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Abstract

Human trafficking (HT) for forced sexual exploitation, of-
ten described as modern-day slavery, is a pervasive problem
that affects millions of people worldwide. Perpetrators of this
crime post advertisements (ads) on behalf of their victims on
adult service websites (ASW). These websites typically con-
tain hundreds of thousands of ads including those posted by
independent escorts, massage parlor agencies and spammers
(fake ads). Detecting suspicious activity in these ads is diffi-
cult and developing data-driven methods is challenging due
to the hard-to-label, complex and sensitive nature of the data.
In this paper, we propose T-NET, which unlike previous so-
lutions, formulates this problem as weakly supervised classi-
fication. Since it takes several months to years to investigate
a case and obtain a single definitive label, we design domain-
specific signals or indicators that provide weak labels. T-NET
also looks into connections between ads and models the prob-
lem as a graph learning task instead of classifying ads inde-
pendently. We show that T-NET outperforms all baselines on
a real-world dataset of ads by 7% average weighted F1 score.
Given that this data contains personally identifiable informa-
tion, we also present a realistic data generator and provide the
first publicly available dataset in this domain which may be
leveraged by the wider research community.

Introduction
Human Trafficking (HT), defined as the recruitment, trans-
portation and control of persons, typically through sexual
exploitation and forced labour (Canada 2023), is a problem
that affects over 6.3 million people worldwide in a year (Or-
ganization 2022). In majority of the cases, advertisements
(ads) are posted by traffickers on behalf of their victims
on adult service websites (ASW) (Thorn 2015; Crotty and
Bouché 2018) and an average pimp has control over 4 to 6
victims; many of whom report of having “no input into the
wording used in the advertisements” (Thorn 2015). For ex-
ample, in a convicted case in British Columbia in 2014 (R.
v. Moazami), the trafficker solicited to illegally push 9 un-
derage girls and 2 women into the trafficking industry adver-
tising them through various escort websites. These websites
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provide easy-to-use and low-risk platforms for the traffick-
ers, allowing them to remain anonymous and operate on a
wide geographical range. Thus, monitoring these online es-
cort markets is the key to combating human trafficking.

Generally, law enforcement officers scour through thou-
sands of these online ads manually looking for suspicious
activity (e.g, keywords indicative of underage activity). They
then collect evidences and look for other connected ads and
phone numbers which is a tedious and time-consuming pro-
cess. Thus, finding clues becomes a needle-in-the-haystack
problem making manual investigation very difficult.

To address this issue, text clustering and ranking based ap-
proaches have been proposed (Kulshrestha 2021; Lee et al.
2021) which not only make it easier to analyze the ads
but also facilitate their interactive visualizations (Nair et al.
2022; Vajiac et al. 2022). These approaches are based on
one critical insight on HT detection that traffickers tend to
almost entirely control the ad content for their victims. Con-
sequently, ads posted by the same trafficker for multiple vic-
tims tend to be very similar (U.N 2021; Project 2014). How-
ever, these websites also contain ads posted by independent,
at-will sex workers and separating the two is non-trivial as
they look more-or-less the same. Moreover, there exist other
types of behaviour, or modus operandi (M.Os) as we call it,
such as massage parlors and spam – ads with false contact
information.

The exact motivation for spam is not clear but one hy-
pothesis is that sometimes well-intentioned parties inject
fake ads into websites to discourage buyers from purchasing
sexual services. Another hypothesis is that traffickers may
pump fake ads into these websites to throw off investigators
and stay under the radar. Spam adds noise to the data af-
fecting both manual investigation as well as machine learn-
ing approaches. Automating the identification of these activ-
ities is also challenging as labels are hard to acquire. Current
methods (Lee et al. 2021; Kulshrestha 2021) are helpful in
finding clustered activities but they do not characterize or
provide insights on the different type of M.Os.

Previous works on HT detection (Alvari, Shakarian, and
Snyder 2017; Dubrawski et al. 2015; Tong et al. 2017) were
based on binary classification of ads into HT vs non-HT.
These are limited in that 1) they study ads individually
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and potentially overlook important clues based on similar-
ities and connections among ads and 2) they disregard other
M.Os such as spam, which can add significant noise and
independent sex work (ISW), which when conflated with
HT is harmful; 3) their methods are not open-source and
were developed on private datasets, labelled using domain
experts, making it difficult to adopt and reproduce.

