, necessitating
a comprehensive model retraining. In contrast, our model
circumvents this issue by dynamically updating parameters
during online learning, significantly mitigating both time
and computational overheads.

Online Learning
Online learning methods can be broadly divided into three
categories: (1) weight regularization and optimization strate-
gies, (2) memory management strategies, and (3) network
structure adaptation strategies. Weight regularization and
optimization strategies maintain the performance of tasks
already learned by constraining the weight updates of the
model. This intentional limitation restricts weight changes
during the learning of new tasks (Liu et al. 2020; Li et al.
2020; Liu et al. 2018). Memory management strategies, as-
sist the model in remembering old tasks by saving and re-
visiting some of the data from these tasks. Specific applica-
tions of this include memory replay (Zhou and Cao 2021),
and pseudo-rehearsal (Atkinson et al. 2021; Pomponi, Scar-
dapane, and Uncini 2020; Kase, Tateishi, and Ogata 2022).
Network structure adaptation strategies, alleviate the prob-
lem of catastrophic forgetting by adjusting the structure
of the neural network to accommodate new tasks. Specific
applications of this include dynamic expandable networks
(Yoon et al. 2017; Yang, Chen, and Liu 2022), progressive
neural networks (Rusu et al. 2016), MAS (Aljundi et al.
2018), and PackNet (Mallya and Lazebnik 2018). In terms
of combination with GNNs, the memory replay method has
more notable achievements, such as ERGNN (Zhou and Cao
2021), and Stream GNN based on generative replay (Wang
et al. 2022b). However, many models neglect the structural
nuances of fraud and its temporal evolution. Additionally,
the mandated storage of historical data is impractical. In
contrast, our model seamlessly integrates time and struc-
ture information, updates parameters online, and eschews
the need for storage of historical data.

Methodology
As shown in Fig. 1, the pipeline of our model can be di-
vided into three stages: pre-training, task-learning, and on-
line learning. In this section, we will firstly formulate our
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Figure 1: The illustration of our Pre-trained Online Contrastive Learning (POCL) model. (a) Pre-training stage utilizes con-
trastive learning to learn deep features. (b) Tasking learning stage involves training an offline model using the pre-trained
model and the fraud detection model. (c) Online learning stage employs Temporal MAS to continuously update the model.

problem. Then, in the pre-training stage, we will introduce
the pre-trained model and its optimization strategy. In the
task-learning stage, we will describe how to combine the
pre-trained model and the tasking learning model to train an
offline model. Finally, in the online learning stage, we will
introduce the Temporal MAS online update method, which
is used to determine the degree of change in variables.

Problem Formulation
In online medical fraud detection, we define a medical claim
graph as G(C, E), where C = (h1, h2, ..., hNC

) denotes the
set of medical claims, where each medical claim’s features
is hi, and E = (e1, e2, ..., eN ) represents the edges be-
tween claims, in which two connected claims have the same
medical provider or beneficiary. Here, NC is the number
of claims, and N is the number of edges in the graph. In
the online learning scenario, given two part of data: history
dataset Gh = (G1

h,G2
h, ...,GT

h ) and online learning dataset
Go = (G1

o ,G2
o , ...,GT

o ), our aim is to learn (θ0, θ1, ..., θT ),
where θ0 is the parameter of GNN trained using the tradi-
tional training method based on the whole history dataset
Gh, while the parameter θt, t > 0 is trained on the online
learning data Gt

o, in particular, it is incrementally trained
based on the parameter of θt−1 using an online learning
method. We want to keep the accuracy of model θ as high
as possible without retraining the whole model, and expect
it to detect situations where some patterns have changed.

Pre-trained Model for Enhanced Robustness
During the pre-training stage, we partition claims in the
medical claim graph G into two sets: the positive set hp and
the negative set hn. Subsequently, we use the scheme pro-
vided by the dataset to build edges in the two graphs. By
doing so, we create two distinct graphs: the positive graph

Gp and the negative graph Gn. Both graphs are then utilized
to train the pre-trained model θpre.

We use GraphSAGE (Hamilton, Ying, and Leskovec
2017) as our pre-trained model, where the k-th layer is de-
fined as:

hk = σ(Wk ·MEAN({hk−1
v }∪{hk−1

u , ∀u ∈ N (v)})), (1)

where the N (v) is the neighborhood of node v, and σ is
the activation function. Then we obtain two feature embed-
dings updated by the model, h

′

p = Fθpre(hp) and h
′

n =
Fθpre(hn), which will be used for fraud detection.

