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Abstract

Predicting future outcomes is a prevalent application of ma-
chine learning in social impact domains. Examples range
from predicting student success in education to predicting
disease risk in healthcare. Practitioners recognize that the ul-
timate goal is not just to predict but to act effectively. Increas-
ing evidence suggests that relying on outcome predictions for
downstream interventions may not have desired results.
In most domains there exists a multitude of possible inter-
ventions for each individual, making the challenge of taking
effective action more acute. Even when causal mechanisms
connecting the individual’s latent states to outcomes are well
understood, in any given instance (a specific student or pa-
tient), practitioners still need to infer—from budgeted mea-
surements of latent states—which of many possible interven-
tions will be most effective for this individual. With this in
mind, we ask: when are accurate predictors of outcomes help-
ful for identifying the most suitable intervention?
Through a simple model encompassing actions, latent states,
and measurements, we demonstrate that pure outcome pre-
diction rarely results in the most effective policy for taking
actions, even when combined with other measurements. We
find that except in cases where there is a single decisive ac-
tion for improving the outcome, outcome prediction never
maximizes “action value”, the utility of taking actions. Mak-
ing measurements of actionable latent states, where specific
actions lead to desired outcomes, may considerably enhance
the action value compared to outcome prediction, and the de-
gree of improvement depends on action costs and the out-
come model. This analysis emphasizes the need to go beyond
generic outcome prediction in interventional settings by in-
corporating knowledge of plausible actions and latent states.

Introduction
Artificial intelligence has been used for impact in variety of
societal domains, from education to healthcare. While many
of its applications have focused on prediction, such as that
of educational outcomes (Tamhane et al. 2014; Lakkaraju
et al. 2015; Xu et al. 2017) and medical incidents and risk
(Hosseinzadeh et al. 2013; Ma et al. 2018; Ballinger et al.
2018; Optum 2024), practitioners and researchers invariably
encounter the question of how to use these predictions for
interventions to improve the outcomes that they care about.
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Consider the example of predicting student academic per-
formance at the secondary level. In most cases, the goal of
building such predictors is to improve the relevant educa-
tional outcome, academic performance. However, a predic-
tion of a student’s future academic performance alone does
not improve academic performance unless there is an inter-
vening action, such as providing additional tutoring or fi-
nancial support. Students who lack the necessary academic
prerequisites may need additional tutoring rather than finan-
cial support to improve their performance, whereas students
who lack the time to complete course work because they are
working multiple jobs may need financial aid rather than to
be referred for additional tutoring. Therefore, the success of
any action depends on a student’s latent state (so called as
we do not know a priori whether the student lacks prerequi-
sites or income). A school official may take measurements,
such as diagnostic tests, past grades, or a survey of income,
to obtain information about students’ latent states. But these
measurements can be costly, requiring time and labor.

The key question, therefore, is: what should the school
official measure in order to best predict the student’s future
academic performance, and what should they measure in or-
der to best improve it? Further, when are these the same mea-
surements, and when are they different?

Many applications of ML/AI for social impact focus on
solving prediction problems (Kleinberg et al. 2015; Athey
2017) and maximizing prediction accuracy for future out-
comes. Although risk prediction has become ubiquitous in
education and other domains, its effectiveness for improving
outcomes has been called into question. A recent empirical
qualitative study by Liu et al. (2023) on machine learning
applications in education found a significant gap between
predictions and beneficent interventions.

“You don’t improve things by predicting them better.”
- Education researcher on the value of predicting aca-
demic risk (Liu et al. 2023)

The study of interventions has been fundamental in the
social sciences, statistics, and theoretical computer science
(Rosenbaum and Rubin 1983; Pearl 1995; Rubin 2005; Pe-
ters, Janzing, and Schölkopf 2017; Hofman et al. 2021). The
set of techniques and applications for causal inference and
analysis is vast, mostly notably including program evalua-
tion and randomized controlled trials (Stephenson and Imrie
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1998; Deaton and Cartwright 2018), observational studies
(Rosenbaum, Rosenbaum, and Briskman 2010) using mod-
ern ML techniques (Athey and Imbens 2016), adaptive trial
designs (Collins, Murphy, and Strecher 2007; Montoya et al.
2022), individual treatment effect and counterfactual infer-
ence (Shalit, Johansson, and Sontag 2017; Lei and Candès
2021; Bynum, Loftus, and Stoyanovich 2023). Prior work
informed by causal inference has discussed the gap between
predictions and decisions (Athey 2017), and how the use of
prediction in these cases is predicated upon critical causal
assumptions (Prosperi et al. 2020; Lundberg, Brand, and
Jeon 2022). In the education domain, despite the prevalence
of RCTs and causal analysis on the population impact of in-
terventions (Cook et al. 2014; Yeager et al. 2019), instance-
level targeting and decision making in schools are still of-
ten driven by risk scores that predict academic outcomes
without incorporating knowledge of plausible interventions
(Bruce et al. 2011; Knowles 2015; Perdomo et al. 2023).