In this paper, we address the above limitations through T-
NET that 1) classifies clusters instead of individual ads while
leveraging connections between them, 2) models the prob-
lem as multi-class classification and detects different types
of activities and 3) is an open-source solution that uses label-
ing functions (LFs) to programmatically map the knowledge
and heuristics used by expert labelers to weak labels. We
also release ASW-SYNTH, a synthetically generated corpus
of realistic escort ads. To summarize, the main contributions
of this work are three-fold.

• Novel problem formulation. Unlike previous works, we
tackle the problem of HT detection in a novel way by
finding similarity-based clusters of ads and leveraging
the connections between them to model a graph learning
problem.

• Effective method. We introduce T-NET, a new frame-
work that combines graph contrastive learning and node
classification in the presence of weak labels and show
its effectiveness on two escort ads datasets with 7% im-
provement over baselines.

• Reproducibility. We introduce ASW-SYNTH, the first
publicly shareable corpus of escort ads, facilitating fur-
ther research in this field. We also provide labeling func-
tions for the weak labeling of such datasets and our solu-
tion are publicly available.1

Related Work
In this section we discuss some background and related
works to help motivate the problem of HT detection and our
approach based on contrastive graph learning and weak su-
pervision.

Human Trafficking Several strategies have been ex-
plored in the past decade to develop data-driven techniques
for tracking online HT. These included usage of knowl-
edge graphs (Szekely et al. 2015), text processing mod-
els (Dubrawski et al. 2015; Alvari, Shakarian, and Snyder
2017; Tong et al. 2017), information extraction (Nagpal et al.
2017), detecting ads authored by the same person and link-
ing to bitcoin wallets (Portnoff et al. 2017) and analyzing
images posted in ads (Stylianou, Souvenir, and Pless 2019).
All these methods function at an ad level and predict the like-
lihood of individual ads being involved in trafficking and do
not differentiate different types of activities within the mar-
ket.

Graph Contrastive Learning Contrastive learning (CL)
in graphs is a self-supervised approach that focuses on
pulling a node and a positive sample closer to each other in

1Our code base is available at https://github.com/nair-p/T-Net

the embedding space, while pushing it away from its nega-
tive samples (Khosla et al. 2020; Chen et al. 2020). For most
graph CL (GCL) methods, node and graph level augmenta-
tions are contrasted in different ways typically between one
or more augmented views of the graph (You et al. 2020; Has-
sani and Khasahmadi 2020; Zhu et al. 2020). GCL has also
been explored in the context of deep graph clustering (Park
et al. 2022) which showed that explicitly considering the net-
work structure in the contrastive loss made the node embed-
dings more aligned to their respective class labels.

Graph Learning with Weak Labels When there are mul-
tiple weak labels associated with each data sample (like in
our problem setting), also known as programmatic weak su-
pervision (Ratner et al. 2016, 2019), majority vote (MV) is
the simplest and most straight-forward strategy for label ag-
gregation which chooses a label based on consensus from all
the weak labelers. However, these MV aggregated labels are
still noisy. Most common approaches for neural networks
to deal with noisy labels are data-driven (Van Rooyen and
Williamson 2017), learning objective (Reed et al. 2014) or
optimization based (Arpit et al. 2017). PI-GNN (Du et al.
2023) is a recent work that introduces an adaptive noise es-
timation technique leveraging pairwise interactions between
nodes for model regularization. NRGNN (Dai, Aggarwal,
and Wang 2021) is another recent work that utilizes edge
prediction to predict links between unlabelled and labelled
nodes and expands the training set with pseudo labels, mak-
ing it more robust to label noise. We compare T-NET with
the most recent NRGNN and PI-GNN baselines.

Problem Formulation
Consider a graph G = (V,A,X), with set of nodes V , ad-
jacency matrix A and node feature matrix X ∈ R|V |×d of
some dimension d. Each node Vi, which represents a clus-
ter of ads, has an unobserved true label yi ∈ {1, 2 . . . C}
belonging to one of C classes. The list of all labels is de-
noted by Y = [y1, y2 . . . y|V |]. There are m labeling func-
tions (LFs) applied on a cluster/node Vi to output ẏi ∈
{−1, 1, 2 . . . C} which can be aggregated using majority
vote to get Ỹi. -1 indicates abstain/no information on label.
The goal of weakly supervised node classification is then to
learn a node classifier model f : G,Λ→ Y such that it uses
the graph G and weak node labels Λ, to predict Y .

