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Abstract

Marine mammals and their ecosystem face significant threats
from, for example, military active sonar and marine trans-
portation. To mitigate this harm, early detection and classi-
fication of marine mammals are essential. While recent ef-
forts have utilized spectrogram analysis and machine learn-
ing techniques, there remain challenges in their efficiency.
Therefore, we propose a novel knowledge distillation frame-
work, named XCFSMN, for this problem. We construct a
teacher model that fuses the features extracted from an X-
vector extractor, a DenseNet and Cross-Covariance attended
compact Feed-Forward Sequential Memory Network (cF-
SMN). The teacher model transfers knowledge to a simpler
cFSMN model through a temperature-cooling strategy for ef-
ficient learning. Compared to multiple convolutional neural
network backbones and transformers, the proposed frame-
work achieves state-of-the-art efficiency and performance.
The improved model size is approximately 20 times smaller
and the inference time can be 10 times shorter without affect-
ing the model’s accuracy.

Introduction

Marine mammals serve as vital components within marine
ecosystems (Bowen 1997), contributing significantly to their
health and stability. The top predators, such as killer whales
and certain dolphins, play an essential role in maintain-
ing the balance of their prey populations. Furthermore, ma-
rine mammals serve as barometers of ecosystem well-being.
However, the population of marine mammals has been de-
clining sharply (Taylor et al. 2007). Human-induced factors
such as habitat loss from construction, overfishing, and ac-
tivities such as sonar and shipping contribute significantly to
this decline (Buck and Clavert 2005). Military sonar, in par-
ticular, emits sound waves that can cause severe harm, and
even fatalities, among marine mammals (Parsons 2017). Ad-
ditionally, the frequency of active sonar disrupts the echolo-
cation abilities crucial for whales’ hunting, further compro-
mising their survival. Urgent action is required to protect
these marine creatures.

One way to protect marine mammals is to achieve ad-
vanced detection and classification so that ships can take a
detour and the Navy can reschedule its exercises to avoid
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harming the protected marine mammals. Machine learning
has been introduced to detect and classify marine mammals,
and it can be used to address the problem in two ways. One
approach is to analyze photos of marine mammals using ma-
chine learning models. For example, the Simple Linear It-
erative Clustering technique was used to segment the aerial
images of dugongs (Maire, Alvarez, and Hodgson 2015) and
then train these images with convolutional neural networks
(CNN:ss), obtaining an F1 score of 0.406. In addition to aerial
images, an attempt has been made to compare three ma-
chine learning methods using photos of Commerson’s dol-
phins (Pollicelli, Coscarella, and Delrieux 2020), and the F1
score of the best model is 0.833. Another approach classifies
marine mammals using vocalizations recorded by passive
acoustic monitors since marine mammals produce sounds of
different frequencies and patterns. Taking advantage of the
complex networks and weights trained with large datasets,
different CNNs (Lu, Han, and Yu 2021; Zhong et al. 2020;
Allen et al. 2021; Duan et al. 2022) have been used to build
marine mammal sound classifiers to produce accurate pre-
dictions.

Indeed, machine learning has attracted interest because it
can accurately identify the sounds of marine mammals with-
out the presence of specialists. However, there is still room
for improvement. First, existing work mainly focuses on the
application of transfer learning using different pre-trained
models. These models usually consist of complex and deep
neural networks, which have the advantage of being accu-
rate, but at the expense of efficiency. In other words, their
training time and inference time can be shortened. Second,
most existing deep learning marine mammal sound classi-
fication work is trained on private datasets, so the signal-
to-noise ratio (SNR) and data size are unknown. The only
known open-source dataset used was the Watkins Marine
Mammals Sound Database (WMMSD)'. The experiment
using WMMSD (Lu, Han, and Yu 2021) only tested the
model on the best sections of the database, which are the
high SNR audio sections. The noisy audio cuts were not ex-
plored; therefore, the robustness of the models is unknown.
Therefore, our goal is to develop a computationally friendly
and robust framework that efficiently recognizes the acous-
tic signals of marine mammals.

