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Abstract 

As machine learning workloads significantly increase energy 
consumption, sustainable data centers with low carbon emis- 
sions are becoming a top priority for governments and cor- 
porations worldwide. This requires a paradigm shift in op- 
timizing power consumption in cooling and IT loads, shift- 
ing flexible loads based on the availability of renewable en- 
ergy in the power grid, and leveraging battery storage from 
the uninterrupted power supply in data centers, using collab- 
orative agents. The complex association between these op- 
timization strategies and their dependencies on variable ex- 
ternal factors like weather and the power grid carbon inten- 
sity makes this a hard problem. Currently, a real-time con- 
troller to optimize all these goals simultaneously in a dy- 
namic real-world setting is lacking. We propose a Data Cen- 
ter Carbon Footprint Reduction (DC-CFR) multi-agent Rein- 
forcement Learning (MARL) framework that optimizes data 
centers for the multiple objectives of carbon footprint re- 
duction, energy consumption, and energy cost. The results 
show that the DC-CFR MARL agents effectively resolved 
the complex interdependencies in optimizing cooling, load 
shifting, and energy storage in real-time for various locations 
under real-world dynamic weather and grid carbon intensity 
conditions. DC-CFR significantly outperformed the industry- 
standard ASHRAE controller with a considerable reduction 
in carbon emissions (14.5%), energy usage (14.4%), and en- 
ergy cost (13.7%) when evaluated over one year across mul- 
tiple geographical regions. 

 
Introduction 

In recent years, sustainability and carbon footprint reduction 
have emerged as critical factors driving the need for innova- 
tive optimization techniques in data center (DC) operations. 
While energy and cost optimization have been primary con- 
cerns in smart-grid problems, the increasing sustainability 
commitments of companies with large DCs have made car- 
bon footprint reduction an essential target for the industry. 
Achieving significant carbon footprint savings requires re- 
ducing energy consumption and replacing carbon-intensive 
energy sources with those with a lower carbon footprint. 
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Static, isolated approaches for carbon footprint reduction, 
such as energy optimization, load shifting to less carbon- 
intensive hours, and battery usage for charging during low 
power grid carbon intensity (CI) hours to supplement load 
demand during high CI hours, are frequently used. How- 
ever, achieving significant footprint savings with analytic 
pipeline-based planning has proven challenging due to the 
complexity of these individual problems and the reliance 
on long forecast horizons (24h) for static approaches. Fur- 
thermore, the dependencies between these approaches and 
the necessity of information exchange across separate prob- 
lems have prevented the development of a cohesive strategy 
that can simultaneously reduce the carbon footprint using all 
three methods in real time. 

In this paper, we introduce DC Carbon Footprint Reduc- 
tion (DC-CFR), a novel framework that uses Multi-Agent 
Deep Reinforcement Learning (DRL) to optimize DC en- 
ergy consumption, flexible load shifting, and battery oper- 
ation decisions simultaneously in real time. The optimiza- 
tion is based on short-term weather and grid CI information. 
Grid CI refers to the amount of CO2 emissions produced 
per unit of electricity consumed, which varies based on the 
source of the electricity (e.g., fossil fuels, renewable energy) 
at a given time. The lower the CI, the more renewable the 
energy source. Our approach effectively mitigates the draw- 
backs of existing, isolated methods. It does so by efficiently 
managing the complex interdependencies and information 
exchange among individual optimization strategies, a pro- 
cess that is illustrated in Figure 2 at a system level and in 
Figure 3 to show the dependencies. 

The proposed contributions of the framework are as fol- 
lows: 
• A carbon emission-aware framework for controlling data 

centers by redistribution of server workloads, efficient 
cooling, and battery storage for auxiliary energy supply. 

• Real-time control for the individual approaches under the 
framework, while coordinating between themselves us- 
ing shared reward and state variables. The collaborative 
performance indicators help the agents self-adjust their 
operations. 

• Implementation of the framework as a multi-agent re- 
inforcement learning problem using industry-standard 
simulators for Load Shifting and Battery Supply from 
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Figure 1: CO2 generation (Tonnes) for data center (DC) control approaches in a 1.2 MWh DC in different locations. ASHRAE 
is an industry-standard controller for HVAC in DCs. 