Proposed Method: T-NET
We introduce T-NET, a 3-layer GNN that consists of a clas-
sification component and a contrastive learning component.

Classification Component Consists of two graph convo-
lution layers (GCONV) followed by softmax and aims to op-
timize the cross-entropy loss between the predicted label Ŷ
and aggregated label Ỹ while handling label noise through
weighted classification loss.

T-NET uses Algorithm 1 to weigh the classification loss
per node based on the uncertainty of its weak labels and how
influential it is. In particular, for a given node, if most LFs
agree on its label i.e, the entropy of the LF outputs for that
node is small, we can be more certain of that label and give
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that node a higher weight. The inverse is also true. Secondly,
if its node embedding (hi) is closer to a cluster center, then
it has a higher influence on nearby embeddings and hence
should be weighed accordingly. To capture this, the node
embeddings (which represents clusters of ads) are further
grouped using KMeans (with k = C) and if Qi is the cluster
that node i belongs to and qi represents its cluster centroid,
the centrality of node i is calculated as:

ρi = cent(i) = |Qi| ∗
(hi.hqi)∑|V |
j=1(hj .hqj )

(1)

where ‘.’ indicates the cosine similarity operator.

Contrastive learning component To further improve ro-
bustness of learned embeddings and reduce corruption by la-
bel noise, T-NET employs a contrastive learning (CL) com-
ponent. The CL objective function aims to maximize the
mutual information between a node and the graph commu-
nity it belongs to. Groups of nodes in the same graph com-
munity are densely connected to each other and loosely con-
nected to nodes from other communities. Due to network
homophily, we know that nodes with a similar graph struc-
ture are more likely to belong to the same class. Thus, for
finding a given node’s positive sample, we randomly pick a
node belonging to the same network community, computed
using Louvain algorithm2 (Blondel et al. 2008). For nega-
tive samples, we use a network corruption setup where the
rows of X are shuffled, maintaining the same structure, and
r negative rows are sampled uniformly at random. The con-
trastive loss function LS is given by Equation 2 and the CL
component process is described in Algorithm 2.

CL(hi, h
+
i , S

−) = − log
exp (hi.h

+
i )

r∑
j=1

exp (hi.S
−
j ) + exp (hi.h

+
i )

(2)

where h+
i is the positive sample for node i and S− is the set

of its r negative samples. This CL component employs a 2-
layer GNN to learn node embeddings. The first layer, AGG,
is a mean aggregation of neighbors as:

AGG(xi,Ni) = ReLU(W.AVG({xv|∀v ∈ Ni})) (3)

where Ni denotes the neighbors of node i, W represents
the weights learned by the model and AVG denotes the aver-
age aggregation. The second layer, GCONV, is a classic GCN
layer.

Algorithm 3 describes T-NET and shows how the clas-
sification component and a contrastive learning component
come together. The final loss is a combination of the losses
from these two components which is then backpropagated
through the model. Figure 1 provides a visual illustration of
the components in T-NET.

2Here we merely demonstrate using simple Louvain method
and note that any community detection algorithm may be used.

Algorithm 1: CLASSIFICATION-LOSS

Input: Ŷ , Λ, C
Output: LC

1: L← emptyList(size = |Ŷ |)
2: m← |Λ0|
3: for i ∈ {0 . . . |Ŷ |} do
4: λ← zerolist(size = C) ▷ Majority Vote
5: ŷi ← Ŷi

6: for j ∈ [1, ..,m] do
7: λ[Λij ]← λ[Λij ] + 1
8: end for
9: ỹ ← argmax(λ)

10: l← CrossEntropy(ŷi, ỹ)
11: e← entropy(λ)
12: ρ← cent(i) ▷ using Equation 1
13: nw ← e ∗ ρ
14: L[i]← l ∗ nw
15: end for
16: LC ← 1

|L|
∑|L|

j=1 Lj

17: return LC

Algorithm 2: CONTRASTIVE-LOSS

Input: H , V , X , A, Comms
Hyperparameter: r
Output: LS

1: L← emptyList(size = |H|)
2: for i ∈ {0 . . . |H|} do
3: s+ ∼ Comms(Vi) ▷ sample a node from commu-

nity of node i
4: h+

i ← Hs+

5: X̃ ← Shuffle_rows(X)
6: S− ← emptyList(size = r)
7: Let j = 1
8: while j ≤ r do
9: x̃ ∼ X̃ ▷ sample from shuffled X