The current work is interested in a question that is at
the intersection of the pure prediction and the causal infer-
ence/interventional paradigm: when is outcome prediction
helpful for interventions at the instance level? Given the
ubiquity of predictive tools and significant data infrastruc-
ture built around prediction, there is a need to better under-
stand the limits of predictions when applying them to in-
terventional settings. This work acknowledges the key role
of causal inference, while studying a problem at a different
scope—that of instance-level predictive intervention, e.g.
what helps this patient, what helps this student, assuming
that a model of causal effects is available. Unlike in the esti-
mation of heterogenous treatment effects (see e.g. Imai and
Ratkovic 2013; Athey and Imbens 2016), where covariates
are assumed to be given, here we investigate the choice of
covariates—what to measure, under a constrained budget, in
order to predict or intervene. This line of questioning is also
related to the theory of diagnosis (Reiter 1987; De Kleer and
Williams 1987) which has a long history in the AI literature;
through the current work we bring the analytical framework
of diagnosis to bear on current issues in data-driven predic-
tion and decision making in social systems.

The main contributions of the work are as follows: We
formalize the gap between outcome prediction and inter-
vention in a mathematical framework that combines prob-
abilistic modeling, logical formalism, and a theory of ac-
tion utility. Our model comprises: latent states of individu-
als, measurements, outcome, and actions to enact change in
the latent states (Section ). We then illustrate the actionabil-
ity of outcome prediction with a simple numerical example
in Section . We advance this research agenda in the setting
of Boolean functions with a set of theoretical results (Sec-
tion ): we fully characterize the conditions under which out-
come prediction can be considered actionable and show that
the optimal measurement for outcome prediction is almost
never the optimal measurement for outcome improvement,
either when used alone or in combination with other mea-
surements. Rather than prescribe how to best perform in-
terventions (e.g. to improve student academic performance),
our goal is to precisely describe when prediction necessar-
ily falls short of intervention goals. In Section , we review

further literature in related fields.

Model
Our model of data-driven decision making comprises four
key elements: latent states of individuals, measurements,
outcome, and actions to enact change in the latent states. We
suppose that an institutional decision maker, whom we refer
to as the planner, makes measurements for each individual
in a population and takes actions based on those measure-
ments for each individual to influence their future outcome.
Formally, we have a graphical model with the following ran-
dom variables, and each individual is an independent ran-
dom draw from this graphical model.
• States. There are s latent states S = {X1, · · · , Xs} that

are not observed directly, each supported on DS . Each la-
tent state indicates a factor that influences the individual’s
outcome, and need not be independent of other states.
They have a joint distribution.

• Outcome. The outcome of interest is Y . The distribution
of Y depends on latent states, Y ∼ g(X1, · · · , Xs) and
is supported on DY . g is known to the planner. In other
words, we assume the planner knows the structural causal
model of how states map to the outcome.

• Measurements. Planner chooses from n possible measure-
mentsM := {M1, · · · ,Mn}. The distribution of Mi de-
pends on States, Mi ∼ f i(X1, · · · , Xs) and is supported
on DM. There is a measurement budget of B measure-
ments. The planner observes the realized values of B cho-
sen measurements in order to perform subsequent predic-
tion (Section ) and intervention (Section ) tasks.
To reiterate, each graphical model comprises three types

of variables: latent states, measurements, and an outcome
(see Figure 1 for an illustration). There is a fourth element
of the model, which is actions.

Actions. After observing the value of measurement(s), the
planner takes an action, a. Actions change the value of latent
states, e.g., the action a = [X1 ← 1] changes the value
of state X1 to 1.1 The set of possible actions is denoted A.
The cost function of action is c : A → [0, C], where C >
0. The cost of taking no action, a = ∅, is 0. This means
that the planner can take a (costly) action on behalf of each
individual to modify one of their latent states.

In section , we show how the model can be instantiated
across three real world problem domains and give examples
of the respective states, outcome, measurements and actions.

Prediction Task and Prediction Value
Consider the case where predicting Y is an end in itself.
Then the planner wants to choose a measurement M ⊆ M
such that |M | ≤ B and M allows the planner to predict Y
with the lowest prediction loss (or error) out of all size B
measurement sets. Given a hypothesis class H , and predic-
tion loss function ℓ, the planner constructs an optimal pre-
dictor h∗M given M :

h∗M := argmax
h∈H

E[ℓ(h(M), Y )].