We refer to (Veličković et al. 2019), use the binary cross
entropy loss function to help recognize the fraud pattern:

Lpre =
∑

log(D(h
′

p, s)) +
∑

log(1−D(h
′

n, s)), (2)

where D is the distance function, D = h
′

p · W · s, W is the
learnable matrix and s is the logic center, which can be set
as average of hp or E. In practice, we set s as E, so that Eq.2
can be simplified as

Lpre =
∑

log(h
′

p · W) +
∑

log(1− h
′

n · W), (3)

where W is the learnable matrix. The loss function is
designed to effectively separate positive and negative in-
stances, enabling the model to focus on learning specific pat-
terns associated with medical fraud. It can pull nodes with
the same label towards each other and push nodes with dif-
ferent label apart in the feature space so that the model can
focus on the relationship between similar nodes and find the
difference of fraud nodes and non-fraud nodes.

Detecting Network and Task Learning
The output of pre-trained model modifies feature matrix in-
stead of making predictions, and in downstream task, we use
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GAT (Veličković et al. 2018) network θdetect as our detec-
tion network, where in k-th layer, the formula for calculating
attention coefficients is as follows:

α
(i,j)
k =

exp
(
σ
(
aT [Wkh

(i)
k ||Wkh

(j)
k ]

))
∑

m∈N (i) exp
(
σ
(
aT [Wkh

(i)
k ||Wkh

(m)
k ]

)) ,
(4)

where Wk is the weight matrices in layer k, a is the atten-
tion parameter, || is the concatenation operation and σ as the
LeakyReLU function. After obtaining the attention coeffi-
cients between nodes, we define the k-th layer of GAT as:

GATLayerk(hk) = σ

 ∑
j∈N (i)

α
(i,j)
k Wkh

(j)
k

 , (5)

where N (i) is the set of neighbor node i.
Then, we proceed to combine the pre-trained model with

the detection network, creating an end-to-end model. We
train the entire model using the historical dataset Gh, which
involves training the detection model θdetect and fine-tuning
the pre-trained model θpre. However, a critical challenge
arises during this step—ensuring that the pre-trained net-
work θdetect can learn from the labels, while θpre does not
forget the valuable information it has already acquired. To
address this issue, we propose a novel loss function that ef-
fectively mitigates catastrophic forgetting. We build upon
the standard cross-entropy loss function by introducing a
penalty term P =

∑
log(h

′

ppre
·W) +

∑
log(1− h

′

npre
·W),

so the overall loss Ldetect is:

Ldetect =−
∑

(y · log(p) + (1− y) · log(1− p))

+
∑

log(h
′

ppre
· W) +

∑
log(1− h

′

npre
· W),

(6)

where h
′

ppre
is the positive part of the output of the pre-trained

model Fθpre(h) and h
′

npre
is the negative part. Our mod-

ified binary cross-entropy loss builds upon the previously
mentioned BCE loss Lpre in Eq. 2. By incorporating the the
penalty term P into the loss function, we incentivize the pre-
trained network θpre to preserve its previously learned fea-
tures while simultaneously helping the whole model learn-
ing from the new data. This approach ensures a balanced
learning process, preventing the model from overly empha-
sizing the new data at the expense of forgetting important
information obtained during the pre-training stage.

Online Learning and Forgetting Control
Online learning method. To address the challenge of com-
bating constantly changing fraud patterns without retraining
the entire model, we employ an online learning method to
incrementally update the model. Due to the uniqueness of
the financial scenario, we can only access a portion of the
online dataset Go at each time. At time t, our model can be
represented as follows:

p̂t = Fθt−1
detect

(Fθt−1
pre

(Gt
o)). (7)

Here, p̂t denotes the predicted fraud possibility, Fθt−1
detect

rep-
resents the pre-trained model function and Fθt−1

pre
is the de-

tection model function at time t − 1. These functions learn
from the data collected from time 1 to t− 1.

Temporal MAS approach. In the medical insurance
fraud detection scenario, we have observed that new fraud
patterns emerge alongside existing ones. This means that
failing to promptly learn new patterns or forgetting old ones
will both lead to a decrease in accuracy. In order to control
what to learn and remember at the period of online learn-
ing, we design a novel method based on MAS (Aljundi et al.
2018), called Temporal MAS. Firstly, compared to other in-
cremental learning or online learning methods, this approach
does not require storing historical data, which is crucial for
our model. Its time efficiency is remarkably high, as it only
needs to calculate the gradients of each parameter and merge
them, resulting in a fixed space and time overhead. Further-
more, it takes advantage of the evolving nature of fraud pat-
terns in medical insurance fraud detection. By using the mo-
mentum method to combine historical importance weights
and individual task importance weights, the model achieves
a balance between forgetting and retaining knowledge while
learning new fraud patterns. This allows the model to adapt
to changes in fraud patterns over time, making it more robust
and effective in detecting medical fraud.