10: z̃ ← AGG(x̃, A)

11: h̃← GCONV(z̃)

12: S−[j]← h̃
13: j ← j + 1
14: end while
15: L[i]← CL(hi, h

+
i , S

−) ▷ using Equation 2
16: end for
17: LS ← 1

|L|
∑|L|

j=1 Lj

18: return LS

Datasets
ASW-REAL: Real-World Dataset

ASW-REAL (Adult Service Website-Real) is an escort ads
datasets of 10199 ads with HT, Spam and ISW labels man-
ually labelled and provided to us by our collaborators work-
ing in this field. It consists of ad text and structured selectors
(such as advertised aliases, location and date of posting, con-
tact information) maskable using unique hash values.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22278



Algorithm 3: T-NET

Input: V , A, X , Λ, C
Hyperparameter: T
Output: Ŷ

1: Let t = 1
2: Comms← Louvain(A) ▷ obtain graph communities
3: while t ≤ T do
4: Z1 ← AGG(X,A) ▷ using Equation 3
5: H ← GCONV(Z1) ▷ GCN layer
6: Z2 ← GCONV(H)

7: Ŷ ← softmax(Z2)

8: LC ← CLASSIFICATION-LOSS(Ŷ ,H,Λ, C)
9: LS ← CONTRASTIVE-LOSS(H,V,X,A,Comms)

10: L← LS + LC

11: t← t+ 1
12: Backpropagate L
13: end while
14: return Ŷ

ASW-SYNTH: Synthetically Generated Dataset
Escort ads often contain sensitive information, explicit lan-
guage and images, and personally identifiable information
such as phone numbers and social media tags. Although
these are publicly accessible online, there are constraints to
sharing such datasets. To address this, we produce ASW-
SYNTH, a synthetically generated corpus of realistic escort
ads that is shareable and can be leveraged by the broader
research community.

The escort ad content in ASW-SYNTH were created using
the state-of-the-art language model, gpt-3.5-turbo. Relevant
meta-data such as phone numbers, email addresses, location
of posting, social media tags and posting date of ads, were
then added. Following this, clusters were manually included
by the duplication of ad text and connections were forged
between them by means of shared meta-data. Lastly, 3 types
of M.Os were inserted based on their corresponding indica-
tors. This workflow is further explained below.

Ad text generation Using the OpenAI ChatCompletion
API with the gpt-3.5-turbo model, we generated 7236
unique ads. The prompt used consisted of 1) background
information about HT in escort ads, 2) generation specifi-
cation in terms of the required format, tone and style of the
ads such as mentions of advertised aliases, 3) 4 anonymized
examples from real-world escort ads and 4) feedback on cur-
rent generations for improvement.

Adding meta-data information For each of the gener-
ated ads, a random posting date between January and July
2022 was added. A posting location was randomly selected
from a given list of Canadian city names. Phone numbers
were randomly generated (fake numbers) and masked using
MD5-hashing. Advertised names were extracted from the
ads using a domain-specific name extractor (Li et al. 2022)
and email addresses and social media tags were created by
adding tags to the names, such as @mail.com and _xoxo re-
spectively.

Dataset Nodes Edges Comms. Comps.

ASW-REAL 438 28092 17 12
ASW-SYNTH 7236 2951206 722 721

Table 1: Statistics of the constructed graphs for the real-
world and synthetic datasets. Comms. is the number of de-
tected communities and Comps. represents the number of
connected components.

Adding clusters and connections Each of the generated
ads acted as cluster center (hence 7236 clusters) and was du-
plicated as is or after removing 1-5% of words to simulate
near-duplicates. Cluster sizes were sampled from a pareto
distribution with a minimum size of 100 and maximum size
of 50000. As a result, there are few large clusters and sev-
eral small ones around 100-200 ads resulting in a corpus of
around 868279 ads. For adding connections, pairs of clus-
ters were randomly sampled and assigned the same phone
number, email addresses and/or social media tags resulting
in around 2.9 million connections.

Inserting different types of M.Os For Spam, we ran-
domly selected clusters and added over 10 posting loca-
tions and 5 phone numbers. Their posting pattern was made
“bursty” where a large volume of ads get posted on one day
followed by no posts for several days to emulate the outcome
of automated bots/scripts. For HT, we randomly inserted cer-
tain keywords (according to HT LFs in Table 3) into the ad
text and ensured that at least 3 or more persons were adver-
tised within the same cluster. For ISW, we included relevant
keywords into the ads and ensured each cluster had only 1-2
persons advertised with 1-2 phone numbers to indicate one
or two independent escorts. The data statistics for ASW-
SYNTH are provided in Table 1.