 
Meta (Acun et al. 2023) and Energy Plus software from 
NREL (Crawley et al. 2000) with a Sinergym Wrapper 
(Jime´nez-Raboso et al. 2021). 

• Extensive evaluation of the approach across multiple 
geographical locations with different weather patterns 
and benchmark it against the current industry standard 
ASHRAE rule-based-controller (RBC). 

Our approach can significantly decrease carbon emissions 
in data centers in the different tested locations (refer to Fig- 
ure 1 for detailed results). Over a span of one year, and 
across different DC configurations and geographical loca- 
tions, the DC-CFR framework demonstrated an average car- 
bon footprint reduction of 14.46%. 

In addition to reducing carbon emissions, our evaluations 
revealed the DC-CFR system’s capacity to curtail energy 
consumption. On average, our tests showed a reduction in 
energy usage by 14.35%. Furthermore, the DC-CFR system 
also efficiently managed energy costs, reducing the average 
energy expenditure by 13.69%. These results underscore the 
potential of DC-CFR as a comprehensive and effective solu- 
tion for achieving sustainability goals in DC operations. 

Related Work 
Energy Savings 
Deep Reinforcement Learning (DRL) shows promise in dy- 
namic thermal management in DCs, specifically for reduc- 
ing energy consumption via Heating, Ventilation, and Air 
Conditioning (HVAC) system control (Zhang et al. 2023b,a; 
Mahbod et al. 2022; Biemann et al. 2021; Wang et al. 2022; 
Naug et al. 2023a,b). However, the real-world deployment of 
DRL-based systems is complicated by their sensitivity to hy- 
perparameters, reward functions, and work scenarios (Zhang 
et al. 2023b; Mahbod et al. 2022; Biemann et al. 2021; Wang 
et al. 2022). Moreover, ensuring safety and satisfying oper- 
ational constraints, especially for HVAC system control, is 
another challenge (Zhang et al. 2023b; Wang et al. 2022). 

Despite the challenges, DRL has shown potential for en- 
ergy savings in DCs. DRL-based strategies have achieved up 

to 12% savings compared to default controllers (Zhang et al. 
2023b), and 8.84% compared to reference controllers. Ad- 
ditional savings of up to 5.5% have been noted in tropical 
climates (Mahbod et al. 2022), while in simulated environ- 
ments, a reduction of at least 10% in energy consumption 
has been observed (Biemann et al. 2021). 

 
Load Shifting and Battery Optimization 
With DCs accounting for a significant portion of global 
energy consumption, Carbon-Aware Workload Scheduling 
(CAS) has emerged as a potential solution (Acun et al. 2023; 
Radovanovic´ et al. 2023). CAS uses delay-tolerant work- 
loads to decrease carbon emissions by rescheduling them to 
times of lower CI. For instance, the Carbon Explorer frame- 
work (Acun et al. 2023) reduces the overall DC footprint by 
∼ 4% on historical data by shifting the flexible part of the 
DC load to the lowest carbon-intensive hours. 

DRL has been applied to optimize workload scheduling in 
DCs, improving energy efficiency (Ran et al. 2019, 2022a,b; 
Yi et al. 2019). One approach, GreenDRL, uses DRL for 
CAS, showing a reduction in the energy obtained from the 
main grid and an increase in the use of green energy (Zhang 
et al. 2022). However, GreenDRL primarily considers sce- 
narios with on-site renewable energy resources. 

Battery operation optimization is another area of focus, 
with strategies divided into static schedules based on day- 
ahead information and real-time control for when longer- 
term forecasts are unreliable (Acun et al. 2023; Radovanovic´ 
et al. 2023). 

Real-time battery optimization strategies using DRL have 
been developed, but most overlook the degradation of bat- 
tery charging and discharging rates across their instanta- 
neous states of charge (Zhou, Zhou, and Yang 2022; Huang 
and Wang 2021; Abedi, Yoon, and Kwon 2022; Cao et al. 
2020). For instance, a DRL agent for optimal battery op- 
eration assuming a battery degradation model has been de- 
veloped, reducing net energy costs compared to a baseline 
battery operation algorithm (Cao et al. 2020). 
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Figure 2: Overview of the physical and digital systems. For this work, we have used the simulation with EnergyPlus data center 
simulation from NREL, extended the RL interface with IBM’s SinerGym, and used the battery model from Facebook. 

