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Abstract
The aftermath of the Covid-19 pandemic saw more se-
vere outcomes for racial minority groups and economically-
deprived communities. Such disparities can be explained by
several factors, including unequal access to healthcare, as
well as the inability of low income groups to reduce their mo-
bility due to work or social obligations. Moreover, senior cit-
izens were found to be more susceptible to severe symptoms,
largely due to age-related health reasons. Adapting vaccine
distribution strategies to consider a range of demographics is
therefore essential to address these disparities. In this study,
we propose a novel approach that utilizes influence maxi-
mization (IM) on mobility networks to develop vaccination
strategies which incorporate demographic fairness. By con-
sidering factors such as race, social status, age, and associ-
ated risk factors, we aim to optimize vaccine distribution to
achieve various fairness definitions for one or more protected
attributes at a time. Through extensive experiments conducted
on Covid-19 spread in three major metropolitan areas across
the United States, we demonstrate the effectiveness of our
proposed approach in reducing disease transmission and pro-
moting fairness in vaccination distribution.

Introduction
The fallout of Covid-19 revealed the stark inequalities in ac-
cess to healthcare between social groups in diverse and ur-
ban areas (Ndugga et al. 2021; Price-Haywood et al. 2020;
Millett et al. 2020; Joseph et al. 2020; Azar et al. 2020;
Hsu et al. 2020; Gayam et al. 2021). Studies confirmed
that economically-deprived communities and racial minori-
ties experienced higher rates of infection, hospitalization
and mortality as a result of Covid-19 (Kirby 2020; Tai et al.
2022; Alcendor 2020). The reasons for this disparity form a
long chain of events, with unequal access to healthcare be-
tween socioeconomic groups, and therefore racial groups,
at the root of it. Furthermore, studies on mobility networks
in the US also revealed how minority communities were less
able to reduce their mobility as quickly during the pandemic,
and as a result suffered higher rates of infection (Chang
et al. 2020). This can be largely attributed to underprivileged
groups assuming the roles of frontline and critical infrastruc-
ture work, and also living and working in more crowded cir-
cumstances. Inequalities in access to the internet and ease
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of travelling to test and vaccination sites are also factors
contributing to this discrepancy (Yee, Bajaj, and Stanford
2022). These data demonstrate inequities in receiving re-
sources throughout the pandemic, which also extends to vac-
cination (Perry et al. 2021; Kates, Tolbert, and Michaud
2021; Ndugga et al. 2022; Bayati et al. 2022). In Figure
1, we demonstrate how racial minorities and lower income
communities in three US metropolitan areas were less able
to reduce their mobility as quickly when the lockdown was
introduced.

This disparity motivates the need for a fair vaccination
strategy that differs from the current technique. In this work,
we investigate a collection of alternative vaccination strate-
gies that consider both mobility and fairness. We leverage
an approach called influence maximization (IM), a network
science technique designed to detect the most influential
members of social networks, typically used in applications
such as viral marketing campaigns (Chen, Wang, and Wang
2010). We adapt this principle to instead detect the neighbor-
hoods or communities which exhibit the largest influence on
a mobility network in terms of disease propagation. Such
communities are likely to include essential workers who are
less able to reduce their mobility during lockdowns (Rasnača
2020; Nguyen et al. 2020).

We adapt our IM approach to achieve fairness in vaccine
allocation for racial groups as well as groups of different
social statuses. Moreover, older individuals may be less mo-
bile but more at risk of severe outcomes when exposed to
the disease. It is essential not to overlook this trade-off; we
therefore also design a strategy designed to protect commu-
nities based on higher risk and vulnerability. To summarize,
our contributions are as follows:
1. A novel community-level influence maximization ap-

proach for identifying impactful neighborhoods, aiding
targeted vaccination against disease transmission.

2. Extension of influence maximization to mitigate infec-
tion disparities among racial and income-level commu-
nities.

3. Introduction of a competitive method, merging influence
maximization with prioritizing older communities to re-
duce overall infections.

