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Abstract

The open streets initiative “opens” streets to pedestrians and
bicyclists by closing them to cars and trucks. The initiative,
adopted by many cities across North America, increases com-
munity space in urban environments. But could open streets
also make cities safer and less congested? We study this ques-
tion by framing the choice of which streets to open as a rein-
forcement learning problem. In order to simulate the impact
of opening streets, we first compare models for predicting
vehicle collisions given network and temporal data. We find
that a recurrent graph neural network, leveraging the graph
structure and the short-term temporal dependence of the data,
gives the best predictive performance. Then, with the ability
to simulate collisions and traffic, we frame a reinforcement
learning problem to find which streets to open. We compare
the streets in the NYC Open Streets program to those pro-
posed by a Q-learning algorithm. We find that the streets pro-
posed by the Q-learning algorithm have reliably better out-
comes, while streets in the program have similar outcomes to
randomly selected streets. We present our work as a step to-
ward principally choosing which streets to open for safer and
less congested cities.

Introduction
Traffic congestion is at its best inconvenient and at its worst
very dangerous. In 2022, American drivers spent an aver-
age of 51 hours stuck in traffic, representing an estimated
81 billion dollars in productivity loss (INRIX 2022). Fur-
thermore, a by-product of increased traffic in urban areas
is an increase in traffic collisions (Retallack and Ostendorf
2019). Both traffic and collisions can be mitigated by in-
telligent road network design, but urban road networks are
already built and new infrastructure projects in cities can be
prohibitively expensive (Siemiatycki 2015).

One potential solution is to “open1” existing roads to
pedestrians and bicyclists by closing them to cars and trucks
(Kuhlberg et al. 2014; Bertolini 2020). Generally, open
streets initiatives provide a communal space for people liv-
ing in urban environments. As expected, the initiatives have
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1In this work, we will use “open” to mean closing a street to
vehicular traffic and opening a street to pedestrians and cyclists.

positive impacts, including on the physical health of the
participants (Cohen et al. 2016; Sharples 2014). But there
is some evidence that opening streets also improves traffic
and safety. Two prominent examples are Times Square and
Herald Square in Manhattan, NYC, which were turned into
pedestrian plazas in 2009. After the squares opened, there
was a reduction of approximately 15% travel times for routes
along Broadway and a 63% reduction in injuries to drivers
and passengers on the avenue (Grynbaum 2010).

Numerous exogenous variables make an empirical anal-
ysis of the effects of opening streets challenging. As a re-
sult, cities generally use a proposal process to identify which
streets to open. Identifying candidate streets for opening has
been studied (Youn, Jeong, and Gastner 2008; Rhoads et al.
2021); however, previous work does not simulate the effects
of proposed open streets nor does it systematically consider
the impact of open streets on public safety and vehicular
congestion. In this work, we do both.
Contributions In the first part of our work, we build
an improved model for predicting collisions, evaluated on
granular and comprehensive data. We consider a wider time
frame (days, months and years) and a larger space (the
entirety of Manhattan) for predicting collisions than prior
work. We are the first to: (1) use years of data that ac-
count for seasonal and annual variations in traffic and ex-
ogenous variables like weather (prior work only used several
months), (2) use all negative and positive examples (prior
work subsampled to enforce class balance), and (3) take a
global view of the road network, predicting collisions at the
city level while taking into account local information (prior
work used only a few block radius around a collision). We
compare several models for the prediction task. Our best
model uses recurrent layers to capture short-term temporal
dependencies and graph convolutional layers to capture spa-
tial dependencies of our data. Finally, we analyze the impor-
tance of features in the best model and discuss connections
to prior work in the transportation literature.