"https://cis.whoi.edu/science/B/whalesounds/index.cfm
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This paper proposes a knowledge distillation (KD) frame-
work that is much more efficient than some well-known
CNN-based models and transformers. We provide a com-
prehensive study that extends to a preliminary work based
on a Cross-Covariance attended compact Sequential Mem-
ory Network (CC-FSMN) (Liu and Cheng 2023). Based on
the CC-FSMN, we build a teacher network that embeds an
X-vector extractor and a DenseNet network to better study
the features and increase the accuracy of the system. We also
replace the Dropout mechanism in the Cross-Covariance At-
tention (XCA) layer with a DropKey mechanism to improve
the robustness of the model. The relatively large and com-
plex teacher network effectively improves the CC-FSMN-
based student model. Compared with the original CC-FSMN
(Liu and Cheng 2023), XCFSMN has improved robustness,
F1 score, and identical inference time. XCFSMN also has
more comprehensive content and has gone through more ex-
periments. To test the generalizability and performance of
the system, we have included two datasets: WMMSD and
the MobySound Database (Mellinger and Clark 2006). Be-
sides CC-FSMN, we also compare the efficiency and per-
formance of several CNNs (Lu, Han, and Yu 2021; Zhong
et al. 2020; Allen et al. 2021; He et al. 2015) and transform-
ers (Touvron, Cord, and Jégou 2022; Lee-Thorp et al. 2021;
Zhang et al. 2021).

We can summarize our contributions as follows:

* We propose a teacher model that fuses features extracted
from DensetNet121, TDNN, and a Cross-Covariance
attended cFSMN. Through extensive empirical evalua-
tions and comparisons, we achieve state-of-the-art per-
formance.

We apply a temperature cooling strategy to the knowl-
edge distillation approach to mitigate the gap caused
by model size and architecture differences between the
teacher and the student model, increasing the effective-
ness of the process.

Knowledge distillation produces a well-trained stu-
dent model that is significantly smaller—about 25
times—than its teacher counterpart. This smaller student
model boasts the fastest inference speed while preserving
an accuracy level almost identical to that of the teacher
model. The markedly reduced size of the student model
renders it highly portable, simplifying deployment across
various ships and platforms.

Related Work
Deep Learning Based Methods

With the advancement of deep learning, transfer learning
based on CNNs is applied to classify marine mammals
based on acoustic signals. The ability of CNN to discrimi-
nate spectro-temporal information from spectrograms makes
it an ideal network for processing acoustic information. It
has been widely used in acoustic classification tasks such
as bioacoustic classification, environmental sound classifica-
tion, and underwater sonar image classification (Duan et al.
2022). In addition to excelling in visual representation clas-
sification tasks, the shift towards deep learning is fueled by
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its superiority in automatic detection and classification sys-
tems. These systems, rooted in deep learning, surpass hu-
man analysis in terms of efficiency and effectiveness. For
instance, various fine-tuned and pre-trained CNN backbones
are used to build accurate marine mammals’ sound classi-
fiers (Lu, Han, and Yu 2021; Zhong et al. 2020; Allen et al.
2021). However, these works mainly focus on limited whale
species and are relatively inefficient. A different and novel
approach turns the classification task into a regression prob-
lem. Instead of a classifier, a regressor is built using YOLO
to predict bounding boxes in the spectrograms (Duan et al.
2022).