4. Empirical validation on mobility networks from three
major US metropolitan areas, utilizing real aggregated
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Figure 1: The reduction in mobility from before lockdown
to during lockdown per racial groups and income groups
in Philadelphia, New York and Chicago metropolitan areas.
For all three areas, lower income groups and racial minori-
ties belonging to lower income groups (see Fig. 2) were less
able to reduce their mobility as quickly when transitioning
to lockdown.

visit data from census block groups (CBGs) to points of
interest (POIs) during the first five weeks of Covid-19
pandemic.

Related Work
Fairness in AI is an expanding area of research which has
seen traction since the exposure of biases in several signifi-
cant technologies (Mehrabi et al. 2021; Buolamwini and Ge-
bru 2018; Angwin et al. 2016). This extends to the field of
influence maximization, where various works impose fair-
ness constraints on the optimization problem. For instance,
Farnadi et al. provide a framework for applying a variety of
fairness definitions to IM tasks (Farnadi, Babaki, and Gen-
dreau 2020). Other works have included developing adver-
sarial graph embeddings to achieve fair IM in social net-
works (Khajehnejad et al. 2020), and balancing majority and
minority groups in IM when networks and diffusion pro-
cesses demonstrate homophily (Anwar, Saveski, and Roy
2021). Ali et al. ensure fairness in exposure under a time-
critical perspective, for example posting a job advertisement
which should be reached by equal sub-populations before
the deadline to apply for the position (Ali et al. 2021). This
does not however consider the possibility of changing net-
work structure over time, as is the case with mobility or
contact networks used in epidemiology, and is therefore not
extendable to the problem of vaccine distribution.

Meister et al. characterize communities by their social ac-
tivity and vulnerability due to age in a comparative game
for optimizing vaccination, however, they do not use real
contact or mobility data to test their approach (Meister and
Grycko 2021). Similarly, works which do consider demo-
graphic fairness in vaccination do not necessarily consider
mobility to improve performance (Kipnis et al. 2021; Na-
tional Academics of Sciences and Medicine 2020; Kadelka
et al. 2022). Anahideh et al. propose a vaccine alloca-

tion solution which tackles the apparent trade-off between
equal distribution amongst regions and demographic fair-
ness (Anahideh, Kang, and Nezami 2022). Their approach
defines effective distributions as those that cover many geo-
graphical areas; however, we argue that this does not neces-
sarily reduce infections most effectively as it treats each area
as equally influential in disease transmission. Commonly,
works that do consider social contact often do not con-
sider fairness implications (Jiangzuo et al. 2021). Much re-
search considers how to optimize the age-based vaccination
approach, but often other sensitive attributes are not con-
sidered (Wu, Wang, and Xu 2022; Sheldrick, Meyerowitz-
Katz, and Tucker-Kellogg 2022; Kirwin et al. 2021; Fer-
ranna, Cadarette, and Bloom 2021; Gozzi et al. 2022;
Sheldrick, Meyerowitz-Katz, and Tucker-Kellogg 2022;
Jentsch, Anand, and Bauch 2021; Buckner, Chowell, and
Springborn 2021).

Similar to our approach, Minutoli et al. (Minutoli et al.
2020) lay the theoretical foundations for using IM to reduce
disease transmission via vaccination, though they do not
consider fairness. They use a simplistic propagation model
which is not specific to a particular disease, nor does it con-
sider important factors in disease transmission such as the
number of people in a confined space, or the duration spent
there, as we do. Additionally, their implementation is for
contact networks containing interactions between individu-
als, rather than communities. We argue that privacy regula-
tions on mobile tracking data will limit the ability to recon-
struct such specific interactions, not to mention also match-
ing demographic information to individuals in these inter-
actions. Using aggregate visits as in our work is therefore
more realistic in terms of the data available, and allows us
to extract demographic information on the community level
which we use for our fairness approaches. Rather than using
large contact networks, condensed mobility networks of ag-
gregate visits also drastically reduces the network size which
is beneficial for computation.
Mehrab et al. use the same mobility data as in our contri-
bution to guide vaccine distribution to groups with lower
up-take rates (Mehrab et al. 2022). However, they use
visit counts to public places to determine the best candi-
dates, whereas we determine influence by simulating disease
spread on top of the mobility network to predict infections.
Further, their contribution is to identify groups with low vac-
cine uptake at a later stage of vaccine deployment, whereas
we offer a solution for the first stages of the allocation, to
ensure fairness from the beginning. To our knowledge, our
work is the first approach to use community-level influence
maximization to propose vaccination strategies which con-
sider demographic fairness.