 

Our Approach 
While current carbon-reduction approaches show promise, 
they lack real-time operation capabilities and do not effec- 
tively combine multiple control strategies due to the com- 
plex interdependencies and balancing objectives. Our ap- 
proach partially decouples the problem into sub-problems, 
each solved with an individual Markov decision process 
(MDP) formulation, the mathematical framework for RL, 
while the combined rewards and overlapping state variables 
in a collaborative multi-agent setting solve the dependencies 
in real-time. This design results in a comprehensive, real- 
time carbon footprint optimizer for sustainable societies, ad- 
vancing beyond existing strategies to offer a more adaptable 
and robust solution. 

 
Problem Definition Using Markov Decision 

Processes 
In this section, we present the problem formulation for re- 
ducing energy and carbon footprint in data centers. We do 
this by considering three MDPs that take into account DC 
workload shifting, energy reduction through cooling set- 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Internal and External Dependencies for the agents. 

 

 
point optimization, and auxiliary energy supply using energy 
storage systems. As mentioned earlier, these three problems 
have been tackled individually in the literature using static 
approaches (Acun et al. 2023; Radovanovic´ et al. 2023) with 
day-ahead forecast information. We reformulate the prob- 
lems so that they can be solved in real-time. 

The three MDPs are described in Table 1 with their inter- 
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dependencies summarized in Figure 3. Solving MDPLS re- 
duces the carbon footprint and energy consumption by shift- 
ing data center workloads to low-CI and low ambient tem- 
perature hours; MDPE reduces data center energy use by 
optimizing the HVAC cooling setpoint; and MDPBAT re- 
duces the carbon footprint by charging and discharging the 
battery based on the grid CI. 

As can be seen from the MDP description, the system 
involves a chain of dependencies starting with the Flexible 
Load Shifter, then proceeding through HVAC Cooling, and 
finally, Energy Storage Optimizer. The Load Shifter deter- 
mines load shifts based on workload, grid CI, DC power us- 
age, and thermal state. HVAC uses the resulting server work- 
load and other factors like weather and battery charge to op- 
timize energy with a surrogate model based on Energy Plus 
(Jime´nez-Raboso et al. 2021). This model estimates future 
energy use. The Energy Storage Optimizer uses this data and 
grid CI to decide battery actions. CO2Footprint rewards are 
calculated using CIt and TotalEnergyConsumptiont at each 
time step. 

The interlinked dependencies offer potential energy and 
carbon savings but pose challenges for DRL agent train- 
ing convergence. Challenges include changing state distribu- 
tions with policy updates, different time constants for MDP 
changes, and state interdependencies. A collaborative re- 
ward framework is essential for agents to appropriately in- 
corporate shared state variables from other MDPs into their 
rewards. 

 
Multi-Agent Reinforcement Learning 

Solving the challenges of sustainable data center operation 
requires addressing multiple interdependent sub-problems. 
Multi-Agent Reinforcement Learning (MARL) is a suitable 
approach due to the agents’ cooperative nature. This allows 
individual agents to pursue individual objectives while con- 
sidering other agents’ actions through a reward mechanism, 
aiding collaboration. The study explores two MARL meth- 
ods. We implemented Multi-Agent Deep Deterministic Pol- 
icy Gradient (MADDPG) (Lowe et al. 2017), which involves 
decentralized agents learning from a centralized critic that 
incorporates all agents’ behaviors. We also adapted the Inde- 
pendent Proximal Policy Algorithm (IPPO) Schulman et al. 
(2017) for independent yet collaborative agent actions. Both 
the RL algorithms converged to policies with similar perfor- 
mance. 

 
Proposed Solution 

Based on the above formulation for the MDPs for Load 
Shifting MDPLS, Energy Reduction MDPE, and Battery 
Operation MDPBAT , we outline the DC Carbon Footprint 
Reduction (DC-CFR) multi-agent Reinforcement Learning 
algorithm (MARL) approach. The main goal is to efficiently 
reduce the total DC carbon footprint in real time by solving 
the MDPs simultaneously. 