In the second part of our work, we use a deep learn-
ing approach to evaluating the efficacy of the NYC Open
Streets program. To the best of our knowledge, we are the
first to formulate the problem of opening roads in the lan-
guage of reinforcement learning. We simulate road open-
ings in real historical days. For each simulated day, we es-
timate traffic as the total car density per capacity of each
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Figure 1: In Part 1, we build a recurrent Graph Neural Network (GNN) to predict collisions. In Part 2, we train a deep Q GNN
to reduce traffic and collisions by opening road segments (using our Part 1 model to measure collisions after hypothetical road
openings.) The Q-values represent the expected long-term reduction in traffic and collisions of opening a road.

road and estimate collision risk using our collision predic-
tion model from the first part of our work. We train a deep
Q-learning model to output the long term value of open-
ing each road segment. We find that the streets opened by
the NYC Open Streets program have similar performance
to randomly selected streets and that the streets in the pro-
gram are geographically concentrated in certain Manhattan
neighborhoods. In contrast, the streets with the highest Q-
values consistently reduce collisions and traffic, with a more
equal distribution across Manhattan. As a result, we recom-
mend using our Q-learning model as an additional method
for evaluating streets in the NYC Open Streets program.

Figure 1 summarizes the two parts of our work. All of our
code and data are available on Github.2

Related Work
Open Streets Open street initiatives are multifaceted in
function: they allow more space for people to safely exer-
cise and traverse the city, they promote a decrease in vehi-
cle traffic and carbon emissions, and they provide expanded
outdoor space for businesses, particularly restaurants (Haz-
arika 2021). However, the initiatives have faced some chal-
lenges. Critics have pointed out a lack of equity in the imple-
mentation, arguing that more affluent neighborhoods have
benefited disproportionately from the program in part be-
cause streets are chosen through a proposal process (Haz-
arika 2021). Prior work has used a coarse approximation of a
city to suggest which roads to open (Youn, Jeong, and Gast-
ner 2008) and suggested roads based on side walk infrastruc-
ture (Rhoads et al. 2021). But we are not aware of any work
that simulates the effects of opening streets or systematically
considers the impact on safety.

2https://github.com/rtealwitter/OpenStreets

Collision Prediction Many papers have used traditional
machine learning techniques to solve the problem of pre-
dicting collisions (Cheng and Koudas 2019; Baloch et al.
2020; Auret and Aldrich 2012). However, there are compli-
cated spatial and temporal dependencies in road networks
and collision dynamics. To fit these non-linear patterns, there
has been substantial interest in deep learning techniques to
predict collisions (Lin et al. 2021). In Ren et al. (2017),
they use the recurrent long-short-term memory architecture
to capture temporal relationships. In Zhao et al. (2019), they
use standard convolutional layers to capture both temporal
and spatial relationships. Our work is most similar to Yu
et al. (2021). They use taxi, weather, road infrastructure, and
point data to predict collisions with a deep graph neural net-
work which captures both temporal and spatial relationships.
However, they only consider a two-month period and down-
sample the number of events to equalize the number of col-
lisions and non-collisions, reducing data-scale drastically.
Traffic Prediction The success of our work is predicated
on inferring traffic flow from available taxi trip data as ac-
curately as possible. Yu et al. (2021) focused on the predic-
tion of collisions in Beijing, where data on the exact loca-
tion of the entire Beijing taxi fleet is available in increments
of 5 minutes. However, in our setting in Manhattan, we do
not know the exact location of taxis during their trips. That
said, we do have access to trip start and end GPS coordinates
for the period from 2013 to 2015, and we rely on this data
for traffic inference (Taxi and Commission 2022).3 We note
that the NYC taxi trip data before 2016 have been success-
fully used in a variety of applications such as fleet dispatch-
ing and routing (Bertsimas, Jaillet, and Martin 2019; Deri,

3Coordinates have not been reported since 2015 due to privacy
concerns.
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Franchetti, and Moura 2016), taxi supply and demand (Yang
and Gonzales 2017), traffic safety (Xie et al. 2017), and
predicting congestion (Zhang et al. 2017). Machine learn-
ing techniques have also been quite popular for supervised
learning tasks related to taxi data. These works include iden-
tifying areas of interest (Liu et al. 2021), traffic (Yao et al.
2018; Wu, Wang, and Li 2016; Zhang et al. 2021a), taxi de-
mand (Luo et al. 2022), speeding drivers (Zhong and Sun
2022), payment type (Ismaeil, Kholeif, and Abdel-Fattah
2022), and classifying collisions (Abeyratne and Halgamuge
2020; Bao et al. 2021).