1We use the notation [X ← x] to denote the do-operation that
sets the value of variable X to x.
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For each observed value (or values) of M , the optimal pre-
dictor h∗ outputs a particular prediction of the individual’s
outcome Y . It minimizes prediction loss over the population.
We define the prediction value of measurement M as:

V predict(M) := −E[ℓ(h∗M (M), Y )].

The higher the prediction value of a measurement, the more
informative it is for predicting the outcome, assuming that
an optimal predictor is always available to the planner.

Intervention Task and Action Value
In most cases, the goal of the planner is not simply to pre-
dict Y , but to take the best action to attain a more favorable
outcome Y for the individual. The notion of the “best” ac-
tion can be made concrete by defining a utility function for
actions and outcomes.

Let Y a denote the outcome variable after an action a has
been taken. Action a typically corresponds to a do-operation
(see e.g. Pearl 2009) on the latent states that changes the dis-
tribution of Y , e.g., if a = [X1 ← 1], then Y a = Y [X1←1]

is that new random variable for the outcome under do-
operation that sets the value of state X1 to 1. Let u(y) denote
the utility to the planner of having Y = y.

Given any measurement M ∈ M, the planner constructs
an optimal action policy a∗M to maximize the net utility of
taking action:

a∗M := argmax
a:DM→A

E[u(Y a(M))]− E[u(Y )]− E[c(a(M))].

In words, a∗M maps any value of M to an action that most
improves the expected value of Y conditional on the known
value of M , taking into account action cost.

We define the action value of measurement M as:

V act(M) := E[u(Y a∗(M))]− E[u(Y )]− E[c(a∗(M))].

The first term E[u(Y a∗(M))] is the expected utility under
the action policy a∗. We may write the first term as

E[u(Y a∗(M))] = EM

[
E[u(Y a∗(m) |M = m]

]
.

to see that expectation is taken with respect to Y under the
do-operation (that is, post-action Y ), as well as with respect
to (pre-action) M . The second term E[u(Y )] is the expected
utility without taking any action. The third term is the ex-
pected cost of the the action policy a∗. The higher the action
value of a measurement, the most informative it is for taking
actions to the improve the outcome in a cost-effective way.

Motivating Problem Instances
We now discuss motivating real world problems where the
model helps to elucidate the different measurements needed
for prediction and for intervention. We develop the first ex-
ample on predicting and improving educational outcomes in
some detail, and present the second example on actionable
genomics for clinical interventions as a brief sketch.

Education and student success Consider the use of stu-
dent data and machine learning techniques to predict future
educational outcomes, such as the student’s risk of adverse
academic outcomes in secondary school (Lakkaraju et al.
2015) and academic performance in higher education (Bird
et al. 2021; Xu et al. 2017; Tamhane et al. 2014). In a crit-
ical study by Liu et al. (2023), education researchers that
were consulted on the value of making such predictions sug-
gested that the measurements available for making accurate
predictions of future educational outcomes (e.g. data on de-
mographic factors, behavioral factors), in the absence of in-
terventions, are not necessarily helpful for selecting inter-
ventions to change the outcome.

The model developed in the previous section formally il-
lustrates such concerns and how they arise from the inherent
differences between prediction and interventions at the level
of measurement.

Suppose the planner is a college official whose mandate
is to improve student retention rates. We instantiate the fol-
lowing simplified model of student success:

• States. Latent states X1, · · · , Xs may include: X1

(whether the student is overworked at job), X2 (whether
the student has grasped the academic prerequisites, e.g.
calculus), X3 (a demographic feature, e.g. parental educa-
tion status), etc. These states tend not to be independent,
and tend to be only observable via a measurement.

• Actions. The corresponding actions are different interven-
tions available to the school official: [X1 ← 1] giving fi-
nancial aid, [X2 ← 1] tutoring calculus, etc. There is no
corresponding action for X3 as it cannot be modified.

• Outcome. The outcome of interest Y is whether the stu-
dent returns for sophomore year. It is observed at the start
of sophomore year. Y is a function of the states, that is,
Y = f(X1, X2, X3, · · · ).

• Measurements. Some measurements at taken after
midterm exams in freshman year. The measurements in-
clude M1 := X1 (student job status), M2 := X2 (diag-
nostic calculus test), M3 := X3 (demographic), M4 :=
f(X1, X2, X3) (midterm grades), etc.