Methodology Pipeline
For both ASW-SYNTH and ASW-REAL, the below pipeline
(also displayed in Figure 1) was used for preparing the
dataset, building the graph and obtaining suspicious clusters.

Preprocessing Any ads with duplicate information were
removed (more relevant for ASW-REAL). We used the state-
of-the-art entity extractor for this domain (NEAT) (Li et al.
2022) to obtain the aliases mentioned in the ads. This is use-
ful in determining how many individuals are potentially be-
ing advertised in the same ad or group of ads.

Grouping related ads We then clustered the ads based on
text similarity using InfoShield (Lee et al. 2021), the state-
of-the-art clustering algorithm for the HT domain to create
text-based clusters (called micro-clusters).

Constructing the graph Having obtained micro-clusters
of related ads, we look for shared information (called meta-
data) among these clusters. More specifically, the clusters
are treated as the nodes in a graph and there exists an edge
between two nodes if they share any hard links such as a
phone number, email address or social media tag. This al-
lows us to build a network of clusters based on common
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Figure 1: The methodology pipeline. Escort ads are clustered based on text similarity to obtain micro-clusters, which form the
nodes. Micro-cluster nodes are linked to each other based on shared meta-data (e.g. shared phone number) to build a graph.
Node features are extracted and the LFs are applied on the clusters to get weak labels (Λ). The graph (A) node features (X) and
Λ are input to T-NET and the nodes predicted as HT are considered to be suspicious micro-clusters.

meta-data. The clusters are also characterized by features as
defined in Table 2. Each of these represent one value in a
vector which is then treated as a node feature.

Feature Description
Cluster Size Number (#) of ads
Phone Count # of unique phone numbers
Phone Entropy Entropy of phone number counts
Email Count # of unique email IDs
Location Count # of distinct locations
Location Radius Radius of ad posting location
Social Media Count # of social media accounts
URL Count # of total URLs in the ad
Valid URL Count # of valid URLs in the ad
Invalid URL Count # of invalid URLs in the ad
Advertised Aliases # of persons advertised in a cluster
Ads per week # of ads posted per week

Table 2: List of features used for cluster characterization.

Obtaining weak labels Over the course of discussions
with domain experts, criminologists and survivors, and
based on related works in the literature(L’Hoiry, Moretti,
and Antonopoulos 2021), we defined several labeling func-
tions/LFs (referred to as Λ)3 as described in Table 3.

These LFs look for the presence of certain indicators
and count the number of their occurrences within a micro-
cluster. We then plot their distribution and identify inflec-
tion points (the value at which there is a sudden change
in the distribution curves) which are calculated as the last
point where the sign of the second derivative changes. These

3The keywords used in LFs 1-4 and 7-9 are similar to the
ones used in (L’Hoiry, Moretti, and Antonopoulos 2021) and are
provided in https://github.com/nair-p/T-Net/blob/main/labeling_
functions.py.

points are then set as thresholds for the corresponding LFs
and all micro-clusters with LF values above the threshold are
assigned to the corresponding class. For example, for ‘Num-
ber of advertised aliases’, the threshold was set at 4 and for
micro-clusters with 4 or more persons advertised, it returns
HT as the label.

For ASW-REAL, the average coverage (% of ads which
do not get a -1 label) is 10.7% and the average accuracy
is 53%. For ASW-SYNTH, these values are 20% and 67%
respectively. These values indicate the quality of the labeled
data available for this task and further demonstrates the need
for our weakly supervised classification pipeline.

Getting suspicious clusters The constructed graph of
micro-clusters (V,A), node features(X) and weak label ma-
trix (Λ) are input to T-NET which is trained using majority-
vote aggregated weak labels of the training nodes. The pre-
dictions on a test-set are obtained as per Algorithm 3 and
evaluated using the Fβ score defined by Equation 4. This is
repeated for 5 random train-test splits.