Later, the advent of self-attention mechanisms and trans-
formers (Vaswani et al. 2017) has significantly changed deep
learning. The first transformer stacks self-attention layers
and outperforms the best result of that time (Vaswani et al.
2017). The idea of transformers inspires researchers to de-
velop more transformer architectures (Huang and Zhang
2022). For example, a newly proposed model, DeiT III (Tou-
vron, Cord, and Jégou 2022), is a variant of ViT that in-
corporates a new data enhancement procedure that includes
Gaussian blur, solarization, and grayscale, and it achieves
a competitive performance in image classification. In fact,
CNN-based and transformer models produce some decent
classifiers, but they are computationally expensive. To speed
up the full attention transformer, Longformer (Beltagy, Pe-
ters, and Cohan 2020) specifies the full self-attention matrix,
making it a more efficient architecture for long sequence
data. However, the transformers require large amounts of
data and strong computing power to be effective. FNet (Lee-
Thorp et al. 2021) is an attention-free transform architecture
that replaces the attention layers with a Fourier mixing sub-
layer with a feedforward sublayer to increase the efficiency
of the transform. However, the FNet transformer achieves
improved efficiency at the expense of accuracy.

Knowledge Distillation

Large models have excellent accuracy, but they are compu-
tationally expensive and difficult to deploy on any kind of
ship. Knowledge distillation (KD) is a model compression
technique to obtain an accurate small model by transferring
knowledge from large models (Mirzadeh et al. 2020). KD
has been widely used in face recognition tasks. For exam-
ple, ShrinkTeaNet (Duong et al. 2019) proposes an angu-
lar distillation loss that tries to minimize the angle between
teacher and student embedding vectors. KD has also been in-
troduced to solve translation tasks, two sequence-level KDs
have been shown to be useful for translation (Kim and Rush
2016). The performance of the student model can be affected
by the gap between the student and teacher models. To ef-
fectively transfer knowledge to a smaller model, an interme-
diate teacher-assistant model is proposed to bridge the gap
(Mirzadeh et al. 2020). Another way to enhance the knowl-
edge transfer process involves using a grouped KD loss,
which consists of three parts, proposed to filter out knowl-
edge that is not related to facial identities(Zhao et al. 2023).
To the best of the authors’ knowledge, knowledge distilla-
tion has yet been applied to recognizing and classifying ma-
rine mammals.
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Figure 1: The overall flow of XCFSMN.
Methodology Teacher Model

The overall flow of the structure is shown in Fig 1. The
framework consists of two networks: the teacher network,
and the student network. The teacher network is a deep and
complex neural network. In contrast, the student network is
considerably smaller in scale. The teacher model will first
be trained to obtain state-of-the-art accuracy. Then the pre-
trained teacher model will transfer the knowledge to the stu-
dent model to acquire and assimilate these learned features
effectively.
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Figure 2: The structure of the teacher model.
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The teacher model consists of three major components:
a pre-trained DenseNet network, a Time Delay Neural
Network (TDNN), and an improved CC-FSMN. The pre-
trained DenseNetl21 extracts the spectral information of
Log Mel-filter Banks (Fbanks), the TDNN extracts the ani-
mals’ unique acoustic characteristics and the improved CC-
FSMN learns the inter-frames context information. This ar-
chitecture achieves state-of-the-art accuracy and transfers
the knowledge to the student model.

Embedded X-vector X-vector (Snyder et al. 2018) is a
type of feature embedding that is commonly used in speaker
recognition tasks such as speaker verification, speaker iden-
tification, and speaker diarization. The X-vector is a fixed-
length feature representation of variable-length speech seg-
ments, such as utterances, that can capture short-term and
long-term variations in speaker characteristics. The X-
vector can reduce intra-speaker variability and expand inter-
speaker variability. Implementing the X-vector can help the
model differentiate between cetaceans that produce sounds
at similar frequencies.

The X-vector embedding model typically consists of
five layers of Time-delay Neural Networks (TDNNs). The
TDNNs extract relevant features from the speech signal.
The resulting feature vectors are aggregated using a statis-
tics pooling operation to produce a fixed-length X-vector.
The X-vector is then used as input to a classifier, such as a
support vector machine or neural networks, to perform the
speaker recognition task.