Background
Below we summarize the notation and ideas underlying our
use of graph neural networks and reinforcement learning.
Graph Neural Networks Graph Neural Networks
(GNNs) are a popular choice for exploiting the structure in
graphs (Welling and Kipf 2016). and a set of directed edges
E . In our work, the nodes V represent the segments of the
road and the edges E represent the intersections that connect
them.

Local structure is captured in a GNN through graph con-
volutional layers. Consider a node v ∈ V and its representa-
tion xℓ

v ∈ Rd at the ℓth layer of a GNN. Then we build its
representation xℓ+1

v ∈ Rd′
at the next layer by applying a

graph convolution with parameters Θ ∈ Rd′×d. In particu-
lar,

xℓ+1
v = σ

Θ
∑

u:(u,v)∈E

xℓ
vwu,v


where wu,v is the normalized weight of the edge between u
and v and σ is an activation function.

An advantage of GNNs in our setting is that GNNs learn
weights that can be applied to exploit connections in any
graph, provided the node features stay consistent. The size
of the graph changes in our reinforcement learning problem
since each action removes a road segment. Furthermore, a
GNN can capture short term temporal information by pass-
ing in a hidden state to each layer, which is important in our
setting as short term temporal information is more important
than long term. This architecture is called a ‘recurrent GNN’
(RGNN) (Seo et al. 2018).

Figure 2 describes how the RGNN captures the spatial and
temporal relationships in the collision prediction problem.
Reinforcement Learning Reinforcement Learning (RL)
is a collection of techniques for optimization in online learn-
ing settings (Sutton and Barto 2018; Moerland et al. 2023).

The state space S is the set of all possible realizations of
an environment while the action space A is the set of all
possible options we can take in an environment. An agent is
presented with a state and must then choose an action to take.
Once an action is chosen, the agent transitions to a new state
using a stochastic transition function f : S × A → S . The
agent also receives a real-valued reward for taking an action
in a given state according to a stochastic reward function
r : S ×A → R. A “good” policy is then one that maximizes
the reward an agent receives in expectation.

Figure 2: Using traffic, weather, and infrastructure data, we
train a recurrent GNN to predict collisions. The recurrent
connections capture short term temporal dependencies like
weather. We use weighted cross entropy loss to compare the
real and predicted collisions.

In this work, we consider Q-learning because it is gen-
erally more sample efficient than other techniques and pro-
duces useful intermediate values (Jin et al. 2018). The Q
function, the namesake of Q-learning, is used to find and ex-
ploit states that produce a high reward. Consider a stochas-
tic sequence of states and actions (s0, a0, s1, a1, . . .) where
si+1 = f(si, ai) and actions are selected according to our
policy. Then we can write

Q(s, a) = E

[ ∞∑
i=0

r(si, ai)γ
i

]
where 0 < γ < 1 is some discount factor chosen so that
we focus on near term reward. If we had these Q values,
then our policy should choose the next action in state s by
calculating argmaxa Q(s, a).

This observation motivates the Bellman equation, a natu-
ral criteria for our Q function, where s′ = f(s, a):

Q(s, a) = r(s, a) + γmax
a′

Q(s′, a′).

In our setting, we will use a neural network for the Q func-
tion with parameters θ. Then the loss function is given by

L(θ) =
(
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

)2

.

Notice that the Q function appears in two places. During
optimization, we freeze weights of the ‘target’ Q function on
the left and update the Q function on the right. Q-learning
allows us to efficiently train the Q function; notice that we
only need the 4-tuple (s, a, s′, r) to compute the loss.