Firstly, we need to calculate the importance weights of
the model’s parameters within a single graph. Here, we use
the gradients of each parameter as the importance weights
for the current task. This is because larger gradients indicate
that modifying a particular parameter will have a greater im-
pact on the model’s output, making it more susceptible to
catastrophic forgetting:

Fθ(hk + δ)−Fθ(hk) ≈
∑
i,j

Ωij(hk)δij , (8)

where hk is the graph feature and δ is the small change in the
parameter θ. We use gradient to calculate these importance
weights:

Ωij =
∂(Fθ(xk))

∂θij
. (9)

In the context of online learning for medical insurance
fraud detection, new fraud patterns emerge gradually and
may replace old patterns. Simply summing up the impor-
tance weights of multiple graphs is insufficient. To address
this issue, we adopt the concept of momentum, considering
the trend of importance weight changes and gradually atten-
uating the significance of previous weights. By incorporat-
ing the momentum idea, we adaptively adjust the importance
weights over time, allowing the model to gradually forget
less relevant patterns that have not appeared for an extended
period. This adaptive mechanism ensures that the model can
continuously learn and adapt to new fraud patterns, while
still retaining the capability to forget outdated information.
We calculate the adjusted importance weights by

It = λ× It−1 + (1− λ)× Ωt, (10)

where λ is the momentum parameter and Ωt is the impor-
tance weight of Graph Gt

o
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After computing the global importance weights, we incor-
porate them as penalty terms into the loss function L,

Lonline =−
∑

(yt · log(pt) + (1− yt) · log(1− pt))

+
∑

log(h
′

pt · W) +
∑

log(1− h
′

nt · W)

+ ω
∑
i,j

It(θt−1 − θt)
2. (11)

Here yt is the ground truth of the input, pt is the prediction
of the model, h

′

pt is the positive output of the pre-trained
model θt−1

pre , ω is the weight of the penalty term and h
′

nt is
the negative one at time t.

Experiments
We demonstrate the empirical results of our model on a real-
world healthcare insurance fraud dataset (we will abbreviate
it as medical fraud dataset) and other fraud datasets in two
scenarios using simulated timestamps. We first introduce the
scale of the medical fraud dataset and experimental setup,
then elaborate on the experimental framework and results.
Subsequent ablation studies further prove the effectiveness
of each model component. Finally, through a case study, we
show that the performance of the model is consistent with
the expected results.

Dataset and Experimental Setup
To assess the efficacy of our model in real-world med-
ical insurance fraud detection, we leveraged the medical
fraud dataset as detailed in (Ma et al. 2023). This extensive
medical insurance dataset encompasses real-world informa-
tion on approximately 200,000 beneficiaries, over 5,000
providers, and around 550,000 medical insurance claims.
About 38.1% of these claims were identified and labeled
as fraudulent. The most cherish part of this dataset is the
meticulous fraud labels and timestamps, which have been
annotated by experts. Thus, it has typicality and authority.

For the evaluation process, we select one year of data,
subsequently construct many distinct medical claim graphs,
each represents a single day. Among them, the initial 15-day
period is reserved as a historical dataset, and the rest are on-
line learning datasets. To ensure consistency, every model
is trained on this comprehensive historical dataset to cre-
ate offline models. In the online learning phase, models are
adapted dynamically, with the online learning datasets being
introduced incrementally. Ideally, in this phase, each model
should have access only to a specific segment of the online
learning datasets at any point in time. Nevertheless, to mir-
ror real-world scenarios and practical constraints, we allow
certain models to either retain or revisit whole information
from prior graphs.

Also, to analyze more deeply the effectiveness of our ex-
perimental model in different fraud scenarios, we selected
two common fraud detection datasets, Amazon (McAuley
and Leskovec 2013) and YelpChi (Rayana and Akoglu
2015), for a series of experiments. These experiments were
designed by simulating timestamps to generate correspond-
ing online data, thereby mimicking real user behavior and
transaction processes.

Baseline. In our experiments, we select several state-of-the-
art streaming or online graph neural network models, fraud
detection models and OnlineGNN, RetrainGNN, and Of-
flineGNN, for comparison. Below is a detailed introduction
to each of them:
• OnlineGNN: This model specifically focuses on online

learning scenarios, where it continuously learns from in-
coming data without revisiting historical data.

• RetrainGNN: This model retrains whenever new data
is introduced. It discards previous knowledge and starts
training with a random weight with whole data.