Traditionally, the X-vector extractor undergoes isolated
training, distinct from the main classifier. However, to en-
hance efficiency and reduce model size, we integrate the
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X-vector model directly into the main model, embedding it
seamlessly within the broader framework.

CC-FSMN The enhanced CC-FSMN has an identical ar-
chitecture to the student model with a different number of
neurons. The cFSMN (Zhang et al. 2016) layer processes
the contextual information that links each frame in the data
and is commonly used for automatic speech recognition. The
XCA layers further strengthen the relationship between the
frames. The justification for this step is that whales sing
songs to communicate and the songs are like their languages.
Different whale species have their unique songs so CC-
FSMN can be used for the classification task. The details
are explained in the next section.

DenseNet121 The teacher model consists of three main
parts, a pre-trained DenseNet network, a Time Delay Neu-
ral Network (TDNN), and an improved CC-FSMN. The pre-
trained DenseNet121 extracts the spectral information of the
log Mel-filter banks (Fbanks), the TDNN extracts the unique
acoustic characteristics of the animals, and the enhanced
CC-FSMN learns the inter-frame context information. This
architecture achieves state-of-the-art accuracy and transfers
the knowledge to the student model.

Student Model

The key to obtaining an efficient classifier is to simplify the
architecture of the student model. Our student model is an
improvement of CC-FSMN (Liu and Cheng 2023), the com-
pact Feed-Forward Sequential Memory Network is still the
main layer within the network. We apply an InstanceNorm
layer after the cFSMN layer. The normalization process re-
solves the covariant shift that may occur in the network,
which helps to speed up the training and stabilize the gra-
dient descent process.

An improvement was also been applied to the Cross-
Covariance Attention (XCA) layer. Conventionally, the
XCA layer contains a Dropout (Srivastava et al. 2014) op-
eration that randomly drops out neurons in a layer to pre-
vent the network from putting too much weight on certain
features. To avoid overfitting and improve the robustness of
the system, We replace the Dropout layer in the XCA with
a DropKey (Li et al. 2023) layer. Instead of blocking out
neurons in the attention layer, DropKey drops the input Key
units, which are a type of embedding vector. Dropping Keys
before computing the attention matrix can penalize weight
peaks and thus regularize the weights. Therefore, the Drop-
Key mechanism has improved attention weights regulariza-
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Figure 3: The structure of the student model.
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tion, secures the patterns, and can avoid the local-bias prob-
lem. Practically, DropKey is done by randomly generating
a mask matrix D, and each element in the matrix D has a
chance of d turning negative infinity. The output of the at-
tention with a DropKey mechanism is formulated as

KTQ
-

);

where d; ~ Bernoulli(l — dr), @ and K stand for query
and key respectively.

To further reduce the size of the student model, we prune
about 30% of the neurons from the cFSMN layer and the
MLP layer using the global unstructured pruning (GUP)
method. Instead of pruning an entire layer, GUP prunes neu-
rons based on their importance scores, providing better gran-
ularity. GUP does not improve inference speed but it can
compress a model well, making the model more adaptable
to various capacity-limited devices.

Azc(K, Q) = Softmaz(d; + (1)

Loss Function

The framework includes two loss functions: a Label Smooth
Cross-Entropy Loss, and a Cooling Knowledge Distillation
Loss. The Cross-Entropy Loss function is commonly used
for classification tasks. The model predicts the probability
for each label k. p(k|x) ezkezj , where z; is the unnor-

i

malized log-probabilities. The Cross-Entropy loss function
is then defined as CE(i) = —Zszl log(p(k))q(k), and
the g(k) is the ground truth label distribution. The experi-
ments adopt Label smoothing (Szegedy et al. 2016), which
is a technique to regularize the model making it more ro-
bust by reducing the model’s confidence. Label smoothing
is achieved through the introduction of a smoothing term
€ to the Cross-Entropy function turning it into a function
(1 —¢) * CE(i) + f. Hence, instead of predicting 1 for
the correct class and O for others, the model predicts 1 — e.
The assessment of the student model relies, in part, on the
utilization of the Label Smooth Cross-Entropy Loss.