Fβ = (1 + β2)
precision× recall

(β2 × precision) + recall
(4)

We report the mean and standard deviation of Fβ scores
for each of the 3 classes (HT, ISW and Spam) in Tables 4
and 5. β = 1 is the standard F-1 measure where precision
and recall get equal weights. When β = 0.5, precision is
given higher weight than recall. False positives for HT are
more harmful than true negatives, making this a reasonable
choice of evaluation metric.

Experiments and Results
Baselines: We compare T-NET with the following baselines
and variations of the method as ablations.
• MLP: Multi-Layer Perceptron classifier that disregards

connections between nodes and treats them as indepen-
dent data points.
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Labelling Function Description
ASW-REAL
cov. acc.

ASW-SYNTH
cov. acc.

HT

HT Keywords presence of suspicious keywords 25.6 20.5 9.53 74.7
No restrictions in service willing to do any the kind of service 13.9 3.30 14.87 48.1
Incall only/No outcall indicates restrictions in movement 0.20 100 8.98 27.2
3rd / 1st person plural pronouns advertising someone other than themselves 6.40 32.1 5.14 62.1
Advertised aliases multiple people being advertised 24.7 6.50 28.0 24.1
Image ids per phone number multiple image ids linked to the same phone 28.3 85.5 x x

ISW
Non-HT Keywords keywords associated with ISW 13.5 94.9 11.6 100.
Restrictions in services based on sex worker preferences 7.30 93.7 12.1 100.
Availability without restrictions no restrictions in movement 0.20 100 7.02 100.

Spam
Phone number count either 0 or a large number of phone numbers 3.42 33.3 6.72 61.7
Post location radius ads spread out in a very short timeframe 2.30 90.0 14.7 85.8
Number of locations ads spread out across the country 2.70 75.0 16.9 100.

Table 3: List of LFs defined for the 3 classes with their individual coverage and accuracy on each of the datasets. We can see
that the coverage of the individual LFs are relatively low which suggest the need to aggregate them to achieve better average
coverage. Please note that ASW-SYNTH does not contain images, hence “Image ids per phone number” is not applied on it.

Figure 2: T-NET accurately detects HT while not conflicting
with ISW. Higher values of HT accuracy and lower values of
ISW conflict are better. MV is the majority vote aggregated
labels used for training the models. NRGNN classifies ev-
erything as ISW and has both values zero.

• GCN: A 2 layer Graph Convolution Network (Kipf and
Welling 2016) that does not explicitly handle label noise.

• NRGNN (Dai, Aggarwal, and Wang 2021): Noise-
Resistant Graph Neural Network that augments the graph
using edge prediction and expands the labelled training
set with pesudo labels.

• PI-GNN (Du et al. 2023): Method that regularizes the
model to noise by leveraging similarities between pairs
of nodes.

• T-NET–CL: Our method without the contrastive-loss
component.

• T-NET–nw: Our method whaere all node-weights are 1.
• T-NET–E: Our method where the node weights do not

consider the entropy of the weak labels.
• T-NET–ρ: Our method where the node weights do not

consider the centrality of node embeddings.

Classification results: In Tables 4 and 5, we see that T-
NET outperforms all baselines on average and has a clear
advantage on the HT and ISW classes. More specifically,
in the overall weighted average score, T-NET’s F1 score is
7% and 23% better than the next best baseline on ASW-
REAL and ASW-SYNTH respectively. We observe that PI-
GNN does better on the Spam class as its loss function is
equipped to handle sample imbalance (ASW-REAL has only
9 spam examples) and disconnected nodes in the data. Spam
nodes are generally not connected to multiple other nodes
due to lack of connecting meta-data and as a result, are either
isolated or belong to small, disconnected communities.

Confusion of sensitive classes: It is important to ensure
that false positives of the HT class are minimized, especially
when they belong to ISW. These false positives can result in
harm to vulnerable communities (discussed more in the soci-
etal impact), in addition to wasting the time of investigators
and reducing the trust in the system. We study this aspect
by measuring the ISW conflict – proportion of ISW nodes
misclassified as HT. In Figure 2, we plot the ISW conflict
along with HT accuracy for different methods on ASW-
SYNTH and show that T-NET has the lowest ISW conflict
while maintaining the highest HT accuracy. A similar pat-
tern is also observed on the ASW-REAL dataset.