Part 1: Predicting Collisions
In this section, we describe our work on predicting colli-
sions. Compared to previous work, our work considers a
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Model F1-score Recall (Negative) Recall (Positive) Recall (Macro Average)
Gaussian NB 0.97±0.0001 0.95±0.0001 0.15±0.0001 0.55±0.0001
LightGBM 0.78±0.0005 0.64±0.0006 0.80±0.0003 0.72±0.0002
XGBoost 0.80±0.0001 0.67±0.0001 0.81±0.0001 0.74±0.0001
DSTGCN (Yu et al. 2021) 0.67±0.2600 0.56±0.2701 0.59±0.1070 0.57±0.0401
Graph WaveNet (Wu et al. 2019) 0.75±0.0121 0.61±0.0160 0.68±0.0006 0.64±0.0080
Recurrent GNN (Lite) 0.86±0.0130 0.77±0.0200 0.68±0.0215 0.73±0.0043
Recurrent GNN 0.87±0.0064 0.78±0.0102 0.74±0.0157 0.76±0.0040

Table 1: Results of collision prediction models. Overall support in the test set was 1,803,363 observations: 1,789,838 negative
and 13,525 positive examples. The ± denotes standard deviation 10 random seeds. Since the F1-score ignores the imbalanced
nature of our data, we use the macro average recall to select the best model.

longer time frame (three years instead of several months)
and includes all collision and non-collision events available
in our data set (instead of down-sampling non-collisons). In
this setting, we find that our recurrent GNN outperforms the
state-of-the-art models from prior work.

Data In order to predict collisions, we leverage infras-
tructure data like road attributes, day-specific weather con-
ditions, and traffic data. The data we use are granular: we
have information for all road segments in Manhattan every
day over a three-year period. Each road segment is defined
as the portion of a street between two intersections, yielding
19,391 segments in Manhattan. Unfortunately, traffic data is
not available at our geographic and temporal scale. Instead,
we infer overall traffic in our road network using a massive
set of start and end locations from taxi trips. We use Dijk-
stra’s shortest-path algorithm to efficiently calculate where
taxis, and we assume other vehicles, likely drove. Since our
data set is massive (10 to 15 million taxi trips per month),
we used simplified shortest paths and local rerouting.

Problem We formulate collision prediction as a binary
classification problem: “Did a collision occur at this road
segment on this day?” Note that we could also frame the
problem as “How many collisions occurred at this road seg-
ment on this day?” However, due to the sparsity of col-
lisions, we chose the more tractable binary classification
framing over the regression framing.

Imbalanced Classification Collisions over a road net-
work are sparse. In our training data, we had more than 21
million total observations but only 160,549 collision obser-
vations (each observation is a road segment on a particular
day). So, as a fraction of the data, only 0.76% of our ob-
servations came from the positive class. There are several
standard approaches to imbalanced classification problems.
Perhaps the most common approach is to down-sample the
majority class, equalizing the total number of negative and
positive examples. This is the approach taken by prior work
on collision prediction (Yu et al. 2021; Lin et al. 2021).
Unfortunately, down-sampling requires throwing away over
99% of our data, which is also a major drawback of the
prior work. We found that the second natural approach, up-
sampling, was inappropriate for our task because of the high
variance of collisions and difficulty in characterizing the un-
derlying distribution (which is essentially our learning prob-
lem). A third approach, and the one that we implement, is to

weight the loss functions of our collision prediction models
so that the positive examples have the same importance as
the negative examples. The benefit of this approach is that
we can utilize all our data for learning without risking the
introduction of noisy synthetic data.
Metrics Overall accuracy is not a helpful metric since a
model that always predicts “no collisions” would have over
99% accuracy. Instead, we seek a high recall model for both
the positive and negative class, to prioritize the prediction of
possible collisions. However, a model that over-predicts col-
lisions, thus drowning out useful signal for our downstream
RL, is also undesirable. Therefore, the unweighted average
of recall between the positive and negative class (also known
as macro average recall) is our preferred metric; we find that
this metric reflects our focus on recall for the positive class
while not overly discounting recall for the negative class.
Models We started with standard machine learning mod-
els like Logistic Regression, Random Forest, and Gaussian
Naive Bayes classifiers. Among these, only the Gaussian
Naive Bayes classifier demonstrated non-trivial recall for the
positive class. We then considered boosting algorithms XG-
Boost and LightGBM. Both models were strong baselines
likely because of their known effectiveness on data sets like
ours with a large number of features (Borisov et al. 2022).