We undertake a systematic implementation of the multi- 
agent algorithm that accounts for the interdependency be- 
tween individual agent actions and the next states. 

Input: The operational/simulation diagram of the ap- 
proach is described in detail in Figure 2. We simultaneously 
initialize the three DRL control agents ALS, AE and ABAT 
for the optimal load shifting (MDPLS), optimizing energy 
(MDPE) and the optimal battery operation (MDPBAT ) re- 
spectively. Grid data, which includes grid energy and carbon 
distribution, weather conditions, and compute load, is con- 
figured to be queried from a database at every time step. 
On the other hand, the variables like DC temperature, IT 
Load, Unassigned flexible load, DC Energy, and Battery 
state of charge information are obtained via the exchange 
of information between the individual MDPs as a part of 
the Data Center Simulator which has the Load Shifting 
Model (Acun et al. 2023), Energy Plus model for the data 
center thermodynamics (Crawley et al. 2000) and Battery 
Storage Model (Acun et al. 2023; Sarkar et al. 2023b). The 
information exchange processes occur through the RL In- 
terface with Open AI Gym wrappers. We shall provide de- 
tailed steps for this process when we describe the rollout 
stage for the agents. 

Rollout: This is the real-time component of the ap- 
proach. The agents ALS, AE and ABAT are allowed to in- 
teract with their respective MDPs to collect rollout informa- 
tion (St, At, St , Rt+1, γ, done) in their respective memory 
buffers D. The different stages of the information exchange 
between MDPs are captured in the interdependency Fig. 3. 

In the beginning, the agent ALS considers the state vari- 
ables time and CI. Unassigned flexible load is obtained from 
the MDPLS, DC temperature, IT Load, and DC Energy are 
obtained from MDPE, and Battery state of charge informa- 
tion is obtained from MDPBAT . ALS uses this information 
to decide its action on whether to reassign flexible load from 
this instant or to stay idle. The resulting IT load information 
is passed to the energy-optimizing agent AE. It uses time as 
well as DC temperature, IT Load, DC Energy, and HVAC 
Setpoint obtained from the previous time step of MDPE to 
decide the setpoint for the next time interval. The Energy 
Plus model of the DC calculates the resulting changes in en- 
ergy consumption and DC temperature, and then communi- 
cates these back to MDPE. Finally, the agent ABAT con- 
siders the time, DC Energy from MDPE, the current battery 
charge, and the CI information to decide on charging the bat- 
tery from the grid or supplementing DC energy demand. 

From an implementation perspective, the individual 
agents do not receive the rollout information tuple imme- 
diately after taking an action. They wait until it is their turn 
to take the action again. This incorporates the effect of its ac- 
tion in all other MDPs, making the reward more informed. 
We use a collaborative reward that considers the effects of 
actions from all agents. This formulation has been high- 
lighted in Table 1. This enables the agents to look at the 
effects of their individual actions across dependent MDPs. 

Concurrent Policy Update: At regular intervals, the 
buffer data is used to update the agent policies. For train- 
ing the RL agents in this work, we are primarily using PPO 
(Schulman et al. 2017). Any other off-policy or on-policy 
agent may be used. 

The overall DC-CFR approach is summarized in Algo- 
rithm 1. 
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 MDPLS 
Flexible Load Shifting 

MDPE 
Energy HVAC Optimizer 

MDPBAT 
Battery Agent 

 
State: St 

Time, DC temperature, IT Load, 
Unassigned Flexible Load, DC Energy, 

Carbon Intensity, Battery Charge 

Time, DC temperature, Weather, 
DC Energy, IT Load, HVAC 

Setpoint 

Time, DC Energy, 
Battery Charge, 
Carbon Intensity 

Action: At Assign Flexible Load, Idle HVAC Setpoint Charge, Supply, Idle 
Reward: 

Rt+1(St, At) 0.8 ∗ rLS + 0.1 ∗ rE + 0.1 ∗ rBAT 0.1 ∗ rLS + 0.8 ∗ rE + 0.1 ∗ rBAT 
0.1 ∗ rLS + 0.1 ∗ 
rE + 0.8 ∗ rBAT 

Table 1: MDPs for Load Shifting, HVAC Energy Optimization, and Battery Operation. Here rLS = −(CO2 Footprint + 
LSP enalty), rE = −(T otal Energy Consumption × Cost per kW h), and rBAT = −(CO2 Footprint), where LSP enalty 
is the scalar value of the unassigned flexible IT workload. 