Preliminaries
Influence Maximization
IM is a network science technique used to identify the most
influential nodes in a graph, with respect to their ability to
propagate a certain transmissible quality, such as informa-
tion or disease. IM is particularly popular in viral market-
ing problems on social media platforms, in which an entity
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wants to share advertisements with only a few individuals
online, but hopes to optimize this choice by selecting those
who are more likely to share the information with the rest of
the network.

While some techniques rely on heuristics like node cen-
trality or betweenness to measure a node’s importance in a
graph (Newman 2005; Borgatti 2005), IM assumes access to
a function which models the propagation of the given sub-
stance across the network. The algorithm uses this propa-
gation function to generate its selection for the set of most
influential nodes, often referred to as the seed set. In their
seminal work, Kempe et al. (Kempe, Kleinberg, and Tardos
2015) proposed a greedy algorithm which achieves (1 − 1

e )
optimality guarantees on the seed set, so long as the ob-
jective function - which is the given propagation function
- is both submodular and monotonic. However, the biggest
drawback of the greedy strategy is its inefficient runtime.
The commonly used propagation functions, such as the Lin-
ear Threshold (Chen, Yuan, and Zhang 2010) and Indepen-
dent Cascade (Saito, Nakano, and Kimura 2008) models, are
stochastic in nature. The greedy strategy, therefore, relies on
running several Monte Carlo simulations of these stochastic
propagation functions, which is costly. Much of the proceed-
ing work following this focus on trying to improve runtime
performance; CELF exploits the submodularity of the influ-
ence function to reduce the number of influence evaluations,
achieving a runtime of up to 700 times faster than the greedy
algorithm (Leskovec et al. 2007). In our experiments, we
also use CELF to reduce the number of evaluations.

Mobility Networks
We draw on the work conducted by Chang et al. to con-
struct our mobility networks and simulate Covid-19 prop-
agation on them (Chang et al. 2020). The mobility network
of a metropolitan statistical area (MSA) contains K nodes
which represent CBGs, neighborhoods of a few hundred to
a few thousand residents. Each CBG is denoted by ci, with
i = 1, ..,K . The population of each CBG is known and is
given by nci for CBG ci. The total number of residents in
the network is, therefore, N =

∑K
i=1 nci . Each individual

in the network can belong to one of M social groups (e.g.
racial groups) indexed by j = 1, ..,M . In our work, we ex-
periment with j representing racial groups and also groups
based on their median household income, obtained from US
Census data (Manson et al. 2022). For racial groups, each
CBG can contain any number of individuals belonging to
each social group, up to its total population size. The frac-
tion of residents in CBG ci who belong to racial group j is
known and given by αij , where 0 ≤ αij ≤ 1, and therefore∑M

j=1 αij = 1∀i. The total number of individuals in the
network belonging to racial group j is therefore obtained
by Nj =

∑K
i=1 αijnci . For social status groups, we split

the CBGs into M groups defined by the median income of
the households in that CBG. The total number of individu-
als belonging to a group is, therefore, Nj =

∑K
i=1 nci if ci

belongs to income group j.