We then evaluated DSTGCN which was specifically de-
signed for the collision prediction task (Yu et al. 2021). We
found DSTGCN performed poorly, perhaps because of the
much larger scale of our data and problem. We also eval-
uated two widely successful architectures for traffic predic-
tion: Graph WaveNet (Wu et al. 2019) and DCRNN (Li et al.
2017). Unfortunately, DCRNN is too slow and memory in-
tensive for our problem’s scale.4

We next evaluated a recurrent GNN (RGNN). We hypoth-
esized that the road structure and traffic patterns interact
temporally in the short term and that the recurrent layers
could successfully capture these relationships. Unlike Graph
WaveNet, the RGNN uses a fixed graph structure which we
hypothesize enables it to achieve higher performance on the
large network we consider.

4For its original task on 207 road segments with four months
of data, training takes days to run even on an Nvidia A100. Our
problem has more than 90x the number of road segments and 9x
the number of samples. Even though we tried, training the DCRNN
took too long on our data.
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Figure 3: We use the integrated gradients method to compute the feature importance of the trained RGNN (Sundararajan, Taly,
and Yan 2017). Features with negative importance (green) are associated with decreased collision risk while features with
positive importance (red) are associated with increased collision risk.

Table 1 summarizes our findings. Each model was hyper-
parameter tuned and, when applicable (i.e. in the deep learn-
ing setting), trained for 100 iterations. We report on the aver-
age performance (plus or minus the standard deviation) over
ten random initializations of each model on the same train
and test sets.

Figure 3 plots the average predictive effect of the most
important features. The number of cars on a road segment
and the travel time (in ideal conditions) generally reduce the
risk of collisions. We hypothesize this is because driving is
cognitively easier in slower conditions (Nilsson et al. 2017).
The remaining features we plot all generally increase the risk
of collisions. Street length, street width, and speed limit are
all associated with higher speed roads which make collisions
more likely (Das, Park, and Sarkar 2023). The features with
the next largest effects—the radius of curved roads, double
level roads, and roads on the border of Manhattan—are all
associated with the highways into and out of the island. It
is well-documented that locations with speed variation are
correlated with more collisions (Li et al. 2013). Finally, bike
lanes also have a (small) effect on collisions perhaps because
of the dangers of biking in Manhattan (Chen et al. 2012).

Part 2: Choosing Streets
In this section, we consider the problem of choosing which
road segments to open as a mechanism for reducing traffic
and collisions. A natural idea is to choose the road segments
with the highest levels of traffic and most collisions. How-
ever, there are two issues with this approach:

1. There are complicated endogenous effects. For example,
if they are rerouted from road segments with traffic, cars
may clog smaller streets or exacerbate gridlock in other
heavily congested areas. In addition, more complicated
traffic patterns that increase cognitive load can raise the
risk of collisions (Engström et al. 2017).

2. There are complicated temporal dynamics so road seg-

Figure 4: A state is a real historical day where we simulated
opening road segments. An action opens a new road seg-
ment.

ments that are beneficial to open in some conditions may
be quite harmful to open in others. Days of the week,
weather patterns, and special events all impact where and
how people drive.

We address these two issues by framing the problem of
opening road segments as a reinforcement learning problem.
In particular, we incorporate temporal dynamics by consid-
ering sequences of days and we incorporate endogenous ef-
fects by propagating road openings through time.

Figure 4 shows how we formulate the problem.
States States are representations of the city on a given his-
torical day. The representation includes weather and traffic,
calculated from actual taxi trips. The representation also in-
cludes all infrastructure information but some road segments
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have been hypothetically opened (closed to vehicular traf-
fic). The state carries a list and updates the traffic pattern in
each new day as if all road segments on the list were opened
(using the approach described below).
Actions From a state, the agent selects a road segment to
open. Opening a road segment requires rerouting all cars to
alternative routes. We accomplish this by finding the top k
weighted shortest paths in the network where the road seg-
ment is removed and assigning traffic to each path propor-
tional to its total weight. The weight of a road segment is the
expected time to travel it in optimal conditions: the product
of its posted speed limit and its length.
Rewards For each state, we compute the total collision
risk and the total car density per lane as a measure of traffic.
We compute the density per lane using:∑

road segments ℓ

cars on ℓ per day
traffic lanes on ℓ× length of ℓ

.