 
Algorithm 1: Data Center Carbon Footprint Reduction DC-CFR Multi-Agent Algorithm 

 

Require: RL Agents ALS, AE and ABAT ▷ RL Algorithm initialization 
Require: CI  ▷ Carbon Intensity data from the grid 
Require: EW ▷ Weather data obtained from EnergyPlus 
Require: W orkload Model MDPLS ▷ Model data center workload assignment 
Require: Data Center Model MDPE ▷ Model Data Center Thermodynamics in Energy Plus 
Require: Battery Model MDPBAT   ▷ Model Battery operation 
for i ∈ 1, . . . , Lb do  ▷ Lb is the learning iterations budget 

Concurrent Rollout Phase 
while episode not done do 

State information is shared among the different MDPs 
Agent ALS sends action to MDPLS and collects (st, at, st, rt, γ, done) in its replay bufferDLS 
Agent AE sends action to MDPE and collects (st, at, st, rt, γ, done) in its replay bufferDE 
Agent ABAT sends action to MDPBAT and collects (st, at, st, rt, γ, done) in its replay bufferDBAT 

end while 
Concurrent Policy Updates 
Update Agent Networks by training AE on DE, ALS on DLS and ABAT on DBAT 

  end for  
 

Experiments 
We conducted our experiments using EnergyPlus, an open- 
source building energy simulation software that can simu- 
late the thermal performance of buildings and cooling sys- 
tems. A two-zone DC HVAC with economizer model was 
used to simulate a DC consisting of two isolated zones with 
servers and HVAC cooling. We connected Python with En- 
ergyPlus using the Sinergym framework (Jime´nez-Raboso 
et al. 2021), which wraps the EnergyPlus simulation engine 
following the OpenAI Gym interface to develop our con- 
trol algorithms using DRL. This allows us to do step by step 
simulation of a DC and to dynamically change the cooling 
setpoint and the running workload of the DC. The load shift- 
ing and the battery models are based on work done in (Acun 
et al. 2023). These models are similarly wrapped via Open 
AI Gym interface. 

For ALS, as shown in (Acun et al. 2023), we set the flexi- 
ble workload to constitute 10% of the DC’s total daily work- 
load. Moreover, the server capacity is at each time step is 
limited, preventing the assignment of all workloads in a sin- 
gle time slot. For ABAT , we assume an installed battery ca- 
pacity of 50% of DC max hourly energy consumption, as 
can be found in the uninterrupted power supply (UPS). 

Our solution is designed with a reward signal that moti- 

vates the agents to reduce both energy consumption, carbon 
footprint and cost of energy. We have set the action interval 
at 15-minute time-step, which enables precise control of the 
system and to quickly respond to changes in the DC envi- 
ronment. We used IT load data of a large-scale real-world 
DC from the Alibaba (Cheng, Chai, and Anwar 2018) open 
source data set to improve the representativeness of our sim- 
ulation. 

We used New York weather and CI data to train our 
agents. To improve the generalizability of our solution, we 
employ an Ornstein-Uhlenbeck (OU) (Espen, Benth, and 
Š altytė -Benth 2005) process to introduce noise into the 
weather data. 

We tested the generality of our trained agents by evalu- 
ating their performance under diverse climatic and CI con- 
ditions. This was done using weather and CI data from 
three different locations: Arizona (AZ), New York (NY), and 
Washington (WA). These weather and CI files correspond to 
locations with distinct weather patterns, ranging from hot 
and arid to cold and humid. Additionally, we considered 
Time-of-Use rate plans for energy cost, where the cost vary 
with the hour. 