Covid-19 Propagation Model
We use the Covid-19 simulation proposed by Chang et al.
(Chang et al. 2020), which models the propagation of the
disease on the network of CBGs and POIs. The constructed
hourly visits from the network describe how many individu-
als travel from CBGs to POIs per hour. POIs here represent
public places such as restaurants, gyms and religious cen-
ters, where interactions with members of other communities
can happen, and the disease can spread accordingly. Indi-
viduals can also transmit the disease amongst members of
their home CBG. The number of new infections per CBG
is therefore a summation of two terms drawn from differ-
ent distributions; one Poisson distribution for new exposures
from POIs, and one Binomial distribution for new exposures
from their home CBG and other places which may not be ac-
counted for in the POIs, such as public transportation. The
previous work fixed the parameters of the model by com-
paring it to the counts of real Covid-19 cases, which we also
reproduce in our work. Our vaccination approach can techni-
cally be used to combat any disease, simply by swapping the
influence function σ for a model of said disease. This would
mean changing the parameters of the model when calibrat-
ing it to real case counts. Further details of the model and
its calibration can be found in the full version of our paper
(Neophytou, Taı̈k, and Farnadi 2024).
At all time steps in the disease simulation, we have access to
the number of susceptible, infected, exposed, and recovered
or removed individuals residing in each CBG. We maintain
a vector of size K for each of these states, denoted respec-
tively by S, E, I , and R. Their elements are indexed by i
and contain the fraction of individuals in CBG ci belong-
ing to that state. For example, element Iti contains the frac-
tion of individuals in CBG ci who are in the infected state
at time t. In this work, we are only interested in the final
rates of exposed, infected or recovered/removed (EIR) indi-
viduals in the final time step of the model, T , and readers
can assume we use the final iteration at T of these vectors
from here onwards. For example, the sum of all exposed-
or-worse individuals in the network at time T is given by
NEIR =

∑K
i=1(E

T
i + ITi +RT

i )nci .
Individuals in the network therefore always belong to one
of M social groups, as well as one of the four SEIR states.
Since we only have access to these statistics on the commu-
nity level, we approximate the number of people in the net-
work belonging to racial group j and exposed-or-worse as
NEIRj

=
∑K

i=1(E
T
i + ITi +RT

i )αijnci . For income group
j, the equivalent is obtained by NEIRj

=
∑K

i=1(E
T
i +ITi +

RT
i )nci for CBGs belonging to income group j.

Proposed Approach
In this section, we present three methods of targeted vac-
cination using IM. Firstly, we present our simple method
for vaccinating with IM and no additional constraints. We
then outline two methods for introducing fairness to IM, for
both racial groups and income groups. Finally, we present a
method for applying weights to communities corresponding
to their relative risk, in order to use IM and still prioritize
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older communities that are more vulnerable to severe out-
comes if infected.
In our approach, the treatment of the three sensitive at-
tributes (also referred to as protected attributes) in the net-
work - race, income level and age - are not the same. For
the racial and income groups, we aim to achieve fairness ac-
cording to their population size in the network. An individ-
ual should be no more at risk of infection due to their race
or income than what is expected given the racial or income
group’s population size in the network. However, the same
strategy should not be adopted for age, since infection can
lead to more severe outcomes for older individuals, making
them more high risk. Therefore, we strive to achieve fair-
ness amongst race and income, but adopt a bias with respect
to age, in order to protect individuals at high-risk.

As addressed in the Preliminaries, the greedy approach
in influence maximization provides provable guarantees on
the optimality of the seed set, so long as the influence func-
tion is both monotonic and submodular. Previous findings
have found issues proving these properties in a temporal
SIR model (Erkol, Mazzilli, and Radicchi 2022). Similar to
this work, we argue that the greedy approach is still effec-
tive despite the propagation model exhibiting submodularity
violations. Additionally, the greedy approach is more scal-
able for greater network sizes than solving the optimization
problem exactly, particularly when fairness constraints are
required (Farnadi, Babaki, and Gendreau 2020). Further, we
argue that the greedy approach provides an element of model
interpretability, which is particularly important when justi-
fying why one neighborhood should receive vaccines over
another; in our case, we can clearly demonstrate with the
greedy approach that a neighborhood with higher mobility
and influence is more likely to be selected for vaccination.
Further, we argue that using community-level influence
maximization, with aggregated data on CBGs rather than
individuals, is a more realistic approach when we want to
obtain demographic information for fairness purposes. Pri-
vacy concerns (rightly) limit access to fine-grained data on
individual mobility and their sensitive attributes, but here we
use Census data to match demographic data to CBGs.