In this case, knowing M4 (midterm grades) may be very
helpful for predicting Y , but it is less helpful for determin-
ing which costly action (financial aid or tutoring) should
be used to intervene on the student’s future retention out-
come. In the same vein, M1 and M2 can inform whether the
student requires a particular intervention, but without M3,
they cannot be used to predict Y as accurately, since Y de-
pends on all three latent states. From an education and test-
ing research perspective, diagnostic tests are different from
achievement or proficiency tests (Alderson, Brunfaut, and
Harding 2015)—even though M2 and M4 are both test re-
sults, the former better informs interventions as it diagnoses
specific academic areas that benefit from tutoring.

Genomics for clinical decisions This example is taken
from Nelson, Keating, and Cambrosio (2013), a study of
“actionability” in the context of clinical sequence. Suppose
the planner is a hospital with multiple patients to treat. The
outcome of interest is health (e.g. the absence of cancer).
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Each patient has set of states including phenotypes (e.g.
whether a patient has a mutated enzyme) and risk factors
(e.g. family history of cancer) that together determine their
future health outcome. Measurements are the genetic se-
quences of the patient (e.g. whether a patient has a mutation
in the anaplastic lymphoma kinase (ALK) gene).

Depending on the type of mutation (e.g. hereditary mu-
tations in pre-symptomatic individuals or non-heritable spo-
radic mutations), a state may or may not be associated with
an action that can improve the patient’s health outcome:
non-heritable mutations in the tumor may be associated with
a drug mechanism that that can block the function of the mu-
tated enzyme, whereas gene markers that are associated with
future health risks typically cannot be targeted by any par-
ticular drug pathway.

Illustrative Example With Two Latent States
In this section, we work out a simple example of the model
to illustrate how the prediction value and action value of
measurements can be misaligned. In this instantiation of the
model, we assume that all variables are binary. In the moti-
vating problems discussed above, latent states are often ad-
equately modeled as binary variables, e.g., a patient either
has a genetic mutation or not. Many outcomes of interest dis-
cussed are also naturally binary, such as testing positive for a
disease (health outcome), or graduating on time (educational
outcome); many real-valued outcomes can also be turned
into a binary outcome by applying an appropriate thresh-
old. While the general version of the model as described in
Section does not require variables to be binary-valued, we
argue that such models suitably represent certain real world
problems of interest.The particular graphical model we an-
alyze in this section is displayed in Figure 1, and described
as follows.
• States. There are two latent states X1, X2 distributed as

independent Bernoulli random variables with failure rate
p < 0.5. That is, we have X1, X2 ∼ Bernoulli(1− p).

• Outcome. The outcome of interest is Y := X1∧X2, where
∧ denotes the logical and.

• Measurements. The space of measurements M is all
Boolean functions of (X1, X2). The measurement budget
is B = 1. For the purposes of this example, we focus on
the following 3 measurements:
M1 := X1; MY := X1 ∧X2; Mpiv := X1 ∧ ¬X2.

By the symmetry of the example, the other plausible mea-
surements such as X2 and X2 ∧ ¬X1 follow similar cal-
culations. We call Mpiv a pivotal measurement, which in-
dicates that a particular state is pivotal for changing the
outcome.2

• Actions. The actions are A := {[X1 ← 1], [X2 ← 1], ∅}.
The cost of action is fixed for [Xi ← 1] at c > 0.

• Utility. Planner’s utility from outcome Y is u(y) = y.

2In the full version of the paper at arXiv:2309.04470, we de-
scribe examples of real world pivotal measurements , such as “tell-
tale” symptoms of diseases that exclude other conditions and sug-
gest a clear treatment path, and contrast them with non-pivotal ver-
sions.

Y

X1

X2

M1

MY

Mpiv
¬

Figure 1: Binary variable model with 2 latent states. Arrows
indicate logical addition unless otherwise stated.

Prediction Value
Suppose the hypothesis class H is any (potentially random-
ized) Boolean function on {0, 1} and we consider the 0-1
loss. For notational brevity, we write q = 1 − p whenever
necessary. By elementary calculations, we know:

• The best predictor of Y , given M1 is to predict 1 when
M1 = 1 and 0 when M1 = 0.

• The best predictor of Y , given MY is to predict MY .

• The best predictor of Y , given Mpiv, is

– If q2 > p: predict 0 when Mpiv = 1 and predict 1 when
Mpiv = 0;

– Otherwise: always predict 0. (See footnote3.)

We may compute the (negative) prediction value of each
measurement as follows. This is none other than the ex-
pected loss of the respective optimal predictor:

−V predict(M1) = 1− P(X1 = 1, X2 = 0)

= 1− pq,

−V predict(MY ) = 1

−V predict(Mpiv) = max(1− p, 1− q2).

Hence, ranking the measurements by prediction value, we
have MY ⪰M1 ⪰Mpiv.

Action Value
We turn to the intervention task. To compute action values,
we analyze the best action policies given each measurement.
First consider Mpiv. In this case, the best action policy is:

• If Mpiv = 1, we have X1 = 1 and X2 = 0. The best
action is [X2 ← 1].