The loss function employed for knowledge distillation is
termed “Cooling Knowledge Distillation Loss.” This strat-
egy serves as a means to narrow the knowledge gap between
the teacher and student models. In comparison to the con-
ventional knowledge distillation loss, its formulation is as
follows:

7S
T

‘L Z
Lxp = =T} oi(Z5)oi(=5). )

The parameter Lyxp is the cross-entropy between the
teacher and student predictive probabilities o(Z;) and
0(Zs). The T term denotes the temperature hyper-
parameter. Increasing the 7" will increase the information
received by the student model. Contrary to a common as-
sumption, the effective pairing of a large pre-trained teacher
model with a smaller student model is not a guaranteed out-
come (Mirzadeh et al. 2020). Our proposed student model
is approximately 18 times smaller than the teacher model.
Hence, we believe that the conventional KD loss may not
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be the best choice for this task. Moreover, most KD stud-
ies involve two networks with similar architecture but dif-
ferent layers and neurons. However, our proposed teacher
model consists of a CNN backbone and a TDNN based
on the student model. Hence, we propose to run a vary-
ing temperature strategy that reduces the knowledge gap
caused by model size and architecture. The T is replaced
with T, = T.,(1 — )™ where T,, is the initial tempera-
ture, « is the decreasing factor and n is the number of de-
creases. Starting at T,,, = 20, the temperature 7, of the KD
loss will decrease exponentially as the training process pro-
gresses at a rate of & = 0.1. The criterion for triggering
the decrease is when the early stop counter reaches patience
of 3. The reasoning behind this approach is as follows: ini-
tially employing a high temperature facilitates the transfer of
a substantial volume of knowledge from the teacher model
to the student model. Subsequently, as time progresses, the
temperature gradually decreases. This deliberate reduction
prompts the student model to gradually assimilate and com-
prehend features more independently. This is attributed to
the inherent architectural distinctions between the student
and teacher models. Consequently, this nuanced adjustment
in the Knowledge Distillation process significantly enhances
its effectiveness.

Experiments
Datasets

We employed two datasets to verify the robustness of
the systems. WMMSD contains approximately 2000 sound
recordings from more than 60 species of marine mammals.
Spanning seven decades, these recordings potentially intro-
duce challenges due to varying recording equipment and
setups over time. MobySound is another database used in
the experiments. The advantages of MobySound over the
WMMSD are that the recordings in a sound set from one
species were collected using a constant configuration. This
ensures the consistency of the data features which makes
feature extraction easier. In contrast, the variations in the
sound collection configuration in the WMMSD allow us to
test the robustness of the system and push the limits of what
a classifier can achieve.

When cross-referenced, the two datasets have five classes
in common; they are Finback Whales, Humpback Whales,
Blue Whales, Minke Whales, and Bowhead Whales. The to-
tal recording lengths of the five classes are shown in Table
1. The sizes of the datasets show a significant difference.
Furthermore, the classes are highly unbalanced which can
generally lead to a biased model and poor generalization.

Experiment Setup

The networks were created using Pytorch and trained using
an A6000 GPU. The input shape of the features is 256x256,
as this shape satisfies the input requirements of all the mod-
els used in the experiments. To generate a frame number of
256 for all classes, we chose an 8kHz sample rate for the
FBanks extraction.

To verify the efficiency and performance of XCFSMN,
we conducted comparative experiments with the following
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Class WMMSD  MobySound
Finback Whale 3.9 21.0
Humpback Whale 1.98 2.12
Blue Whale 0.12 10.20
Minke Whale 0.05 3.70
Bowhead Whale 0.39 1.10

Table 1: Total Audio length of the five classes in hours.

models: CC-FSMN (Liu and Cheng 2023), AlexNet used
in (Lu, Han, and Yu 2021), ResNet50 used in (Allen et al.
2021), VGG16, DenseNet used in (Zhong et al. 2020), DeiT
IIT (Touvron, Cord, and Jégou 2022), Longformer (Zhang
etal. 2021), and FNet (Lee-Thorp et al. 2021). In addition to
ResNet50, we also ran experiments on ResNet18, so that the
network is tested in its smallest version for a comprehensive
efficiency comparison.