• OfflineGNN: This model is only trained on the entire
historical dataset, with no subsequent exposure to any of
new data during the online learning phase.

• ERGNN (Zhou and Cao 2021): This model uses expe-
rience replay to continuously learn a sequence of tasks,
addressing the catastrophic forgetting problem.

• FGN (Wang et al. 2022a): This model bridges graph
learning and lifelong learning by converting continual
graph learning into regular graph learning.

• ContinuesGNN (Wang et al. 2020): This model is based
on continuous learning to learn and maintain patterns
through data replay and model regularization.

• CAREGNN (Dou et al. 2020): This model uses multi-
relation graph to detect fraud, it focuses on fighting
against cheaters who use disguises.

• PCGNN (Liu et al. 2021): This model uses the pick and
choose method to solve the problem of category imbal-
ance in the topological graph of financial relationships.

Experimental Results
We have conducted a comprehensive comparison of our
model against advanced baseline models. As depicted in
Figure 2(a) and 2(c), our model exhibits remarkably high
average monthly accuracy, while Table 1 showcases the
impressive results on other evaluation metrics on medical
fraud dataset. In other datasets, where experiments were
conducted with simulated time, we selected several of the
best-performing baselines for experimentation. These ex-
periments demonstrated trends similar to those observed in
the medical fraud dataset, as shown in Figure 3. The find-
ings demonstrate that our model achieves nearly the level
of RetrainGNN in terms of average monthly accuracy, out-
performing other baseline models by a significant margin of
1%-4%.

To further visually observe the performance in a long-
term online learning scenario, we plot for the average ac-
curacy decline rate in the first six months and the last six
months in Figure 2, which were obtained through data fit-
ting. For better visualization, we have flipped the y-axis.
It can be observed that although CAREGNN and PCGNN
have impressive performance in the beginning, the accuracy
drops quickly as shown in Figure 2(c) and 2(d). Other mod-
els exhibit similar decline rates in the first six months, but in
the last six months, except for our model and RetrainGNN,
other models also experience significant declines. Consid-
ering other evaluation metrics like average AUC, and av-
erage F1, we also approach the accuracy of RetrainGNN
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Figure 2: Comparison of different fraud detection meth-
ods on average monthly accuracy and average accuracy de-
cline rate for online learning within a year in medical fraud
dataset. The average accuracy decline rate is divided into the
first six months and the last six months.

and significantly outperform other models. Furthermore,
when comparing the excessive time consumption and mem-
ory consumption of RetrainGNN, our model demonstrates
a training time similar to OnlineGNN, indicating a signif-
icant time advantage over RetrainGNN. Additionally, our
model exhibits a comparable space cost to OfflineGNN be-
cause we do not need to store any historical data and only
require storage for a small number of importance weights.
This highlights our model’s performance at a remarkably
high level while showcasing its notable time and space ef-
ficiency, thereby attesting to its effectiveness.

Furthermore, a significant decline in accuracy is observed
for PCGNN and CAREGNN model without any optimiza-
tion for online learning. This confirms the existence of dy-
namic evolution patterns in medical insurance data and un-
derscores the necessity of optimizing models for online
learning. It further validates the crucial role of online learn-
ing in adapting to the evolving fraud patterns. Additionally,
our model’s advantages become increasingly apparent over
time compared to other models, demonstrating its seamless
adaptation to pattern changes with the aid of pre-trained
models and the significant mitigation of catastrophic forget-
ting, facilitated by Temporal MAS method.

It is worth noting that, some models require access to
all previous data (e.g., RetrainGNN) or partial data storage
(e.g., ERGNN), which is a crucial reason why they need
more space in the training process. However, our model
overcomes the need for data storage, striking an optimal bal-
ance between user privacy protection and exceptional per-
formance.

Model AUC F1 Time Space

OnlineGNN 70.48 48.32 3.54 2.21
OfflineGNN 68.72 46.70 3.16 2.13
ERGNN 73.11 52.58 3.64 2.98
FGN 73.85 56.18 4.35 2.67
ContinuesGNN 78.82 57.64 12.4 10.4
CAREGNN 75.91 54.03 8.74 8.90
PCGNN 78.71 60.45 10.4 9.34

RetrainGNN 80.58 63.77 97.4 11.4
POCL(ours) 80.34 63.53 3.62 2.35

Table 1: The average AUC, average F1 score, the total time
(minutes) in the learning process and the average memory
consumption (GB) on medical fraud dataset.

Figure 3: Experiments conducted on common fraud datasets
using simulated timestamps. We use AUC as the evaluation
metric, because these two datasets are highly imbalanced.