Vaccinating With Influence Maximization
In this section, we outline how to select the most influential
communities in the network in terms of disease spread using
IM and CELF. The algorithm is provided in Algorithm 1.
We begin with a budget B corresponding to the number of
vaccines available for allocation to the whole network. We
can simulate the disease spread from a set Z of CBGs, in
order to quantify how influential those communities are. In
the general case, Z can contain any number of CBGs, but to
quantify the influence of just one, only that CBG would be
contained in the set Z, e.g. Z = {ci} for i = 1, ..,K . For
all K CBGs in the network, we then conduct simulations
of the disease spreading from that neighborhood alone. We
maintain a list of lists L = [[1, σ({c1})], ..., [K,σ({cK})]],
where for CBG i, σ({ci}) represents the NEIR count as a
result of simulating disease spread starting only from ci. L,
therefore, contains the list of pairs of the candidate CBGs
indices along with their corresponding influence, as a count

Algorithm 1: Selecting CBGs to vaccinate using IM and
CELF
Input: budget B, number of CBGs K, disease model σ
Output: CBGs to vaccinate V

1: B′ ← 0, spread← 0, L← [], Z ← []
2: for i = 1, . . . ,K do
3: L.append([i, (σ({ci})− spread)/nci ])
4: end for
5: sort L by gain, descending
6: Z.append(L0,0) {add cbg with best gain to Z}
7: spread← L0,1 ∗ nZ−1

8: B′ ← nZ−1
{update budget used}

9: while there are possible candidates in L do
10: matched← False
11: while not matched do
12: best← L0,0

13: L0,1 ← (σ(Z ∪ {best})− spread)/nbest

14: sort L by gain, descending
15: matched← L0,0 is best
16: end while
17: spread← spread+ L0,1 ∗ nbest

18: Z.append(L0,0)
19: B′ ← B′ + nZ−1

{update budget used}
20: L← L[1 :] {remove best from the candidate list}
21: keep only candidates in L which cannot exceed B
22: end while
23: return Z

of how many people resulted in exposed-or-worse states.
We initialize the set of nodes to vaccinate, Z, as an empty
set. Then, in each iteration, the CBGs with the greatest
marginal gain are greedily added to Z. The marginal gain
is the difference in influence between the current set of se-
lected CBGs (spread), and the influence of the current se-
lected CBGs plus a potential candidate CBG. Note that the
gain is also normalized by the population of the CBG, nci .
We implement this normalized version of IM since we want
to select CBGs that are the most influential per their popu-
lation, and CBGs with a higher population use more of the
vaccination budget than CBGs with a lower population. We
keep track of how much budget is used so far with B′, which
gets updated with the population sizes of CBGs when they
are added to Z.

In lines 9-15, we perform a check to test whether the
highest-influence candidate after the previous iteration is
still the highest-influence candidate in the current iteration.
If this is true, we omit the requirement to re-calculate the
influence of the other candidates. This exploits the submod-
ularity of the influence function, since the marginal gain of
adding CBG ci to a smaller set Z can only decrease. This
is the contribution made by CELF (Leskovec et al. 2007),
which we use to improve run time. The algorithm then con-
tinues to add candidate CBGs to Z so long as their addition
does not exceed the budget B. The final output of the model
is therefore a set of CBGs to be vaccinated, which we call
V . Our subsequent variations of this contribution in the next
sections adapt this method to apply demographic fairness.
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IM With Equal Treatment
Equal treatment is an existing fairness notion in the domain
of fair IM, which aims to achieve fair representations of so-
cial groups in the final set of selected nodes V . This is equiv-
alent to achieving the same demographic distribution in the
set of communities to be selected for vaccination as in the
whole network.

We model this task as a multiple knapsack problem
(Chekuri and Khanna 2005), whereby each social group
j = 1, ..,M is allocated a number of vaccines based on
the fraction of their population in the network. Each social
group j, therefore, receives its own budget Bj , correspond-
ing to the number of vaccines to be allocated to the group,
given by

Bj =
Nj

N
B (1)

where Nj is the number of individuals in the network be-
longing to group j and N is the total network population.
To implement this, when a CBG is selected for vaccination,
we update the budget used by each of the M social groups,
between lines 19 and 20 of Algorithm 1. Additionally, after
line 21, we perform another check to ensure the remaining
candidate list contains only CBGs whose addition would not
violate any of the social group budgets Bj . We use these def-
initions to outline two strategies: equal treatment by racial
groups and equal treatment by median household income.