Four sets of experiments were performed: a 12-class clas-
sification task using the WMMSD, a 5-class classification
task for each of WMMSD and MobySound, and a 5-class
classification task for a combined dataset of WMMSD and
MobySound. All datasets were randomly split into a train-
ing set and a test set with a ratio of 0.3. The splitting process
was performed at the file level before the feature extraction
step for the 5-class classification task. First, we performed
a 12-class classification task using the WMMSD. The sub-
dataset contained the top 12 classes in descending order of
sample size. The classes after the 12 classes have less than
100 samples, which is too few for meaningful training. This
experiment serves as a validation of the models’ capacity
to effectively manage and process highly imbalanced multi-
class data. Second, we trained and tested the models on the
WMMSD and MobySound, respectively. These two exper-
iments were performed to verify the ability of the models
to train data from different sources. Then, the datasets were
combined for training and testing to verify the robustness of
the 5-class classifier, since the two datasets have different
recording times, targets, and configurations.

To have a better assessment of the models, we applied a
cross-validation of five splits. We split the training set into
a training set and a validation set with five different random
states. The results were then averaged to obtain the final re-
sults. All models were fine-tuned for the best comparison
result.

Evaluation Metrics

To evaluate the efficiency of the models, we compared train-
ing time and inference time. Training time is the time taken
for the model to complete 300 epochs or to trigger an early
stop. Inference time refers to the time taken for the model to
predict the classes of the fixed-size test set. A shorter train-
ing time or inference time indicates better efficiency. Also,
inference time is more important than training time for the
marine mammal classification tasks.

Instead of using accuracy, the F1 score can provide a more
accurate measure of the models when the datasets are highly
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WMMSD-12 WMMSD-5 MobySound-5 Merged-5
Model  #Params M) pp"“yr " pr Ty TTC IT  TT IT
AlexNet 57.0 5 04 2 01 17 0.2 2 04
ResNet18 11 5.5 0.9 15 0.2 5 0.6 5 0.8
ResNet50 23.5 13 2.7 15 0.6 7 1.6 63 22
VGG16 134.0 33 5.9 10 1.0 15 2.7 17 3.7
DenseNet 7.0 27 3.5 3 0.7 18 2.0 31 2.6
DeiT III 21.6 32 16.3 6 4.7 52 11.5 23 2.6
Longformer 16.9 47 8.4 14 11.0 12 4.6 19 6.6
FNet 31 4.5 0.7 1.3 1.2 5 32 033 0.5
CC-FSMN 4.5 5 032 0.7 0.1 3 0.2 2 03
Teacher (ours) 81.3 12 10.8 3 1.2 22 10.3 5 4
Student (ours) 3.15 5.8 0.32 1 0.1 6.5 0.2 12 03

Table 2: Comparative results of the models on efficiency. “TT’ denotes the training time in minutes and ‘IT” denotes the

inference time in seconds.

Model WMMSD-12 WMMSD-5 MobySound-5 Merged-5
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