By validating the model on various locations and weather 
conditions, we demonstrate the effectiveness of our ap- 
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 Percentage Reduction of Carbon Footprint with IPPO compared to ASHRAE 
Data Center Max Load 1.2MWh 

Experiment with EnergyPlus for a period of 1 year; Lookahead N = 4 hours 
 Algorithms 
 LS EO BAT LS+EO LS+BAT EO+BAT DC-CFR 

(Our proposal) 
Arizona 7.72 ± 0.18 8.16 ± 0.05 0.25 ± 0.08 13.26 ± 0.07 7.98 ± 0.1 8.46 ± 0.05 14.36 ± 0.09 

New York 7.13 ± 0.19 8.02 ± 0.06 0.41 ± 0.03 14.39 ± 0.08 7.68 ± 0.20 8.21 ± 0.07 15.08 ± 0.11 
Washington 4.27 ± 0.20 7.54 ± 0.11 0.46 ± 0.05 13.62 ± 0.08 4.53 ± 0.17 7.78 ± 0.08 13.96 ± 0.06 

Table 2: Carbon Footprint Reduction Percentages compared to industry standard ASHRAE: Performance of the individual 
approaches over a period of one year. We are ignoring embodied footprint for server and battery manufacturing. 

 
 Percentage Reduction of Energy Consumption with IPPO compared to ASHRAE 

Data Center Max Load 1.2MWh 
Experiment with EnergyPlus for a period of 1 year; Lookahead N = 4 hours 

 Algorithms 
 LS EO BAT LS+EO LS+BAT EO+BAT DC-CFR 

(Our proposal) 
Arizona 7.11 ± 0.17 8.32 ± 0.04 0.00 ± 0.00 14.28 ± 0.07 7.15 ± 0.09 8.41 ± 0.05 14.54 ± 0.33 

New York 7.05 ± 0.18 8.07 ± 0.06 0.00 ± 0.00 14.35 ± 0.08 7.12 ± 0.20 8.28 ± 0.08 14.62 ± 0.07 
Washington 4.38 ± 0.21 7.42 ± 0.11 0.00 ± 0.00 13.78 ± 0.06 4.46 ± 0.18 7.31 ± 0.04 13.85 ± 0.07 

Table 3: Energy Reduction Percentages compared to industry standard ASHRAE evaluated over a period of one year. 
 

 Percentage Reduction of Energy Cost with IPPO compared to ASHRAE 
Data Center Max Load 1.2MWh 

Experiment with EnergyPlus for a period of 1 year; Lookahead N = 4 hours 
 Algorithms 
 LS EO BAT LS+EO LS+BAT EO+BAT DC-CFR 

(Our proposal) 
Arizona 7.38 ± 0.20 8.41 ± 0.04 0.23 ± 0.07 13.81 ± 0.11 7.59 ± 0.10 8.43 ± 0.05 14.07 ± 0.17 

New York 6.74 ± 0.18 8.17 ± 0.06 0.31 ± 0.04 13.61 ± 0.09 7.66 ± 0.22 8.39 ± 0.07 14.16 ± 0.11 
Washington 3.57 ± 0.17 7.52 ± 0.11 0.30 ± 0.02 12.81 ± 0.05 3.81 ± 0.14 7.32 ± 0.05 12.85 ± 0.05 

Table 4: Energy Cost Reduction Percentages compared to industry standard ASHRAE evaluated over a period of one year. 

 
proach in handling diverse environmental scenarios. 

Experimental Setup 
For training our agents, the Rllib (Liang et al. 2018) imple- 
mentation of PPO (Schulman et al. 2017) was employed. 
The hyperparameters used for our experiments are the fol- 
lowing: LR = 5 × 10−5; Entropy Coefficient = 0.05; Clip 
Parameter = 0.05; γ = 0.99; λ (GAES Coefficient) = 0.95. 
The grid search function from Ray Tune (Liaw et al. 2018) 
was used to find the best learning rate, entropy coefficient 
and clip values. All agents use a neural network with 3 hid- 
den layers of 128, 64 and 16 units each. The total computing 
budget for our experiments was approximately 1000 com- 
pute hours, utilizing 48 Intel(R) Xeon(R) Gold 6248 CPU 
@ 2.50GHz cores at an average utilization of less than 50%. 