Equal Treatment by Racial Groups (IM-R) When per-
forming equal treatment for racial groups, the budget of
racial group j is updated when CBG ci is selected for vacci-
nation via

B′
j = B′

j + nciαij (2)
This update is performed for all M racial groups when any
additional CBG is selected.

We acknowledge that our fairness framework takes a
Western-centric perspective, particularly with respect to
race, and is relevant mostly to countries containing urban ar-
eas with high diversity, as is more typical of the global West.
The most effective strategy for each country, however, will
not be the same (Eyal et al. 2022). We therefore propose
IM-I to counteract this bias; many non-Western countries
may not have the same extent of racial diversity, but will still
experience income disparities in their urban areas. Using in-
come as a sensitive attribute therefore still provides a fair IM
method which is relevant for areas with low racial diversity.
Further, Figure 2 identifies that in our selected MSAs, the
White population tends to dominate higher income CBGs,
while historically marginalized groups of Black or African-
American are more prevalent in lower income groups, as is
typical of high-diversity urban areas in the West. Therefore,
fairness by income level may also achieve fairness by racial
groups for our selected MSAs.

Equal Treatment by Median Income (IM-I) We per-
form a similar equal treatment scenario, this time with so-
cial groups defined by income. We use labels of the me-
dian household income of each CBG. The distribution of
the CBG median income is split into four quartiles. We then
bucket the CBGs into one of M = 4 groups according to
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Figure 2: Racial distributions of CBGs grouped by their me-
dian income. Income groups are determined by quartiles of
the median income distribution. Results are for three MSAs:
Philadelphia, New York and Chicago.
which quartile its median income falls into. The budget is
split in the same way as with race, using Bj =

Nj

N B for
each income group j, where Nj is the total population of
that income group. However this time, the budget updates
are given by

Bj′ =

{
B′

j + nci , if ci belongs to group j

B′
j , otherwise

(3)

IM With Age-Associated Risk-Weights (IM-A)
While older individuals in the network are less mobile, they
are more likely to experience severe consequences if they
contract the disease, including hospitalisation and death. As
a result, it is important to consider this tradeoff when using
IM. To do so, we incorporate this notion into our IM tech-
nique such that the significance of infecting a person from
a CBG with a higher median age is greater. We implement
this by weighting the CBGs with a “risk-factor” according
to their median age. The purpose is to not only select CBGs
for vaccination that are highly influential in the network but
in particular, find those CBGs that pose more of a risk of
exposing older communities to the disease. We achieve this
by scaling the influence calculations σ, which is used as the
selection criteria for vaccination (see Algorithm 1). We con-
struct a vector µ of size K containing the associated risk-
weights for each CBG, determined by its median age. We fill
this vector with the death rates per age group from the CDC,
which are the rates of death of older groups compared to
18-29 year olds in the US (CDC 2023). We report these val-
ues in our full paper (Neophytou, Taı̈k, and Farnadi 2024).
The resulting influence, which before was just the sum of
exposed-or-worse individuals in the network, is now instead
a weighted sum where each CBG is weighted according to
its risk-factor in vector µ, given by

σA =
K∑
i=1

µinci(Ei + Ii +Ri). (4)

We use this metric as a proxy to account for infections as
well as more severe cases and deaths. In Algorithm 1, the
influence function σ is replaced by σA in lines 3 and 13.
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Multiple Protected Attributes
The methods proposed so far each strives for fairness using
one protected attribute at a time. However, it is possible that
achieving the desired fairness for one protected attribute is
not beneficial for another. For example, older communities
tend to be predominantly White in the US. Therefore, a vac-
cination strategy based solely on age, without consideration
for fair distribution amongst racial groups, leads to an unfair
allocation. This would also lead to unfair allocation amongst
income groups as White populations tend to dominate higher
income CBGs, as shown in Figure 2. To address this issue,
we propose the following combinations of our methods:

IM With Race Groups and Age-Associated Risk-Weights
(IM-RA) We perform equal treatment to achieve represen-
tative allocation of vaccines amongst racial groups, but use
the influence function σA to apply a heavy penalty for in-
fecting older communities.