Discussion and Conclusions
Societal impact Narratives around HT have often been
conflated with sex work as highlighted by studies (Durisin
and van der Meulen 2021) and most previous machine-
learning based approaches to HT detection, do not explicitly
handle differentiating between these two types of activities.
This can be harmful for at-will sex workers through over
policing, unhelpful interventions, oversurveillance, displac-
ing work venues, etc. Unlike previous works, we have con-
sidered these two activities separately and designed specific
LFs for both. Moreover, since our analysis is at a cluster
level, our focus is more on large, connected clusters with-
out targeting individual ads. Unlike previous works (Tong
et al. 2017), T-NET is not designed based on any physical
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Method HT ISW Spam Weighted Average
β = 0.5 β = 1 β = 0.5 β = 1 β = 0.5 β = 1 β = 0.5 β = 1

MLP 0.57 ± 0.15 0.62 ± 0.06 0.08 ± 0.02 0.04 ± 0.04 0.06 ± 0.50 0.10 ± 0.15 0.45 ± 0.07 0.35 ± 0.03
GCN 0.68 ± 0.01 0.77 ± 0.06 0.38 ± 0.10 0.23 ± 0.16 0.21 ± 0.45 0.24 ± 0.25 0.64 ± 0.06 0.52 ± 0.10
NRGNN(2021) 0.50 ± 0.38 0.56 ± 0.27 0.00 ± 0.00 0.01 ± 0.02 0.25 ± 0.46 0.23 ± 0.36 0.33 ± 0.21 0.31 ± 0.15
PI-GNN (2023) 0.74 ± 0.01 0.82 ± 0.07 0.70 ± 0.07 0.51 ± 0.10 0.29 ± 0.30 0.28 ± 0.28 0.77 ± 0.06 0.67 ± 0.09
T-NET–CL 0.73 ± 0.01 0.80 ± 0.07 0.49 ± 0.22 0.30 ± 0.11 0.11 ± 0.08 0.14 ± 0.12 0.71 ± 0.13 0.57 ± 0.08
T-NET–nw 0.75 ± 0.13 0.81 ± 0.07 0.53 ± 0.40 0.35 ± 0.22 0.29 ± 0.37 0.23 ± 0.22 0.71 ± 0.16 0.59 ± 0.12
T-NET–E 0.74 ± 0.01 0.81 ± 0.07 0.78 ± 0.02 0.56 ± 0.20 0.17 ± 0.45 0.20 ± 0.17 0.82 ± 0.06 0.69 ± 0.13
T-NET–ρ 0.67 ± 0.36 0.69 ± 0.30 0.68 ± 0.20 0.43 ± 0.27 0.27 ± 0.38 0.19 ± 0.23 0.71 ± 0.12 0.59 ± 0.16
T-NET 0.77 ± 0.15 0.83 ± 0.10 0.85 ± 0.02 0.66 ± 0.20 0.11 ± 0.40 0.13 ± 0.27 0.82 ± 0.13 0.74 ± 0.16

Table 4: T-NET performs better than baselines on ASW-REAL. We report 5-fold cross-validation Fβ results. ASW-REAL
contains 231 HT, 198 ISW and 9 Spam clusters. Highest values are in bold and second highest are in red.

Method HT ISW Spam Weighted Average
β = 0.5 β = 1 β = 0.5 β = 1 β = 0.5 β = 1 β = 0.5 β = 1

MLP 0.22 ± 0.07 0.30 ± 0.01 0.05 ± 0.02 0.02 ± 0.05 0.99 ± 0.00 0.98 ± 0.00 0.45 ± 0.03 0.26 ± 0.03
GCN 0.38 ± 0.08 0.43 ± 0.30 0.54 ± 0.45 0.51 ± 0.42 0.72 ± 0.39 0.73 ± 0.38 0.55 ± 0.29 0.55 ± 0.27
NRGNN(2021) 0.17 ± 0.18 0.23 ± 0.16 0.39 ± 0.40 0.18 ± 0.36 0.76 ± 0.30 0.76 ± 0.38 0.48 ± 0.20 0.31 ± 0.15
PI-GNN (2023) 0.21 ± 0.01 0.31 ± 0.01 0.20 ± 0.40 0.10 ± 0.09 0.97 ± 0.02 0.98 ± 0.01 0.57 ± 0.26 0.30 ± 0.06
T-NET–CL 0.59 ± 0.31 0.46 ± 0.30 0.89 ± 0.06 0.76 ± 0.22 0.94 ± 0.02 0.79 ± 0.39 0.87 ± 0.03 0.73 ± 0.24
T-NET–nw 0.26 ± 0.36 0.30 ± 0.14 0.86 ± 0.04 0.66 ± 0.34 0.69 ± 0.37 0.65 ± 0.36 0.77 ± 0.07 0.62 ± 0.19
T-NET–E 0.29 ± 0.17 0.31 ± 0.25 0.76 ± 0.20 0.65 ± 0.27 0.69 ± 0.38 0.66 ± 0.36 0.67 ± 0.21 0.61± 0.22
T-NET–ρ 0.44 ± 0.29 0.44 ± 0.27 0.88 ± 0.12 0.83 ± 0.09 0.72 ± 0.38 0.69 ± 0.39 0.79 ± 0.13 0.75 ± 0.11
T-NET 0.59 ± 0.28 0.64 ± 0.22 0.95 ± 0.03 0.90 ± 0.11 0.56 ± 0.44 0.49 ± 0.42 0.83 ± 0.11 0.78 ± 0.14