Ablation Experiment
To assess the impact of pre-trained contrastive learning
model and online learning with Temporal MAS on the in-
surance fraud detection model, we conduct a series of ab-
lation experiments. In these experiments, we separately test
the pre-trained contrastive learning, the online learning with
Temporal MAS, the combined model POCL, and the On-
lineGNN for comparison.
• POCL w/o OL: We remove Temporal MAS part and em-

ploy pre-trained contrastive learning part with direct pa-
rameter updates in the following online stages.

• POCL w/o PCL: We remove pre-trained contrastive
learning part and using a normal GraphSAGE instead,
using Temporal MAS to update the whole model.

According to Figure 4, the POCL w/o OL model ob-
tained promising results during the early stages. However,
as training progresses, this model shows a certain degree
of performance decline compared to the original model, al-
though the decline is less pronounced than using the GAT
model alone. This suggests that contrastive learning aids the
model in identifying fraud patterns but may lead to some
performance degradation during later stages of training.

Next, the POCL w/o PCL model shows a significant re-
duction in the later-stage decline, demonstrating the effec-
tiveness of Temporal MAS in mitigating catastrophic forget-
ting. However, its accuracy shows a considerable decrease
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(a) h100 (b) h
′
100 (c) h300 (d) h

′
300

Figure 5: The distributions of original features and output features on day 100 and day 300 on medical fraud dataset. In the
visual representation, yellow denotes fraudulent nodes, whereas blue denotes normal nodes.

Figure 4: An ablation experiment of the proposed POCL
w.r.t. average monthly accuracy (a) and average accuracy de-
cline rate (b) on medical fraud dataset.

compared to the original model, indicating weaker fraud
recognition capabilities.

Finally, combining contrastive learning with online learn-
ing using Temporal MAS method yields satisfactory results.
This joint model further reduces the decline observed in both
individual models, substantiating the crucial role of con-
trastive learning in aiding fraud pattern recognition and re-
ducing model update difficulties, as well as the advantage of
online learning with Temporal MAS method in preventing
forgetting previous knowledge.

Case Study
In the POCL model, the incorporation of a pre-trained
model, realized via contrastive learning, plays a pivotal role
in fraud representations learning, fortifying the model’s ro-
bustness in the process. The Temporal MAS online update
methodology adeptly navigates the delicate equilibrium be-
tween information retention and obsolescence.

We show a case study, focusing on two distinct medical
claim graphs at day 100 and day 300, as presented in Figure
5. The nodes colored in yellow represent fraudulent claims,
while those in blue denote legitimate transactions. After the
dimensionality reduction, these nodes are mapped onto a 2D
space. Figure 5(a) and 5(c) depict the original distribution of
the features. In contrast, Figure 5(b) and 5(d) showcase the

attribute outputs of the pre-trained model.
The pre-trained model amplifies the interspace between

nodes of different labels, and fosters a clustering of nodes
with an identical-label. This enhancement facilitates the
fraud detection network’s capacity to discern between the
two distinct categories. We notice a significant change in the
node distribution patterns between Figure 5(a) and 5(c). Fig-
ure 5(a) presents a balanced dispersion of both fraudulent
and legitimate nodes. In contrast, Figure 5(c) shows a denser
congregation of fraudulent nodes, signaling an evolution in
fraud patterns over the 200-day span. Nonetheless, an in-
spection of Figure 5(b) and 5(d) suggests that, in spite of the
modifications in input features, the output feature patterns
conferred by the pre-trained model sustain a marked con-
sistency. Such persistence contrasts starkly with the notable
shifts observed in Figure 5(a) and 5(c). This observation un-
derscores that the Temporal MAS online learning method
reduces the impact of the catastrophic forgetting, thus at-
testing to the efficacy of the Temporal MAS. Furthermore,
the congruence in the output features rendered by the pre-
trained model increases robustness. This aids in curbing the
magnitude of parameter adjustments during online learning
and diminishing the propensity for catastrophic forgetting.

In summation, the POCL model is an effective counter-
measure against catastrophic forgetting during extended on-
line updates and exhibits a nuanced capacity to distinguish
between the features of fraudulent and legitimate nodes.

Conclusion
In this study, we presented POCL, which combined con-
trastive learning and online learning to address the evolv-
ing landscape of insurance fraud. Our model, which em-
ploys contrastive learning to extract and map features, also
integrates the Temporal MAS method for online parameter
updates. This ensures high performance in long-term online
learning scenarios while reducing the computational over-
head and training time. An extensive assessment on real-
world datasets, pitting our proposed model against many on-
line learning and fraud detection models, revealed the effi-
cacy of our approach. We believe that our model can make a
contribution in combating insurance fraud.
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