IM With Median Income and Age-Associated Risk-
Weights (IM-IA) Similarly, we perform equal treatment
of vaccines amongst the four income groups and replace the
influence function with σA. In our experiments, we later find
high numbers of submodularity violations when using the
σA influence function. For all experiments using the “-A”
suffix, we, therefore, omit the recalculation checks in Lines
10 to 15 of Algorithm 1.

Experiments
Dataset We conduct experiments on three mobility net-
works of MSAs in the US, constructed from individual mo-
bile tracking data from SafeGraph, from the Dewey platform
(SafeGraph 2023). We use the implementation proposed by
(Chang et al. 2020) to construct these networks, and also
use their Covid-19 model as our influence function. A mo-
bility network is constructed as a temporal bipartite graph
Gt = (V,Et), whose nodes V are either CBGs, which are
communities of between 600 and 3,000 US residents, or
POIs. A directed weighted edge et(v1, v2) ∈ Et represents
the number of residents from a CBG who are visiting a POI
at hour t. The graph varies over time, such that no nodes are
added or removed, but the edge weights vary hourly. We use
five weeks of visits from CBGs to POIs beginning on the
2nd of March 2020. For our implementation, only the first
two weeks are used to select the most influential commu-
nities, and vaccination is implemented after the two-week
mark. We used data from the beginning of March in order
to exploit the full mobility of individuals before lockdown.
Otherwise, it would not have been possible to measure the
effect of the proposed vaccination strategies separately from
the effect of lockdown.

Throughout the experiments, we set the vaccination
budget to 5% of the population size of the whole network.
We experiment with three MSAs - Philadelphia, New York
and Chicago - each of which encompasses the main city as
well as the wider metropolitan area. These particular MSAs
were selected based on their high racial diversity, and high
discrepancy in infections between racial groups as reported
in the previous work. The outputs are mobility networks

modelling metropolitan areas of populations between 6
and 10 million residents. We provide details of further
pre-processing steps and network statistics in the full paper.

Baselines Each vaccination strategy is run over 30 random
seeds, and we report the average results in comparison to
three baseline approaches. We design our own baselines
here, since the closest approach to ours which uses IM for
vaccination uses a generic propagation function which is not
specific to a particular disease, and is valid only on rooted
trees and not general graphs (Minutoli et al. 2020).

• No vaccination: We model free-spreading Covid-19 dur-
ing the total five-week period, without any vaccination
strategy.

• Random vaccination (RAND): We implement a random
selection of CBGs for vaccination within the budget B.
We collect results over three random seeds and report the
average.

• Current strategy proxy (CS): Here we replicate the cur-
rent strategy which prioritizes older communities. We se-
lect the oldest communities for vaccination, by the me-
dian age of the CBG, up to the vaccine budget B.

Fairness Evaluation Metrics In addition to evaluating the
performance of the vaccination strategies, we propose two
methods of evaluating fairness for social groups in this con-
text. In both cases, we measure the discrete KL-divergence
between two distributions; we compare a distribution from
the outcome of our experiments p(j) to an ideal “fair” dis-
tribution q(j). We draw on fairness notions from the IM lit-
erature - equal treatment and equal outcomes. For both mea-
sures, the fair distribution q(j) corresponds to the fractions
of each social group in the network, q(j) = Nj/N .
• Equal Treatment For equal treatment, we aim to obtain

a fair representation of each social group j within the
CBGs selected for vaccination. As such, the output dis-
tribution p(j) is the proportion of social group j amongst
vaccinated CBGs, p(j) = (Nj/N)V .

• Equal Outcome To obtain equal outcomes, the goal is to
ensure that no individual is more at risk of infection than
the fraction of that social group in the network dictates.
In this case, we set p(j) to be the proportion of infections
received by social group j, as a result of our vaccination
strategy. This can be written as p(j) = (Nj/N)EIR.