• If Mpiv = 0, the best action depends on c and p. If P(X2∧
¬X1 = 1 | Mpiv = 0) > c, the best action is [X1 ← 1].
Otherwise, the best action is to do nothing.

The key takeaway is that Mpiv allows the planner to take the
action that is pivotal for improving the outcome. This both
maximizes the utility gain from successfully improving the
outcome, and minimizes the cost of taking actions.

3When Mpiv = 1, Y must be 0, that is P(Y = 0 | Mpiv =
1) = 1 but in the case when Mpiv = 0, we have P(Y = 1 |
Mpiv) > P(Y = 0 |Mpiv) if and only if q2 > p.
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Figure 2: Action value against action cost for 3 measurements: MY (Highest prediction value), Mpiv, and M1. The action value
of making no measurements is included as a baseline. Failure rate p is set to 0.25 in left plot, and to 0.5 in the right plot.

Performing similar analyses for MY and M1, we find that
the action value of each measurement is:

V act(M1) = max(0, pq − pc) + max(0, pq − qc)

V act(MY ) = max(0, pq − (1− q2)c)

V act(Mpiv) = max(0, pq(1− c)) + max(0, pq − (1− pq)c.

In Figure 2, we plot the action value against cost c for two
different p parameters. First we observe that Mpiv has the
highest action value regardless of action costs.

We also observe that when actions are very costly, the
measurement MY is no longer helpful in terms of action util-
ity, i.e., V act(MY ) = 0. MY corresponds to perfect knowl-
edge of the outcome Y , which is typically not possible in re-
ality. Yet, even under this favorable assumption, we see that
knowing the outcome has rather limited utility for effective
intervention.

In contrast, Mpiv and M1, which as we recall have lower
prediction value, help to inform good action policies. When
actions are low-cost, all measurements have positive action
value. When actions are very low-cost, Mpiv and M1 have
the same action value and their advantage over MY is even
greater than when actions are costly.

Ranking the measurements by action value, we have
Mpiv ⪰ M1 ⪰ MY . In this case, the order is completely
reversed from the ranking by prediction value. In the section
that follows, we will see that this is an instance of a more
general phenomenon.

Main Results: Boolean Outcome Functions
In this section, we continue with the analysis of outcome
models with binary variables and consider a more gen-
eral setting, where Y is a Boolean function of s States,
X1, · · · , Xs. That is, Y : {0, 1}s → {0, 1}. As noted in
the previous section, while this is a simplified setting where
the states, and the outcome, can be either 0 or 1 (e.g., favor-
able or unfavorable), the space of Boolean functions is suf-
ficiently rich to capture wide range of interactions between
states and outcome.

Suppose that we can measure M , any Boolean function
of X1, · · · , Xs; in other words,M is the set of all Boolean
functions over {0, 1}s. The set of possible actions is A =⋃

i=1,··· ,s,x∈{0,1}{[X1 ← x]}∪∅. In words, the planner can
set the value of any state to 0, or 1, or do nothing.

Prediction and Action for a Single Measurement
We first consider the case where the measurement budget
is B = 1. In Proposition 1, we work through an example
for symmetric and monotone outcome function Y where the
states are i.i.d. Bernoulli random variables. Then in the main
result (Theorem 2), we give the sufficient and necessary con-
dition for outcome prediction to have maximum action value
for any Boolean Y . The condition results in a very con-
strained outcome model, where a single latent state always
improves the outcome (see Definition 1). In other words,
outcome prediction never has the optimal action value ex-
cept in highly degenerate models.

The following illustrative result generalizes the example
in Section . Proposition 1 gives an explicit expression for a
measurement M∗ that has higher action value than the mea-
surement MY that perfectly tracks the outcome Y . M∗ gen-
eralizes the pivotal measurement that was introduced in the
previous section.
Proposition 1 (Construction of measurement with high
action value). Suppose Y is a symmetric and monotone
Boolean function of s States, X1, · · · , Xs, which are i.i.d.
Bernoulli(1−p) random variables. We can measure M , any
Boolean function of X1, · · · , Xs, and take any action a ∈ A
for a fixed cost c ∈ (0, 1). Then, the following measurement
M∗ has higher action value than Mpredict = Y for any
c ∈ (0, 1):

M∗(a1, · · · , as) = 1 ⇐⇒
Y (a1, · · · , ai−1, 1− ai, ai+1, · · · , as)
− Y (a1, · · · , ai−1, ai, ai+1, · · · , as) = 1,

for any i = 1, · · · , s. Moreover, the inequality is strict for
all but univariate Y .
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The proof 4 proceeds by deriving explicit algebraic ex-
pressions for action values in terms of model parameters.