AlexNet 0594 0.735 0.612 0.636 0.607 0.607 0.865 0.884 0.863 0.867 0.800 0.782
ResNet18 0.782 0.846 0.806 0.791 0.616 0.646 0.950 0.873 0.880 0.934 0.809 0.840
ResNet50 0.787 0.850 0.809 0.791 0.616 0.646 0.928 0.845 0.846 0.904 0.828 0.842
VGG16 0.762 0.842 0.789 0.891 0.823 0.783 0.860 0.833 0.827 0.784 0.801 0.790
DenseNet 0.705 0.810 0.735 0.842 0.819 0.728 0.957 0.897 0.911 0916 0.830 0.869
DeiT III 0.569 0.660 0.586 0.781 0.704 0.660 0.892 0.860 0.896 0.928 0.740 0.787
Longformer 0.237 0274 0.215 0472 0.247 0.275 0.657 0.705 0.645 0.668 0.594 0.627
FNet 0.120 0.225 0.120 0.318 0430 0.228 0.275 0.561 0.283 0.261 0.296 0.222
CC-FSMN 0.785 0.828 0.787 0.791 0.616 0.646 0.970 0.898 0.922 0.893 0.817 0.828
Teacher (ours) 0.855 0.858 0.853 0.946 0.828 0.827 0981 0.991 0.986 0.976 0.890 0.925
Student (ours) 0.816 0.837 0.820 0.900 0.824 0.791 0.970 0.977 0.973 0.944 0.890 0.910

Table 3: Comparative results of the models on performance. “Prec.” denotes precision and “Rec.” denotes recall.

imbalanced. The Macro F1 score is typically used to eval-
uate the performance of the models and it is the average of
the F1 scores of each class. F1 score is calculated through

3

Precision in Equation (3) is defined as the percentage of the
correct labels out of all the predicted positives. A model with
high recall indicates that the model can find all the positive
cases with some negative cases identified as positive. Since
the goal is to detect and protect all types of marine mam-
mals, a high recall is important.

Precision x Recall

F1=2x .
Precision + Recall

Results Comparison

The efficiency results are shown in Table 2 and the perfor-
mance results are shown in Table 3. Of the 11 models tested,
FNet is the smallest in model size followed by the proposed
student model which is only approximately 1.6% larger. CC-
FSMN (Liu and Cheng 2023) and the FNet (Lee-Thorp et al.
2021) show excellent training speed in all the experiments.
The teacher model takes much longer to train as expected.
The student model is slightly slower in training speed. CC-
FSMN and the student model have identical infer speeds and
are dominant over other models in all experiments. This in-
dicates that our proposed framework and CC-FSMN achieve
state-of-the-art efficiency.

Table 3 provides clear evidence of the teacher model’s
consistent and exceptional performance, displaying superior
precision, recall, and F1 Score consistently throughout all
experiments. Implementing the temperature cooling knowl-
edge distillation process, the student model has significant
improvements over the CC-FSMN. There is a minimum im-
provement of 0.064 in the absolute F1 Score and a maxi-
mum of 0.145. Although the student model cannot obtain as
high an F1 Score as the teacher model, it still outperforms
all other models since it has almost the smallest size.

The CNNs have similar performance except for AlexNet,
which shows significant drops in the 12-class WMMSD and
the merged dataset. It is evident that all the transformers per-
form poorly. The poor performance can be attributed to the
small dataset size as the vision transformers require large
datasets to demonstrate their strength for image classifica-
tion tasks (Strudel et al. 2021). Deit can hold its own in
the 5-class experiments but fails for the 12-class because
the 12-class WMMSD has a really limited sample size for
the minority class. Longformer performs poorly since it was
designed for long-sequence languages. Furthermore, the re-
placement of the attention mechanism with the Fourier Mix-
ing Layer in FNet restricts the model from capturing long-
sequence context information, reducing the model’s ability
to classify the signal.
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CCFSMN Student

Figure 4: Visualization of features using a t-SNE plot for the
12-class WMMSD problem.

To better illustrate the rankings of the model, we per-
formed The Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS). 0.1 is assigned to the weights of
precision, recall, and training time; 0.35 is assigned to the
F1 score and inference time since fast and accurate identifi-
cation of mammals is prioritized. The average performance
scores indicate that the student model is the best choice fol-
lowed by CC-FSMN and then ResNet18.