However, the collision risk is much more complicated to
compute. The challenge is that the states are hypothetical
traffic patterns on real days so we do not actually know how
many collisions would have occurred. Our solution is to cal-
culate collision risk using the best model for predicting col-
lisions from the first part of our work. In particular, we com-
pute the predicted collisions from each state and sum the
resulting risk of probability along each road segment. We
normalize both total collision risk and total traffic using a
random day. In order to compute the reward of an action,
we use the sum of the collision risk and traffic in the cur-
rent state minus the same quantity of the next state. Then the
reward is positive if and only if the next state has reduced
collision risk and traffic. Our general approach is flexible;
the sum of collision risk and traffic can easily be reweighted
to reflect the priority assigned by domain experts.

The RL agent learns by sampling trajectories (sequences
of states, actions, and rewards) to find which road segments
are best to open. We investigate 1-month-long trajectories,
giving the agent time to observe the long-term effects of
opening road segments while also experimenting with dif-
ferent strategies. There are several invalid actions that can
prematurely end a trajectory. First, opening a road segment
is invalid if there are no cars to reroute (this can happen be-
cause we use a single shortest path for inferring taxi trips).
Second, opening a road segment is invalid if there is no other
directed path from the starting intersection to the ending in-
tersection (this can happen because we limit the road net-
work to Manhattan).
Local vs. Global Rerouting When taking an action, we
consider local rerouting (instead of global rerouting) be-
cause of computational cost. Our model is equivalent to a
setting where drivers determine their path and then, along
the way, find some road segments are opened and reroute to
stay on their chosen path accordingly. Of course, the more
realistic setting is that drivers know which road segments
are opened and incorporate this information in the path they
choose. Unfortunately, because there are tens of millions of
taxi trips in our data set each month, we cannot afford to
recompute the shortest path for every action. If we did, the
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Figure 5: Depicts combined impact of opening a street on
safety and collisions. The strategy of choosing streets with
the largest Q-value leads to consistently positive reward. In
contrast, the streets historically selected by the NYC Open
Streets program have high variability and an even worse av-
erage impact than a random selection of streets.

time it takes to initialize the next state would jump from sec-
onds to hours and Q-learning would be prohibitively slow.
Q-learning We solve the RL problem with Q-learning
for two reasons: First, Q-learning tends to be more sample-
efficient than other RL methods (this is particularly impor-
tant because both our state space and action space are large)
(Jin et al. 2018). Second, Q-learning produces a value which
we can interpret as the expected long-term reward of open-
ing a road segment. Then the road segment with the largest
Q-value corresponds to the best one to open while account-
ing for endogenous effects and temporal dynamics.

Experiments
Data Collision data comes from NYC Open Data, which
releases cleaned police reports (OpenData 2022). Infrastruc-
ture data is a road-bed representation of NYC and contains
about a hundred features like road type, traffic direction,
and other features for each road segment (Planning 2022).
Weather data comes from NOAA (NOAA 2022), and is ge-
ographically coarse (only from a single weather station in
Central Park) but updated hourly. Finally, our taxi trip data
comes from NYC’s Taxi and Limousine Commission.Each
trip contains features like the start and end GPS coordinates,
trip duration, and time of trip. Because taxi trips stopped be-
ing shared with exact start and end locations in 2016, we
conducted our experiments on data from 2013, 2014, and
2015.
Evaluation We used implementations of Gaussian NB,
XGBoost and LightGBM for collision prediction model
baselines. We used (and modified) existing implementations
of DSTGCN and Graph WaveNet (Yu et al. 2021; Wu et al.
2019). We implemented our recurrent GNN models using
Pytorch (Paszke et al. 2019). We hyperparameter-tuned with
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Figure 6: Three plots of Manhattan. The left figure plots all
19,391 street segments with their associated Q-values (blue
means an expected reduction in collisions and congestion).
The middle figure plots the 121 segments in the open streets
program (yellow) and the 121 segments with the largest Q-
values (blue). The right figure plots neighborhoods colored
by the relative prevalence of streets from the open streets ini-
tiative (yellow) and streets with the largest Q-values (blue).