Results and Discussion
Reducing Overall Infections The performance of each
vaccination strategy in reducing the number of infections is
shown in Figure 3 (green). For every MSA, all vaccination
strategies using IM outperform both RAND and CS. Though
the infections decrease by only a few percent, given the net-
work size, these percentage point differences are significant.
For example, a 5% decrease in infections for Philadelphia
corresponds to around 18,000 fewer people infected (includ-
ing estimates of unreported infections). We observe that the
variations of IM experiments which include fairness (the last
five bars) do not experience a significant decrease in perfor-
mance even when optimizing for both performance and fair-
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Figure 3: Performance measured by percentage decrease in
infections (top), and percentage decrease in risk-weighted
infections, i.e. with a weighted penalty of infecting older
communities (bottom), compared to not vaccinating. Higher
is better for both metrics.
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Figure 4: The KL-divergence scores measure fair treatment
(red) and fair outcomes (blue) with respect to racial groups
(left) and income groups (right). Lower DKL corresponds to
better fairness for both metrics.
ness. This illustrates that fairness considerations in vaccina-
tion distribution do not have to come at the cost of increasing
infection counts.

Infections in High-Risk Groups Figure 3 (purple) re-
ports the percentage decrease in infections weighted by age-
associated risk, as described in Equation 4. The experiments
optimizing for age are the baseline CS and our contributions
IM-A, IM-RA, and IM-IA, which therefore perform best for
this metric. However, we see that all of our proposed solu-
tions which optimize for age outperform the current strategy,
even when they are also optimizing for another sensitive at-
tribute at the same time. The results testify to several alterna-
tive solutions that better protect older communities as well
as ensure fairness for other sensitive attributes like race and
income.

Comparing Fairness Notions In Figure 4 left, we present
results for equal treatment (red) and equal outcome (blue)
for racial groups, and in Figure 4 right we present the

same metrics for income groups. Though the DKL values
are small, these still correspond to significant differences
in these large networks. For example, the current strategy
model (CS) has a DKL of around 5.8 × 10−4 for Philadel-
phia, which corresponds to the Black population suffering
around 6,000 more infections than if they were distributed
according to their proportion in the network. Critically, we
see that IM-R methods successfully achieve equal treatment
for racial groups across all MSAs, as does IM-RA, with the
exception of Chicago. The effect is stronger for income,
where IM-I and IM-IA experiments achieve near-perfect
(DKL of zero) distribution of vaccines to income groups, for
all MSAs. Though equal treatment is important to ensure,
we are more interested in an equal outcome, as infections
are the more serious consequence. We see that the experi-
ments which perform best for equal outcomes amongst races
are also IM-R and IM-RA. This demonstrates that achiev-
ing equal treatment can be very effective in delivering fair
outcomes for those same demographic groups. Additionally,
for some MSAs, constraining on fairness by income (IM-I)
leads to fair outcomes for race, and vice versa. This implies
that the objectives of achieving fairness amongst races and
fairness amongst social status are similar.

Optimizing for Multiple Sensitive Attributes Since the
results of every vaccination experiment for each MSA can
differ, it is possible that there is no one one-size-fits-all
best vaccination strategy for every urban area. In particu-
lar, we can identify how accounting for higher-risk individ-
uals (experiments with the “-A” suffix) can work favourably
for achieving demographic fairness in infections for some
but not all MSAs (see Chicago, Figure 4 blue, left and New
York, Figure 4 blue, right). Despite this, we can identify at
least one strategy per metropolitan area which achieves high
performance in reducing infections overall, as well as a com-
petitive result for the infection outcomes of all three sensi-
tive attributes of age, race, and social status by income: IM-
RA for Philadelphia and New York, and IM-IA for Chicago.

Conclusion
For policy-makers, choosing a vaccination strategy amongst
those presented here is non-trivial. There is no one-size-
fits-all solution for every urban area. However, we demon-
strate that, for all networks we tested here, one of our pro-
posed methods can successfully ensure demographic fair-
ness for all three sensitive attributes. We, therefore, argue
that community-level influence maximization should be in-
corporated into whichever ethical stance is taken, and we
present the methodology to do so.

Our approach can be extended to accommodate multiple
rounds of vaccine allocation, as commonly observed in real-
world scenarios. It would be necessary to capture the mo-
bility shifts at different stages of lockdown, and how this
affects demographic groups differently. There are many fac-
tors which could be incorporated to make the simulation
more realistic, such as vaccine hesitancy. For later stages
of vaccine roll-out, our approach could be combined with
data on hesitancy rates to prioritize neighborhoods with low
up-take, while maintaining demographic fairness.
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