In addition, we compared the results using the image ap-
proach in (Pollicelli, Coscarella, and Delrieux 2020) and
(Maire, Alvarez, and Hodgson 2015). The mean F1 score
achieved by the model trained using aerial images in (Maire,
Alvarez, and Hodgson 2015) is 0.4059 and the classifi-
cation using Commerson’s dolphin photos in (Pollicelli,
Coscarella, and Delrieux 2020) is 0.883. XCFSMN has a
better F1 score and can identify multiple species. There-
fore, marine mammal classification based on acoustic sig-
nals with XCFSMN is better than the same classification
problem based on image processing with deep learning.

Ablation Study

We performed an ablation study for the student model shown
in Table 4 by comparing efficiency and performance using
the 5-class merged dataset. The first row shows the results
for a CC-FSMN (Liu and Cheng 2023) and behaves as a
baseline. Adding Instance Normalization to the output of
cFSMN increases the precision of the model and is able
to maintain the recall. Replacing Dropout with DropKey
increases the precision more but decreases the recall. The
combination of Instance Normalization and DropKey boosts
the student model’s precision without affecting its recall. Fi-
nally, the introduction of temperature-cooling KD increases
the recall and the F1 score to reach the state-of-the-art.

The second ablation study on the KD temperature is
shown in Table 5. Experiments were conducted with differ-
ent fixed temperatures ranging from 1 to 40 and the best one
was selected for comparison. We introduced a temperature-
increasing strategy that contrasts with our primary approach.
Our findings suggest that maintaining a fixed temperature
doesn’t maximize the advantages of knowledge distillation
(KD). By dynamically adjusting the temperature parame-
ter—either increasing or decreasing—during the KD pro-
cess, we observed enhanced effectiveness in the student
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Sturcture

InsNorm  DropKey KD IT Prec. — Rec. Fl
X X x 032 0.893 0817 0.828
v X x 032 0939 0814 0.839
X v x 038 0954 0805 0.844
v v x 038 0951 0.817 0.850
v v v 033 0944 0.890 0910

Table 4: Results of the ablation study on the student model.
The denotations are the same as in Tables 2 and 3.

Temperature Strategy TT IT  Prec.  Rec. F1
FixT=10 1.5 03 0918 0.836 0.854
Warming 35 03 0943 0.859 0.887
Cooling 35 03 0944 0.890 0.910

Table 5: Results of the ablation study on the KD temperature
strategy. The denotations are the same as in Tables 2 and 3.

model’s acquisition of knowledge from the teacher. Inter-
estingly, both warming and cooling strategies demonstrate
comparable training times, yet the cooling approach notably
enhances recall and F1 score in our experiments.

To provide a more intuitive result, we generated the t-
distributed stochastic neighbor embedding (t-SNE) to vi-
sualize the high-dimensional information output layer neu-
rons. Fig 4 shows that the teacher model has the best abil-
ity to isolate different classes. The student model isolates
class 0 and class 6 better than CC-FSMN. Therefore, we can
claim that the XCFSMN framework can better capture the
small differences between classes and is more robust than
CC-FSMN.

Conclusion and Future work

This paper proposed the XCFSMN framework, which trains
a small and fast student model using a pre-trained teacher
model with a temperature-cooling strategy. XCFSMN out-
performs CNN backbones and transformers in efficiency and
performance for marine mammals classification. XCFSMN
also demonstrates that the acoustic approach has better ac-
curacy than the approach based on images. XC-FSMN has
significant improvements in performance and similar effi-
ciency compared to CC-FSMN. The pruned network makes
it easier to deploy on different devices. To further improve
the classifier, one can work on the preprocessing of the data
instead of the architecture of the model. In the future, we aim
to employ a diffusion model (Ho, Jain, and Abbeel 2020) to
denoise the data and generate data to balance the dataset.
In addition, XCFSMN is not limited to marine mammals’
sound classification. The idea of XCFSMN can be further
applied to acoustic signal classification tasks such as speech
sentiment recognition and speaker identification.
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