Results 
In this section, we present the results of our approach eval- 
uated against ASHRAE, the state-of-the-art controller used 

in DC cooling. To test the robustness of our approach and 
obtain more diverse results, we ran each experiment 20 
times with different random seeds with varying noise in the 
weather data. 

Tables 2, 3, and 4 present the annual reductions in Carbon 
Footprint, Energy Consumption, and Energy Cost, respec- 
tively, that can be achieved by using the DC-CFR framework 
and various combinations of the agents. These reductions 
were evaluated in three different locations. Importantly, the 
comprehensive DC-CFR approach outperforms the individ- 
ual strategies. This superior performance is attributed to its 
ability to leverage the interdependencies among different as- 
pects of data center operations and agents, thereby creating 
a more effective combined policy for energy and cost opti- 
mization. 

The results obtained show that the proposed approach is 
able to achieve a high amount of savings in all the three met- 
rics evaluated. On energy consumption, ABAT has no effect 
since it cannot directly affect the power consumed by the 
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Figure 4: Summary of results for data center (DC) control approaches in a 1.2 MWh DC in different locations. ASHRAE is an 
industry-standard controller for HVAC in DCs. 

(Espen, Benth, and Šaltytė-Benth 2005). 
Figures 1 and 4 provides a comprehensive summary of 

DC-CFR results, showcasing the optimization across vari- 
ous metrics and locations (Fig. 1 CO2 footprint, Fig. 4 (a) 
Total energy consumption, Fig. 4 (b) Total energy cost) com- 
pared to ASHRAE and our standalone AE agent. The figure 
shows how DC-CFR enhances performance on these metrics 
relative to the industry-standard ASHRAE. 

Figure 6 illustrates how DC-CFR opportunistically in- 
creased energy expenditure on HVAC cooling, as shown by 
”spending”. By enhancing cooling, DC-CFR effectively de- 
creases the energy consumption of the IT infrastructure. This 
lowers the total energy consumption of the DC, as evidenced 
by the ”Savings” in Figure 6. 

Figure 5 (a) illustrates the actions of the battery agent 
(ABAT ) as it charges during periods of low CI and dis- 
charges supplying energy during periods of high CI. Fig- 
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Figure 6: Energy Spending vs Savings over ASHRAE. 

 
Conclusions 

This paper presents a holistic framework called DC Car- 
bon Footprint Reduction (DC-CFR), which optimizes data 
center energy consumption, load shifting, and battery opera- 
tion decisions in real-time using Deep Reinforcement Learn- 
ing (DRL). The framework employs three specialized agents 
working in concert to substantially reduce both carbon emis- 
sions and energy consumption. 

The proposed DC-CFR methodology offers significant 
benefits over traditional static analysis methods. It effec- 
tively manages the complex interdependencies among var- 
ious optimization strategies and uses short-term grid carbon 
intensity data to guide decision-making. Therefore, unlike 
static optimizations that rely on long forecast horizons and 
static seasonal models, our approach can deliver real-time 
optimization results in dynamic real-world applications. 

We have evaluated our approach in multiple data center 
scenarios across various geographical locations, comparing 
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it with industry-standard solutions such as the ASHRAE 
rule-based controller. Our method demonstrated significant 
improvements in carbon footprint reduction, energy effi- 
ciency, and cost of energy consumption. DC-CFR is effec- 
tive for achieving sustainability goals in data center opera- 
tions. 

We plan to open-source the DC-CFR framework with the 
data center simulation, pluggable control agent abstraction, 
and OpenAI Gym RL interface, to democratize the carbon 

Figure 5: Snapshot of: (top) Actions taken by the ABAT 
based on CI; (bottom) Carbon Aware Workload (Our pro- 
posal) against ASHRAE workload. 

reduction efforts by the ecosystem. We plan to further en- 
hance our DC-CFR framework by incorporating other opti- 
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mization agents across the data center operations like dy- 
namic heterogeneous computation resource allocation for 
CO2 reduction, and achieving higher QoS with a lower 
hardware and carbon footprint. We plan to introduce ML 
CFD surrogates for better heat map estimates (Sarkar et al. 
2023a). This will also enable digital twins for sustainable 
data centers, and the scalable architecture makes it applica- 
ble to supercomputing. 
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