The remaining goal of this section is to generalize the
above proposition to arbitrary Boolean outcome function Y .
To do so, we introduce two new definitions.
Definition 1. An outcome Y is fully improvable if for any
x1, · · · , xs where P(X1 = x1, · · · , Xs = xs) > 0 and
Y (x1, · · · , xs) = 0, there exists i, x, s.t.

P(Y [Xi←x] = 1 | X1 = x1, · · · , Xs = xs) = 1.

Definition 2. The action [Xi∗ ← x] is sufficient for improv-
ing Y if ∀x1, · · · , xs s.t. P(X1 = x1, · · · , Xs = xs) > 0,

P(Y [Xi∗←x] = 1 | X1 = x1, · · · , Xs = xs) = 1.

Full improvability is a strong condition on the outcome Y
which states that there always exists a single action on the
latent states that improves Y almost surely. This single ac-
tion can in general depend on the latent states. Full improv-
ability is already a restrictive condition: threshold functions,
1{

∑s
i=1 Xi ≥ k}, are not fully improvable for k > 1.

The existence of a sufficient action is an even stronger
condition which states that the same single action improves
Y almost surely across all realizations of the latent states.
We note that having a sufficient action indicates that the out-
come Y is fully improvable, but the former does not neces-
sarily imply the latter. For example, the parity function of s
Boolean variables is fully improvable, but it does not have a
sufficient action. In words, having a sufficient action means
that there’s a single action that improves Y whenever Y = 0
regardless of the configuration of the latent states; that is,
one treatment helps all equally. We now show that predict-
ing the outcome is optimal for taking actions if and only if
the strong and likely unrealistic condition—of having a suf-
ficient action—holds.
Theorem 2 (Outcome prediction and maximum action
value). Let Y (X1, · · · , Xs) be an s-dimensional Boolean
function such that Y ̸≡ 0. If Y does not have a sufficient
action, there exists M(X1, · · · , Xs) such that V act(M) >
V act(Y ) for c < 1. If Y has a sufficient action [Xi∗ ← x],
then V act(Y ) is maximal for any cost c.

Proof. We prove the first direction, that is, we assume Y
does not have a sufficient action. Suppose the best action
given Y = 0 is do(X1 ← x), WLOG. Since the best action
given Y = 1 is ∅, the action value of Y is

V act(Y ) = max(0,P(Y = 0∩Y [Xi∗←x] = 1)−P(Y = 0)·c)

Let M be s.t. {M = 0} = {Y = 0} ∩ {Y [Xi∗←x] = 1}.
The action value of M is

V act(M) ≥ max(0,P(Y = 0 ∩ Y [Xi∗←x] = 1) · (1− c)).

By assumption, we have that P(Y = 0) > P(M = 0).
Therefore, for any c < 1, we have V act(M) > V act(Y ).

Now, for the other direction. Recall that the action value
of Y is P(Y = 0) · (1− c). Consider some measurement M

4The proof can be found in the full version of the paper at
arXiv:2309.04470.

that is (X1, · · · , Xs)-measurable, and suppose the optimal
action policy given M is:

a(M) =

{
[Xi ← xi] if M = 0

[Xj ← xj ] if M = 1
.

Then the action value of M is V act(M)

= max(0,P(Y = 0,M = 0, Y [Xi←xi] = 1)

− P(M = 0) · c)
+ max(0,P(Y = 0,M = 1, Y [Xj←xj ] = 1)

− P(M = 1) · c)
≤ max(0,P(Y = 0,M = 0)− P(M = 0, Y = 0) · c)
+ max(0,P(Y = 0,M = 1)− P(M = 1, Y = 0) · c)

= P(Y = 0,M = 0) · (1− c)

+ P(Y = 0,M = 1) · (1− c)

= P(Y = 0) · (1− c).

This shows that Y has the maximal action value among all
measurements.

The interested reader may refer to the full version of the
paper for an illustration of the proof idea.

Prediction and Action for a Measurement Set
In this section, we consider measurement sets of size B > 1
and we prove a generalization of the second implication in
Theorem 2—that Y is typically not part of a set of measure-
ments that together maximizes action value.