Table 5: T-NET performs better than baselines on ASW-SYNTH. Similar to 4, we report 5-fold cross-validation Fβ results on
ASW-SYNTH dataset for β = 0.5, 1. This dataset contains 1005 HT, 4794 ISW and 1437 Spam clusters.

descriptors such as age, ethnicity, etc., and does not use au-
tomatic text encoding approaches. This suggests there is a
very low risk of encoded biases impacting the predictions.
The clusters that get flagged as HT by T-NET can act as po-
tential leads for investigators. Instead of scouring through
large volumes of ads, they can start with investigating the
suspicious clusters and easily find connected ads which also
helps with case building. Additionally, identifying and filter-
ing out spam can help remove noise from these datasets, and
thus improve future studies in this domain.

HT detection is a complex problem that requires multi-
faceted solutions ranging from technical to social, policy
and legal domains. T-NET will be integrated into a techni-
cal solution that is currently under development as a part
of our broader project on countering human trafficking. T-
NET will also be shared with our collaborators that develop
tools to assist HT investigations, with potential for being in-
cluded in their pipeline. The release of the synthetic dataset
ASW-SYNTH and code base for T-NET including LFs for
weak labeling have more immediate impacts on the research
community by enabling more researchers to work on this
problem.

Future works Our proposed methodology detects clus-
tered activity which is easier to interpret than looking at
ads independently. An interesting follow up here is to in-
vestigate the explainability aspects of the method and de-
velop visualizations to interpret the results of T-NET. The

labeling functions in T-NET are designed based on the cur-
rent literature, and our consultations with domain experts
and survivor leaders. These can be updated as the traffick-
ing patterns change in the future to make sure the model
stays robust and accurate. As the laws and policies in this
domain are catching up with the technologies, we are now
conducting research in close collaboration with domain ex-
perts, to determine the most ethical processes of using AI in
this domain. The output of our algorithms should be used in
practice considering the legal (privacy and AI laws), ethical
(potential harms to vulnerable groups such as migrants and
indigenous peoples) and human rights (privacy, surveillance,
and the use of technology in criminal justice) considerations.
There is also scope for improving the synthetic data genera-
tor such as by incorporating more nuanced prompts for mak-
ing more realistic ads. Strategies for evaluating these gener-
ated ads also need to be studied.

Ethics Statement
The data we use is publicly available and due to the nature
of the ads, there is no reasonable expectations for privacy.
However, due to sensitivity of the data, an Ethics Approval
has been obtained from the Research Ethics Board Office at
the authors’ university for using this type of data. We have
also studied the current best practices for the project through
a commissioned Responsible AI Institute evaluation, one of
whose recommendation was to focus on a human centered
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design. To this end, we have biweekly consultations with
human trafficking survivors and have been mindful of not
reproducing biases in the design of the algorithm. No per-
sonal attributes such as age, physical descriptors, ethnicity,
etc were used. Furthermore, the analysis done in this study
is not on the individual level but more so on a cluster level
where the focus is on narrowing down types of activity. In-
dividual sex workers’ ability to advertise their work online
without being criminalized must not be jeopardized by this
research. In addition, we have also reviewed the current law
and policy implications through a comprehensive legal risk
assessment and mitigation memorandum from a law firm.
Lastly, for transparency and accountability, all of the algo-
rithms being developed will be made available online and
to maintain confidentiality and anonymity of the data, data
scraping scripts and real-world datasets will not be shared
publicly. The synthetically generated dataset will be made
available on request via email to the corresponding author.
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