RayTune (Liaw et al. 2018).

Computing Resources We ran our models through a com-
pute cluster using an A100 Nvidia GPUs with 80GB of
RAM. Our non-neural models ran on CPUs.

Experimental Results
Q-learning provides better long term reward than the
open streets initiative status-quo. Figure 5 shows a box
plot of the reward received from three methods of opening
streets. A positive reward indicates a reduction in conges-
tion and collisions in the days when the streets were opened
while a negative reward indicates an increase in congestion
and collisions. Opening the streets with the highest Q-values
consistently gives the largest reward. Their superior perfor-
mance makes sense because the q-values were optimized to
be a measure of long-term reward. In contrast, the streets in
the NYC open streets initiative were chosen using an ap-
plication process and a variety of concerns. Nonetheless,
we find it noteworthy that the streets selected by the open
streets program have higher variance and a lower average
reward than streets that were randomly selected. We believe
a principled approach using models like ours can make the
open streets initiative have a positive impact on congestion
and collisions. To that end, we envision explicitly modeling
modifications and additions to the program as a powerful
addition in the toolkit of open street advocates.

Streets with the highest Q-values are more geographi-
cally diverse than those selected by the open streets ini-

tiative. The middle plot of Figure 6 shows the 121 streets
selected by the open streets initiative in yellow and the 121
streets with the highest Q-value in blue. The streets in the
open streets initiative (yellow) are concentrated in Down-
town Manhattan and completely absent from Midtown and
most of the East Side. The right plot of Figure 6 confirms
the discrepancy. Most neighborhoods have more streets with
large Q-values (light and dark blue) while a handful have
many more streets in the open streets initiative (dark yel-
low). From these two plots of Manhattan, we find that the
streets with the highest Q-value are more geographically di-
verse. A concern with the open streets initiative is inequity
in the neighborhoods that benefit from the program (Haz-
arika 2021). We believe an advantage to using a principled
approach is a more equitable geographic distribution.

Most of the worst streets to open are East-West. In the
left plot of Figure 6, almost all the streets with the low-
est Q-values (dark red) are East-West. Since Manhattan is
optimized for North-South travel with large one-way av-
enues and synchronized traffic signals, we believe the low
Q-values for East-West streets are an emergent property of
our model (Owen 2004).

Limitations and Future Work

Due to the size of our data (tens of millions of taxi trips
per month and 19,391 road segments), we reroute individ-
ual taxi trips around opened streets. This corresponds to the
setting where a driver gets to a road and only then learns it
is opened, while the more realistic setting corresponds to a
driver planning their route with prior knowledge of opened
road segments. Future work could use more compute (or a
better technique) to realistically reroute traffic after streets
are opened. We discuss the effective resistance as one such
possible technique in the extended version online.

We intentionally focused on NYC to demonstrate a proof-
of-concept and integrate feedback from local transportation
experts. We leave applying the approach, and even the net-
works we trained, to other cities as future work. We con-
sider the objectives of reducing traffic and collisions. How-
ever, there are more objectives such as pedestrian utilization
or tourist interest that could make streets desirable to open.
Future work could integrate other objectives by augmenting
the reinforcement learning reward function. Because colli-
sion data is necessarily sparse, prior work has used cameras
and sensors to detect near-collision events (Wang and Chan
2017; Osman et al. 2019). Future work could use such data
to improve the modeling; however, to the best of our knowl-
edge, the requisite number of cameras and sensors are not
available for even a fraction of the segments in Manhattan.

Neural networks are notoriously difficult to interpret
(Zhang et al. 2021b). This is especially a problem in the
high stakes domains of road networks that we applied them
to. We used the integrated gradients method to analyze the
feature importance our RGNN but we believe additional in-
terpretability work would benefit models for predicting col-
lisions and opening streets.
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