As we turn our consideration from single measurements
to measurement sets, information that is conveyed from cer-
tain measurements may become redundant. On the ques-
tion of whether Y is an actionable measurement when used
in combination with other measurements, we would there-
fore like to focus on measurement sets where Y is non-
redundant, defined as follows.
Definition 3. Consider Y ∪ S, a size-B measurement set
containing Y for S such that |S| = B − 1 and S ⊆M. We
say that Y is non-redundant with respect to S if there exists
s ∈ {0, 1}B−1 such that the best action when Y = 0, S = s
is not ∅. We call the set of such s the Y -relevant set with
respect to S:

{s ∈ {0, 1}B−1 : a∗(Y = 0, S = s) ̸= ∅}.
Note that the best action when Y = 1 is always ∅, so by

Definition 3, the non-redundant set of Y with respect to S is
where optimal action is dependent on Y conditioning on S.
We also extend the notion of sufficient action to subsets of
the probability space.
Definition 4. For any S-measurable set F , the action
[Xi∗ ← x] is sufficient for improving Y on F if
∀x1, · · · , xs s.t. P(X1 = x1, · · · , Xs = xs | F) > 0,

P(Y [Xi∗←x] = 1 | X1 = x1, · · · , Xs = xs) = 1.

In the following theorem, we show that Y cannot be a ele-
ment of an optimal measurement set, unless Y is a redundant
measurement, or a strong condition is satisfied: that Y has a
sufficient action whenever it is non-redundant.
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Theorem 3 (Action value of measurement sets containing
the outcome can be improved). Let Y (X1, · · · , Xs) be an
s-dimensional Boolean function. Consider Y ∪S, the size-B
measurement set where Y is non-redundant. Suppose there
exists s̄ ∈ {0, 1}B−1 in the Y -relevant set with respect to S
such that Y does not have a sufficient action on {S = s̄}.
Then, there is a measurement M∗ such that

V act(Y ∪ S) < V act(M∗ ∪ S).

Proof. By assumption, there exists s̄ ∈ {0, 1}B−1 such that
a∗(Y = 0, S = s̄) = [Xi ← x] and [Xi ← x] is not a
sufficient action for improving Y on {S = s̄}.

Let XNI denote the set of state values (x1, · · · , xs) where
S = s̄ and the action [Xi ← x] does not improve Y , that is,

P(Y [Xi←x] = 1 | X1 = x1, · · · , Xs = xs) = 0.

Since [Xi ← x] is not a sufficient action on {S = s̄}, we
must have P((X1, · · · , Xs) ∈ XNI) > 0.

Construct a new measurement M∗ such that

M =

{
1 if Y = 1 or (X1, · · · , Xs) ∈ XNI

0 o.w.

Compare the best action policy under Y ∪ S and
M∗ ∪ S. The best action policy changes only on the set
{(X1, · · · , Xs) ∈ XNI}, where the planner now takes no
action instead of [Xi ← x]. The action value is therefore
improved by P((X1, · · · , Xs) ∈ XNI) · c > 0. We have
shown that the measurement set M∗ ∪ S has strictly higher
action value than Y ∪ S.

In Theorem 3, recall that we assumed Y does not have
a sufficient action on some element of the Y -relevant set,
which implies and is stronger than the condition that Y
does not have a sufficient action overall. The following ex-
ample shows that this assumption is necessary. Consider a
slightly modified outcome model from Section : there are
two binary latent states where Y = X1 ∧ X2, and the
marginal distribution of X1, X2 is Bernoulli but we have
P(X1 = X2 = 0) = 0. Here, Y does not have a sufficient
action and yet {Y,X1 ∧ ¬X2} is an optimal measurement
set (maximum action value among all measurement sets).

In this section, we derived theoretical results for models
where the outcome and measurements are Boolean functions
of latent states, showing that outcome prediction does not
in general maximize action value. We leave the interesting
question of extending these results to other settings, such as
when the variables are real-valued, to future work.

Discussion
In this paper, we studied the gap between outcome predic-
tion and intervention in a probabilistic graphical model of
outcomes, states, actions and measurements. By distinguish-
ing between the utility of a measurement for accurate pre-
diction and for effective intervention, we show that outcome
prediction almost never leads to an optimal measurement
or an optimal measurement set for interventions. Our result
is framed theoretically at a general level, to provide a lan-
guage for reasoning about predictions and actions beyond

the specifics of any one domain. We now elaborate on further
connections with related work, and close with a discussion
of open questions.

Heterogeneous Causal Effects and Policy Evaluation
Athey and Imbens (2016); Shalit, Johansson, and Sontag
(2017); Wager and Athey (2018) have examined the estima-
tion of heterogeneous treatment effects from observational
data. Furthermore, the area of off-policy learning and op-
timization (Manski 2004; Zhao et al. 2012; Dudı́k et al.
2014; Kallus and Zhou 2018; Athey and Wager 2021) stud-
ies average causal outcomes under personalized treatment
assignment policies, exemplified in studies focusing on job
training interventions (Kitagawa and Tetenov 2018; Knaus,
Lechner, and Strittmatter 2022). The framework of policy
optimization is an alternative framework for algorithmic de-
cision making that precludes the need for outcome predic-
tors and human-in-the-loop decision making; it requires data
about treated and untreated outcomes, and the treatment pol-
icy under which data was collected. Typically, the estima-
tion of heterogenous treatment effects is limited to scenarios
where only a single treatment (either discrete or continuous)
is considered, without delving into the problem of diagnos-
ing multiple causal factors. Going beyond randomized con-
trolled trials, adaptive interventions involving multiple as-
signment strategies has become increasingly popular in the
clinical application domain (Collins, Murphy, and Strecher
2007; Montoya et al. 2022). Though we have similar goals of
finding optimal personalized treatment assignments—called
an “action policy” in the current work—personalization in
this line of work depends on given covariates, whereas the
current model examines the choice of what covariates to
measure under a measurement budget.

Recourse and Strategic Action in Machine Learning A
rich literature has developed over recent years on the topic
of recourse—that is, how individuals subject to an adverse
decision based on a machine learning model might change
their feature values to achieve a more favorable decision in
the future (Ustun, Spangher, and Liu 2019; Verma et al.
2020; Ross, Lakkaraju, and Bastani 2021; Karimi et al.
2022). The research emphasizes the need for explanations
that highlight mutable and more easily changeable features
to guide individual action (Joshi et al. 2019; Barocas, Selbst,
and Raghavan 2020; Karimi, Schölkopf, and Valera 2021).
While this work shares a common motivation with the
present paper—to help individuals to achieve desired out-
comes rather than just predict likely outcomes—it differs in
two crucial ways. First, the work on recourse is specifically
focused on the actions that can be taken by decision sub-
jects, whereas we are concerned with the actions available to
a social planner who is generally seeking to achieve positive
societal impact. Secondly, while recourse focuses on alter-
ing the decisions output by a machine learning model, we
are concerned with actions that affect the likelihood of the
actual outcome of interest, not merely a model’s predictions.

The growing body of research on strategic classification
aims to assess how decisions subjects might adapt their be-
havior in light of a machine learning model making de-
cisions (Brückner and Scheffer 2011; Hardt et al. 2016;

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22246



Kleinberg and Raghavan 2019; Hu, Immorlica, and Vaughan
2019; Milli et al. 2019; Liu et al. 2020). This line of work
explores the concept of gaming, where individuals manip-
ulate input features to improve model predictions without
necessarily affecting the underlying property. Prior work has
demonstrated that limiting strategic behavior along these
lines requires causal modeling (Miller, Milli, and Hardt
2020; Shavit, Edelman, and Axelrod 2020). This area of
work focuses on designing the right incentives within an
ML model to cause decision subjects to behave as the social
planner might like them to behave. In contrast, the current
work is focused on designing the measurements that help
the social planner achieve its interventional goals directly.

Open Questions This theoretical investigation contributes
to the discourse around the actionability of risk prediction in
the education domain and beyond (Liu et al. 2023) and ar-
gues that machine learning practitioners should reconsider
risk prediction that captures only a single outcome when
their goals are interventional. That being said, our model as-
sumes that the planner knows the structural causal model
of how states map to the outcome, making it possible to
maximize the action value of measurements. Recovering the
structural causal model is difficult to do in full generality.
In some cases, however, experts might have domain knowl-
edge of some causal connections between nodes, e.g. clin-
icians may know about particular drug pathways that con-
nects a drug (action) to a patient’s outcome (as discussed in
Section ). Leveraging known structural causal models, our
study identifies situations where measuring latent states is
preferable to outcome prediction. The characterization of the
action value of measurements in partially known outcome
models is left as an open question.

Relatedly, our findings suggest the need to invest in meth-
ods for determining both the structural causal model and
measuring latent states, especially for practitioners priori-
tizing action value over prediction value. Recent work has
highlighted the fraught multiplicity and temporality of pre-
dicted risk notions (Saxena et al. 2023), as well as other
shortcomings of optimizing machine learning models to pre-
dict future outcomes (Wang et al. 2022). Future research
could explore viable alternatives, such as operationalizing
more actionable measurements or integrating knowledge of
interventions into predictive models that are in production,
in addition to recognizing conditions under which one might
decide not to implement prediction at all (Garcia et al. 2020).

While existing studies (Perdomo et al. 2023; Liu et al.
2023) have considered the question of whether outcome pre-
dictions result in better interventional outcomes, such em-
pirical studies are emerging and few. Existing open source
machine learning datasets do not typically include data on
actions taken and downstream outcomes, against which to
evaluate the action value of prediction. The current work
has explored this important problem via theoretical analy-
sis, suggesting the need for further empirical inquiry and
updated practices for model evaluation.
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